
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

0

Matrix Based Operatorial Approach to Differential
and Integral Problems

Damian Trif
Babes-Bolyai University of Cluj-Napoca

Romania

1. Introduction

Many problems of the real life lead us to linear differential equations of the form

m

∑
k=0

Pk(x)
dky

dxk
= f (x), x ∈ [a, b] (1)

with the general conditions

m

∑
j=1

α
(1)
ij y(j−1)(x

(1)
ij) + · · ·+

m

∑
j=1

α
(m)
ij y(j−1)(x

(m)
ij) = βi, i = 1, ..., m (2)

where x
(k)
ij ∈ [a, b], ∀i, j, k = 1, ..., m. These multipoint conditions include (for m = 2, for

example)
- initial value conditions, y(a) = β1, y′(a) = β2,
- boundary value conditions α11y(a) + α12y′(a) = β1, α21y(b) + α22y′(b) = β2,
- periodic conditions y(a)− y(b) = 0, y′(a)− y′(b) = 0.
Eigenvalue problems for linear differential operators

m

∑
k=1

Pk(x)
dky

dxk
+ (P0(x)− λw(x)) y = 0, x ∈ [a, b]

m

∑
j=1

α
(1)
ij y(j−1)(x

(1)
ij) + · · ·+

m

∑
j=1

α
(m)
ij y(j−1)(x

(m)
ij) = 0, i = 1, ..., m

are also included in this general form. Moreover, nonlinear problems where the r.h.s. f (x)

is replaced by f (x, y(x), y′(x), ..., y(m−1)(x)) can be solved using Newton’s method in the
functional space Cm [a, b] by solving a sequence of linear problems (1)+(2).
MATLAB uses different methods to solve initial condition problems (ode
family) or boundary value problems (bvp4c or bvp5c) based on Runge-Kutta,
Adams-Bashforth-Moulton, BDF algorithms, etc.
One of the most effective methods for solving (1)+(2) is to shift the problem to the interval
[−1, 1] and then to use the Chebyshev spectral methods, i.e. to approximate the solution y by a
finite sum of the Chebyshev series

y(x) =
1

2
c0T0(x) + c1T1(x) + c2T2(x).... (3)

3

www.intechopen.com

2 Will-be-set-by-IN-TECH

Here Tk(x) = cos(k cos−1(x)), k = 0, 1, ... are the Chebyshev polynomials of the first kind and
the coefficients ck, k = 0, 1, ...are unknown. A spectral method is characterized by a specific
way to determine these coefficients. The Chebyshev spectral methods could be implemented
as
- Galerkin and tau methods, where we work in the spectral space of the coefficients c = c0, c1,
c2, ... of y or as
- spectral collocation (or pseudospectral) methods, where we work in the physical space of
the values of y at a specific grid x = x1, x2, ... ∈ [−1, 1].
The well known MATLAB packages which use spectral methods, MATLAB Differentiation
Matrix Suite (DMS) (Weideman & Reddy, 2000) and Chebfun (Trefethen et al., 2011), are based
on the pseudospectral methods. Usually, these methods are implemented in an operatorial
form: a differentiation matrix D (or linear operator) is generated so that Y′ = DY where the
vector Y′ contains the values of the derivative y′ at the specific grid while Y contains the
values of y at the same grid. The equation (1) becomes

(
m

∑
k=0

diag(Pk(x))Dk

)
Y = f (x) i.e. AY = F

and the conditions (2) are enclosed in the matrix A and in the vector F. The numerical solution
of the differential problem is now Y = A−1F. We note that MATLAB capabilities of working
with matrices make it an ideal tool for matrix based operatorial approach.
There is a price to pay for using pseudospectral methods: the differentiation matrix D is full
(while for finite differences or finite element methods it is sparse) and, more importantly, D
is very sensitive to rounding errors. We give here a comparison between DMS, Chebfun and
our proposed package Chebpack (based on the tau spectral method) for an eigenvalue problem
suggested by Solomonoff and Turkel. Let us consider the evolution problem

ut = −xux, u(x, 0) = f (x), x ∈ [−1, 1] ,

with the exact solution u(x, t) = f (xe−t). Here x = ±1 are outflow boundaries so that
no boundary conditions are required. Using a Chebyshev spectral method to discretize the
spatial part of the equation, the stability of time integration depends on the eigenvalues of
that spatial part

− xux = λu, x ∈ [−1, 1] . (4)

The exact (polynomial) eigenvectors are the monomials xn and the corresponding eigenvalues
are λn = −n, n = 0, 1,
The commands for the DMS package

[x,D]=chebdif(64,1);L=eig(-diag(x)*D);

for Chebfun

N=chebop(@(x,u) -x.*diff(u),[-1,1]);L=eigs(N(66),64,’LR’);

and for Chebpack

X=mult(64,[-1,1]);D=deriv(64,[-1,1]);L=eig(full(-X*D));

38 MATLAB – A Ubiquitous Tool for the Practical Engineer

www.intechopen.com

Matrix Based Operatorial Approach to Differential and Integral Problems 3

Fig. 1. Eigenvalues for the problem (4)

give the 64 approximated eigenvalues successively in the vector L and they are represented in
Fig. 1. We see that DMS and Chebfun calculate accurately only a small number of eigenvalues,
while Chebpack gives exactly all 64 eigenvalues.
The proposed package Chebpack, which is described in this chapter, is based on the
representation (3) of the unknown functions and uses the tau method for linear operators
(such as differentiation, integration, product with the independent variable,...) and the
pseudospectral method for nonlinear operators – nonlinear part of the equations.
The tau method was invented by Lanczos (1938, 1956) and later developed in an operatorial
approach by Ortiz and Samara (Ortiz & Samara, 1981). In the past years considerable work
has been done both in the theoretical analysis and numerical applications.
Chebpack is freely accessible at https://sites.google.com/site/dvtrif/ and at (Trif,
2011). All the running times in this chapter are the elapsed times for a 1.73GHz laptop and for
MATLAB 2010b under Windows XP.

2. Chebpack, basic module

The package contains, at the basic module – level0, the tools which will be used in the next
modules. Let us start with the Chebyshev series expansion of a given function y (Boyd, 2000):
THEOREM 1. If y is Lipschitz continuous on [-1, 1], it has a unique representation as an absolutely
and uniformly convergent series

y(x) =
c0

2
T0(x) + c1T1(x) + c2T2(x) + ...,

39Matrix Based Operatorial Approach to Differential and Integral Problems

www.intechopen.com

4 Will-be-set-by-IN-TECH

and the coefficients are given by the formula

ck =
2

π

∫ 1

−1

y(x)Tk(x)√
1 − x2

dx, k = 0, 1, 2,

Let yN−1 be the truncation of the above Chebyshev series

yN−1(x) =
c0

2
T0(x) + c1T1(x) + c2T2(x) + · · ·+ cN−1TN−1(x) (5)

and dom = [−1, 1] be the working interval. Any interval [a, b] can be shifted and scaled to
[−1, 1] by using the shifted Chebyshev polynomials

T∗
k (x) = Tk(αx + β), α =

2

b − a
, β = − b + a

b − a
, x ∈ [a, b] .

First of all, we need a set of N collocation points x1, ..., xN ∈ dom in order to find a
good transformation between the above spectral approximation (5) of y and its physical
representation y(x1), y(x2), ..., y(xN). Let

pN−1(x) =
a0

2
T0(x) + a1T1(x) + ... + aN−1TN−1(x) (6)

be the unique polynomial obtained by interpolating y(x) through the points x1, ..., xN , see
(Trefethen, 2000) for more details on the coefficients ak versus ck. The next theorem of (Boyd,
2000) estimates the error:
THEOREM 2. Let y have at least N derivatives on dom. Then

y(x)− pN−1(x) =
1

N!
y(N) (ξ)

N

∏
k=1

(x − xk)

for some ξ on the interval spanned by x and the interpolation points. The point ξ depends on the
function y, upon N, upon x and upon the location of the interpolation points.
Consequently, the optimal interpolation points are the roots of the Chebyshev polynomial
TN(x), (Chebyshev points of the first kind)

xk = − cos
(2k − 1)π

2N
, k = 1, ..., N. (7)

For these points x, the polynomials {pN−1} are generally nearly as good approximations to y
as the polynomials {yN−1} and if y is analytic on dom, then both ‖y − yN−1‖ and ‖y − pN−1‖
decrease geometrically as N → ∞. This is the spectral convergence property, i.e. the convergence
of ‖y − yN−1‖ and ‖y − pN−1‖ towards zero is faster than any power of 1

N as N → ∞.
Numerical integration and Lagrangian interpolation are very closely related. The standard
formulas for a continuous function f on [−1, 1] are of the type

∫ 1

−1
f (x)dx ≈

N

∑
k=1

wk f (xk), (8)

where wk are the quadrature weights

wk =
∫ 1

−1

N

∏
j=1,j
=k

x − xj

xk − xj
dx, k = 1, 2, ..., N.

40 MATLAB – A Ubiquitous Tool for the Practical Engineer

www.intechopen.com

Matrix Based Operatorial Approach to Differential and Integral Problems 5

The Gauss quadrature formulas are based on the optimal Legendre points xk, k = 1, ..., N and
these formulas are exact for polynomials f up to degree 2N − 1. The idea of Clenshaw-Curtis
quadrature is to use Chebyshev points x instead of the above optimal nodes. By using the
Chebyshev points of the first kind (7) one obtains the “classical” Clenshaw-Curtis formula
while by using the zeros of the first derivative of a Chebyshev polynomial plus the endpoints
±1, i.e. the Chebyshev extrema

xk = − cos
(k − 1)π

N − 1
, k = 1, ..., N (9)

in [−1, 1] (the so called Chebyshev points of the second kind) one obtains the “practical”
Clenshaw-Curtis formula. Both formulas have all the good properties of the Gaussian
quadrature, see (Trefethen, 2008) for more details.
Consequently, we may use Chebyshev points of the first kind or of the second kind both for
quadrature formulas and for physical representation of a function y on [−1, 1]. Any interval
[a, b] may be scaled to [−1, 1] and we obtain the corresponding formulas. Moreover, by using
the mapping x = cos θ and Tk(x) = cos kθ we see that the following two series

y(x) =
c0

2
T0(x) + c1T1(x) + c2T2(x) + ...

y(cos θ) =
c0

2
+ c1 cos θ + c2 cos 2θ + ...

are equivalent. A Chebyshev series is in fact a Fourier cosine series so that the FFT and iFFT
may be used to transform the spectral representation of y into the physical one and conversely,
the physical representation into the spectral representation. The quadrature weights w could
also be calculated by a fast algorithm given in (Waldvogel, 2006).
The first code of level0, inspired from chebpts.m of chebfun (Trefethen et al., 2011) is

[x,w] = pd(N,dom,kind)

(pd means “physical domain”). It calculates the grid x = [x1, ..., xN]T (column vector) and the
quadrature weights w = [w1, ..., wN] (row vector) for the quadrature formula

∫ b

a
f (x)dx ≈

N

∑
j=1

wj f (xj) ≡ w · f (x).

The input parameters are N – the dimension of the vectors x and w, dom – the computational
domain [a, b] and kind which can be 1 or 2 in order to calculate x as the Chebyshev points of
the first or of the second kind.
Some short tests show the performances of this code. Let us approximate

∫ 1

0
x sin

1

x
dx =

cos(1) + sin(1) + Si(1)

2
− π

4
≈ 0.37853001712416130988...

for N = 10, 102, ..., 106. Here we use Chebyshev points of the first kind and hence
we have no problems with the singularity at the origin. We have instead problems
with the highly oscillatory behavior of the integrand near the origin. The code is
Chebpack\examples\ex_level0\quad_ex1.m and the result for N = 106 is
Elapsed time = 0.938258074699438 seconds

err = 1.9568e-11.
A more efficient code is

41Matrix Based Operatorial Approach to Differential and Integral Problems

www.intechopen.com

6 Will-be-set-by-IN-TECH

[int,gridpts] = quadcheb(myfun,n,dom,kind,tol,gridpts,I)

in the folder Chebpack\examples\ex_level0 which uses pd into a recursive procedure.
Precisely, starting from the initial interval dom = [a, b], pd is used with n points in [a, b] and
on two subintervals [a, c] and [c, b] where c = (a + b)/2 . If the results differe by more than a
tolerance ε, the interval [a, b] is divided to that subintervals . Now quadcheb is called again
for each subinterval and at each step we sum the results. For N = 128 we obtain
Elapsed time = 0.013672 seconds.

err = 4.907093620332148e-010

Of course, this non-optimized quadrature calculation is only a collateral facility in Chebpack
and it does not work better than the basic quadrature command quadgk from MATLAB,
which is designated for highly oscillatory integrals.
The next codes of level0

v = t2x(c,kind) and c = x2t(v,kind)

are inspired by chebpolyval.m and chebpoly.m from chebfun (Trefethen et al., 2011). These
codes perform the correspondence between the spectral representation c of a function f and
its physical representation v = f (x) on Chebyshev points of the first or second kind. It is
important to remark that linear operators are better represented in the spectral space, while
the nonlinear operators are easily handled in the physical space.
In t2x and x2t, c and v are matrices of the same dimension, each column represents the
coefficients or the values for some other function, the number of rows is the above dimension
N, while kind specifies the type of Chebyshev points used in v. For example, the code
n=16;dom=[0,1];kind=2;x=pd(n,dom,kind);

vs=sin(x);vc=cos(x);ve=exp(x);c=x2t([vs,vc,ve],kind);

gives in the columns of c the coefficients of the Chebyshev series (6) of sin(x), cos(x) and
exp(x) calculated by using the values of these functions on Chebyshev points of the second
kind on [0, 1]. We remark here that, taking into account the term c0T0/2, the coefficient c0 is
doubled.
Another code from level0, inspired from bary.m of chebfun (Trefethen et al., 2011) and useful
for graphical representation of the functions is

fxn = barycheb(xn,fk,xk,kind)

It interpolates the values fk of a function f at the Chebyshev nodes xk of the first or second
kind in dom by calculating the values fxn at the new (arbitrary) nodes xn in dom. The
barycentric weights are calculated depending on kind.
Precisely, cf. (Berrut & Trefethen, 2004), the barycentric formula is

f (x) =
∑

N
k=1

wk
x−xk

fk

∑
N
k=1

wk
x−xk

, wk =
1

∏
j
=k

(xk − xj)
, k = 1, ..., N.

For Chebyshev points one can give explicit formula for barycentric weights w. For the
Chebyshev points of the first kind we have

xk = − cos
(2k − 1)π

2N
, wk = (−1)k sin

(2k − 1)π

2N
, k = 1, ..., N

42 MATLAB – A Ubiquitous Tool for the Practical Engineer

www.intechopen.com

Matrix Based Operatorial Approach to Differential and Integral Problems 7

and for the Chebyshev points of the second kind we have

xk = − cos
(k − 1)π

N − 1
, wk = (−1)kδk, δk =

{
1
2 , k = 1, N
1, otherwise

, k = 1, ..., N.

We remark that for a general interval dom = [a, b] and if the sign changes for all xk and wk the
weights must be multiplicated by ±2N−1(b − a)1−N . This factor cancels out in the barycentric
formula so that it is no need to include it.
Let us calculate now the differentiation matrix D such that if f is the column of the Chebyshev
coefficients of a function f , then Df is the column of the Chebyshev coefficients of the

derivative function
d f
dx . On [−1, 1] the derivatives of Ti satisfy

T0 = T′
1, T1 =

T′
2

4
, ..., Ti =

T′
i+1

2(i + 1)
−

T′
i−1

2(i − 1)
, i ≥ 2

from where

T′
0

2
= 0, T′

i = 2i (Ti−1 + Ti−3 + ... + T1) , i even

T′
i = 2i (Ti−1 + Ti−3 + ... + 0.5T0) , i odd.

Consequently, D is a sparse upper triangular matrix with

Dii = 0, Dij = 0 for (j − i) even and Dij = 2j otherwise.

Of course, the differentiation could be iterated, i.e. the coefficients of f (p) are Dpf. The
corresponding code from level0 is

D=deriv(n,dom)

where n is the dimension of the matrix D. For dom = [a, b] the above matrix D is multiplied
by 2/(b − a).
Similarly, the code

[J,J0]=prim(n,dom)

calculates the sparse integration matrix J such that the coefficients of
∫ x

f (t)dt are Jf. Here the
first coefficient of the result Jf may be changed in order to obtain the coefficients for a specific primitive
of f . For example, the coefficients of the primitive which vanishes at a = dom(1) are obtained
by using J0f.
The basic formulas for dom = [−1, 1] are

∫
T0

2
dx =

T1

2
,
∫

T1dx =
T0/2

2
+

T2

4
,
∫

Tkdx =
1

2

(
Tk+1

k + 1
− Tk−1

k − 1

)
, k ≥ 2

from where

Jk,k = 0, J0,1 =
1

2
, Jk,k−1 =

1

2k
= −Jk,k+1, k = 1, 2,

For a general dom = [a, b] the above matrix J is multiplied by (b − a)/2.

43Matrix Based Operatorial Approach to Differential and Integral Problems

www.intechopen.com

8 Will-be-set-by-IN-TECH

As an important example, let us calculate the coeficients of a specific primitive F(x) of the
function f (x). We must then solve the initial-value problem

dF

dx
= f (x), y(−1) = α, x ∈ [−1, 1].

If c are the Chebyshev coefficients of F and f are the coefficients of f , the equation is discretized
in spectral space as Dc = f. In order to implement the initial condition, we remark that

y(−1) = c0
T0

2
+ c1T1(−1) + c2T2(−1) + ... + cN−1TN−1(−1) = α

can be written as Tc = α where

T =

[
T0

2
, T1(−1), T2(−1), ..., TN−1(−1)

]
.

This means that we can replace the last row of D by T and the last entry of f by α, thus

obtaining a new matrix D̃ and a new vector f̃ . Finally, c = D̃−1 f̃ are the coefficients of the
specific primitive.
The following code from level0

T=cpv(n,xc,dom)

(chebyshev polynomial values) implements such conditions. Here xc is an arbitrary vector in
dom = [a, b] and cpv calculates the values of the Chebyshev polynomials Tk, k = 0, 1, .., n − 1
at the column of nodes ξ

T = [T0/2, T1(ξ), T2(ξ), ..., TN−1(ξ)], ξ =
2xc

b − a
− b + a

b − a
, 1 ≤ ξ ≤ 1.

The code is based on the recurrence formulas of Chebyshev polynomials on [−1, 1]

T0(x) = 1, T1(x) = x, Tk(x) = 2xTk−1(x)− Tk−2(x), k ≥ 2.

The test code Chebpack\examples\ex_level0\quad_ex3 performs these calculations
for the special case y′ = cos x, y(0) = 0, with the solution y = sin(x). The coefficients c are
obtained by using the differentiation matrix, cc are the coefficients of the exact solution, ccc
are obtained by using the integration matrix J and cccc are obtained by using the integration
matrix J0.
We also remark that if T=cpv(n,x,dom),

f (x) = 0.5c0T∗
0 (x) + c1T∗

1 (x) + ... + cN−1T∗
N−1(x) (10)

and c = (c0, ..., cN−1)
T , we have f (x) = Tc, for x ∈ [a, b]. The code cpv could be

used to transform between the spectral representation f of the function f and the physical
representation v = f (x) of values at the Chebyshev grid x,

v = Tf, f = T−1v.

These transforms are performed by FFT in the codes x2t and t2x, but for a small dimension
N we may use this direct matrix multiplication.

44 MATLAB – A Ubiquitous Tool for the Practical Engineer

www.intechopen.com

Matrix Based Operatorial Approach to Differential and Integral Problems 9

As another example, let us calculate the values at the grid points x of the specific primitive
which vanishes at a = dom(1)

F(xi) =
∫ xi

a
f (t)dt, i = 1, ..., n

Starting with the values f = f (x) we have the Chebyshev coefficients T−1f , then J0T−1f are
the Chebyshev coefficients of the specific primitive on [a, b] and finally,

F(x) = TJ0T−1f. (11)

Another code from level0

X=mult(n,dom)

calculates the sparse multiplication matrix X such that if f is the column vector of the
Chebyshev coefficients of a function f (x), then Xf is the column vector of the coefficients
of the function x f (x). The code is based on the formulas

xT0 = T1, xT1(x) =
T0

2
+

T2

2
, ..., xTk(x) =

Tk−1(x)

2
+

Tk+1(x)

2
, k ≥ 2

for x ∈ [−1, 1]. Consequently,

Xk,k = 0, Xk,k−1 = Xk,k+1 =
1

2
, k = 2, 3, ..., N − 1,

X1,1 = 0, X1,2 = 1, XN,N−1 =
1

2
.

Then, in general, the coefficients of xp f (x) are given by Xpf and the coefficients of a(x) f (x)
are given by a(X)f for analytical functions a(x), where a(X) is the matricial version of the

function a. Moreover, if
f (x)

xp has no singularity at the origin, then its coefficients are X−pf.

Of course, X is a tri-diagonal matrix, X2 is a penta-diagonal matrix and so on but, generally,
the matrix version funm(full(X))of the scalar function a(x) or X−p = [inv(X)]p are not

sparse matrices. For a general interval dom = [a, b], X is replaced by b−a
2 X + b+a

2 IN where IN

is the sparse unit matrix speye(N).
Another method to calculate a(X) is to pass from the values a(x) at the Chebyshev grid x to
the Chebyshev coefficients a using x2t and to approximate

a(x) ≈ .
a0

2
+

m−1

∑
k=1

akTk(x). (12)

Here m must be chosen sufficiently large, but m ≤ N so that the known function a(x) is
correctly represented by a0, a1, ..., am−1.
In order to calculate the coefficients of the product

a(x) f (x) =

(
a0

2
+

m−1

∑
k=1

akTk(x)

)⎛
⎝ f0

2
+

n−1

∑
j=1

f jTj(x)

⎞
⎠

we may use the formula

45Matrix Based Operatorial Approach to Differential and Integral Problems

www.intechopen.com

10 Will-be-set-by-IN-TECH

Tj(x)Tk(x) =
Tj+k(x) + T|j−k|(x)

2
, ∀j, k.

The needed coefficients are given by Af where the matrix A ≈ a(X) is given by the code

A=fact(a,m)

from level0.
The test code Chebpack\examples\ex_level0\fact_ex1.m calculates cosh(X) using
fact and funm from Matlab. We remark that X is a sparse matrix, so that funm must be
applied to full(X).

3. Chebpack, linear module

At the first level – level1, the package contains subroutines to solve
- initial and boundary value problems for high order linear differential equations
- initial value problems for first order linear differential systems
- linear integral equations
- eigenvalues and eigenfunctions for differential problems.
The main method used is the so called tau-method, see (Mason & Handscomb, 2003) or
(Canuto et al., 1988) for more theoretical details and the implementation. It is based on
- discretization using the differentiation matrix D
- discretization using the integration matrix J
- splitting the interval dom = [d1, d2, ..., dp].

3.1 Discretization using the differentiation matrix D
The corresponding code is Chebpack\level1\ibvp_ode.m

[x,solnum]=ibvp_ode(n,dom,kind)

where n, dom, kind have the same significance as above, x is the Chebyshev grid and solnum
is the numerical solution in the physical space calculated at the grid x.
The structure of ivp_ode is
function [x,solnum]=ibvp_ode(n,dom,kind)

x=pd(n,dom,kind);X=mult(n,dom);D=deriv(n,dom);

myDE;myBC;sol=A\b;solnum = t2x(sol,kind);myOUT;

end

where myDE, myBC and myOUT must be written by the user and describe the differential
equation, the boundary conditions and the output of the program.
For example, for the problem

y′′′ − xy = (x3 − 2x2 − 5x − 3)ex, x ∈ [0, 1]

y(0) = 0, y′(0) = 1, y(1) = 0

we have
function myDE

A=D^3-X;b=x2t((x.^3-2*x.^2-5*x-3).*exp(x),kind);end

function myBC

T=cpv(n,dom,dom);A(n-2,:)=T(1,:);b(n-2)=0;

46 MATLAB – A Ubiquitous Tool for the Practical Engineer

www.intechopen.com

Matrix Based Operatorial Approach to Differential and Integral Problems 11

A(n-1,:)=T(1,:)*D;b(n-1)=1;A(n,:)=T(2,:);b(n)=0;end

The program is called by
[x,solnum]=ibvp_ode_test(32,[0 1],2);

Other examples are coded in Chebpack\examples\ex_level1\ibvp_ode_ex*.m
The general form for initial/boundary value problems for high order linear differential
equations is (1) and its discrete form is

Ac ≡
(

m

∑
k=0

Pk(X)Dk

)
c = b

where the unknown y is represented in the spectral space by its Chebyshev coefficients c,
while b are the Chebyshev coefficients of the r.h.s. f (x).
We remark that the coefficients Pk(X) of the equation can be defined in myDE

- directly, for example Pk(x) = −x gives Pk(X) = −X
- using f unm, for example Pk(x) = sin x gives Pk(X) = f unm(f ull(X), @sin), i.e. using the
Taylor series of sin X
- using f act, for example Pk(x) = cos x gives Pk(X) = f act(x2t(cos(x), kind), m), i.e. using the
Chebyshev series of cos X
- if Pk(x) is a constant, say Pk, then Pk(X) = Pk · speye(N).
The boundary conditions of the general type (2) are implemented using cpv. For example, for
y(x1c)− y′(x2c) + 2y′′(x3c) = yc we calculate T=cpv(N,[x1c,x2c,x3c],dom). One of the
last rows of A is replaced by T(1,:)-T(2,:)*D+2*T(3,:)*D^2 and the corresponding
entry of the vector b is replaced by yc.

3.2 Discretization using the integration matrix J
The corresponding code is Chebpack\level1\ibvp_ode_int.m

[x,solnum]=ibvp_ode_int(n,dom,kind)

We remark that the discretization using the differentiation matrix D does not work well for
large N. For example, this type of discretization for the problem

εy′′ + xy′ = −επ2cos(πx)− π x sin(πx), x ∈ [−1, 1] , ε = 10−5, (13)

y(−1) = −2, y(1) = 0

with N = 2048 and an error about 5.46 × 10−11 leads us to a sparse system Ac = b but
with a sparsity factor about 25% that increases the computational time to 6.4 sec, see the
example ibvp_ode_ex.m in the folder Chebpack\examples\ex_level1. A better idea
is to integrate two times the above equation using the much more sparse integration matrix J.
This integration make the coefficients c0 and c1 arbitrary and we may fix their values by using
the boundary conditions, this time at the first two rows of A and b.
Precisely, the first and the second integration of the equation (13) gives

εy′ + xy −
∫ x

y =
∫ x [

−επ2cos(πx)− π x sin(πx)
]

εy +
∫ x

xy −
∫ x ∫ x

y =
∫ x ∫ x [

−επ2cos(πx)− π x sin(πx)
]

.

The discrete form is
(
εIN + JX − J2

)
c = J2f where c are the Chebyshev coefficients

of the solution y and f are the Chebyshev coefficients of the r.h.s. The new code

47Matrix Based Operatorial Approach to Differential and Integral Problems

www.intechopen.com

12 Will-be-set-by-IN-TECH

ibvp_ode_int_ex.m in the same folder as above gives the same accuracy for the same
N = 2048, but needing only 0.12 sec. The new matrix A has now a sparsity factor of about
0.2439% for the dimension 2048.
This higher sparsity qualifies the integration method to be used for splitting the interval
dom = [a, b] into dom = [a, d1] ∪ [d1, d2] ∪ ... ∪ [dm−1, b] as well as for differential systems,
where the dimension N of matrices is multiplied by the number of subintervals or by the
number of differential equations in the system.
We give the formulas for first order equations and a general formula. For the first order we
have in myDE

P1(x)y′ + P0(x)y = F =⇒ P1(x)y −
∫

P′
1(x)y +

∫
P0(x)y =

∫
F,

Ac ≡
[
P1(X) + J

[
P0(X)− P′

1(X)
]]

c = Jf ≡ b.

Generally, if we denote the differentiation operator on functions P by dP, the identity operator

by I and the formal k power of the operator I − Jd by [](k), we obtain, after m integrations,
Ac = b where

A =
m

∑
k=0

Jm−k [I − Jd](k) Pk(X), b = Jmf. (14)

For example, for m = 3 we have

∫∫∫
P0(x)y(x) → J3P0(X)c,

∫∫∫
P1(x)y′(x) → J2

[
P1(X)− JP′

1 (X)
]

c,

∫∫∫
P2(x)y′′(x) → J

[
P2(X)− 2JP′

2 (X) + J2P′′(X)
]

c,

∫∫∫
P3(x)y′′′(x) →

[
P3(X)− 3JP′

3(X) + 3J2P′′
3 (X)− J3P′′′

3 (X)
]

c.

It is important to remark that the absolute value of the Chebyshev coefficients gives us
some information about the necessary dimension N of the discretized problem in order
to capture the correct behavior of the solution. For example, let us consider the problem
ibvp_ode_int_ex2.m in the folder Chebpack\examples\ex_level1

εy′′ + (x2 − w2)y = 0, y(−1) = 1, y(1) = 2, x ∈ [−1, 1]

for w = 0.5, ε = 1.e − 6. The command
[x,solnum]=ibvp_ode_int_ex2(1024,[-1 1],2);

gives the results in Fig. 2. We see that up to a dimension about N = 400, the algorithm cannot
resolve y accurately, due to its highly oscillatory behavior. After that, the Chebyshev series
begins to converge rapidly. For N = 1024 the elapsed time is about 0.05 sec.

3.3 Discretization using the integration matrix J and splitting the interval

The corresponding code is Chebpack\level1\ibvp_ode_split.m

[x,solnum]=ibvp_ode_split(n,dom,kind)

48 MATLAB – A Ubiquitous Tool for the Practical Engineer

www.intechopen.com

Matrix Based Operatorial Approach to Differential and Integral Problems 13

Fig. 2. The Chebyshev coefficients and the numerical solution for ex2

Sometimes, the solution of a differential problem has a different behavior in different
subintervals. For example, for small ε the solution of the problem (13) has a shock near the
origin and we need a very large N in order to capture its correct behavior. In these cases it is
better to split the working interval dom[a, b] into disjoint subintervals [d1, d2] ∪ [d2, d3] ∪ ... ∪
[dp−1, dp] = [a, b] adapted to the behavior of the solution. The great advantage is to use a
small N for each subinterval. The partial solutions on each subinterval are connected by some
level of smoothness.
Precisely, let us consider for example a second order differential problem on [a, b] and let
us split the interval as [a, b] = [d1, d2] ∪ [d2, d3] ∪ [d3, d4]. This splitting is given by dom =
[d1, d2, d3, d4] on input. If we calculate the basic ingredients xs, Xs, Ds, Js for the standard
interval [−1, 1], then for each subinterval [di, di+1], i = 1, 2, 3 the corresponding ingredients
become

x = len ∗ xs + med, X = len ∗ Xs + med ∗ IN , D =
Ds

len
, J = len ∗ Js

where len = di+1−di

2 , med = di+1+di

2 .
Using the matrix J for the discretization we obtain on each subinterval i = 1, 2, 3 the

discretized form A(i)c(i) = b(i) where the matrix A(i) and the vector b(i) are given by (14)

as above, while c(i) are the Chebyshev coefficients of the solution y(i) on that subinterval i.
Now, using the Kronecker product and the reshape command of Matlab, we build a large
(but very sparse) system Ac = b

⎛
⎝

A(1) O O

O A(2) O

O O A(3)

⎞
⎠

⎛
⎝

c(1)

c(2)

c(3)

⎞
⎠ =

⎛
⎝

b(1)

b(2)

b(3)

⎞
⎠ .

49Matrix Based Operatorial Approach to Differential and Integral Problems

www.intechopen.com

14 Will-be-set-by-IN-TECH

The boundary conditions are now the given boundary conditions say at d1 and d4

supplemented by smoothness conditions at d2, d3

y(1) (d2 − 0) = y(2) (d2 + 0) ,
dy(1)

dx
(d2 − 0) =

dy(2)

dx
(d2 + 0) , (15)

y(2) (d3 − 0) = y(3) (d3 + 0) ,
dy(2)

dx
(d3 − 0) =

dy(3)

dx
(d3 + 0) .

Of course, for a higher order equation (say m) we have coincidence conditions (15) until the
derivatives of order m − 1. The given boundary conditions are implemented in the first m
rows of the first block-row of the matrix A and in the first entries of the first block of the
vector b, while the coincidence conditions are implemented in the first m rows of each of the
following block-rows of A and in the first m entries of each following block of b. The sparsity
structure of A with 4 subintervals is given in Fig. 3. Here we have 16 blocks of size 64× 64, the

Fig. 3. The sparsity structure of the matrix A with boundary conditions implemented for 4
subintervals

4 diagonal segments come from the matrices A(i), i = 1, 2, 3, 4, the first horizontal segments
come from the given boundary conditions while the next 3 pairs of horizontal segments come

from connectivity conditions. Each block acts on the corresponding block coefficients c(i),
i = 1, 2, 3, 4.
Using this technique for the problem (13) for example, the command
[x,solnum]=ibvp_ode_split_ex(64,[-1 -0.05 0 0.05 1],2);

from the folder Chebpack\examples\ex_level1 gives the numerical solution with an
accuracy of about 6 × 10−15 with four subintervals with N = 64 in only 0.014 sec. The new
matrix A has now a sparsity factor of about 3.2257% and the dimension 256.

50 MATLAB – A Ubiquitous Tool for the Practical Engineer

www.intechopen.com

Matrix Based Operatorial Approach to Differential and Integral Problems 15

3.4 Linear first-order systems

Let us consider a first order linear differential system for x ∈ [a, b]

P1(x)y′1 + P11(x)y1 + ... + P1m(x)ym = f1(x), y1(a) = y1a,

P2(x)y′2 + P21(x)y1 + ... + P2m(x)ym = f2(x) , y2(a) = y2a,

...

Pm(x)y′m + Pm1(x)y1 + ... + Pmm(x)ym = fm(x), ym(a) = yma.

If we denote by c = (c(1), ..., c(m))T the Chebyshev coefficients of y1(x), ..., ym(x) and by

f(1), ..., f(m) the coefficients of f1, ..., fm then the discretized version of the system is Ac = b
where

A =

⎛
⎜⎝

P1(X)D + P11(X) · · · P1m(X)
...

. . .
...

Pm1(X) · · · Pm(X)D + Pmm(X)

⎞
⎟⎠ , b =

⎛
⎜⎜⎝

f(1)

...

f(m)

⎞
⎟⎟⎠ .

The initial conditions are implemented like in (15): the last row of each block in the above
matrix is replaced by T or zeros for the corresponding columns and the last entry of each block
in the r.h.s. is replaced by yka such that [O, ..., T, ..., O]c = yka for each k. The corresponding
code from level1 is

[x,solnum]=ibvp_sys(n,dom,kind,y0)

where y0 is the column vector of the initial values [y1a, ..., yma]T . Of course, we may use the
integration matrix J instead of D for discretization, obtaining again a system Ac = b where

A =

⎛
⎜⎝

P1(X)− JP′
1(X) + JP11(X) · · · JP1m(X)

...
. . .

...
JPm1(X) · · · Pm(X)− JP′

m(X) + JPmm(X)

⎞
⎟⎠ , b =

⎛
⎜⎜⎝

Jf(1)

...

Jf(m)

⎞
⎟⎟⎠

with the implementation of the initial conditions on the first row of each block,
see ibvp_sys_ex3_int.m, or we may consider systems of higher order, see
ibvp_sys_ex2x2.m from the folder Chebpack\examples\ex_level1.

3.5 Linear integral equations

Let us consider a Fredholm integral equation

y(x) =
∫ b

a
K(x, t)y(t)dt + f (x) ≡ A(y)(x) + f (x), x ∈ [a, b]. (16)

The Fredholm integral operator A(y) becomes after discretization with shifted Chebyshev
polynomials

A(y)(x) =
∫ b

a
K(x, t)

N−1

∑
k=0

ckT∗
k (t)dt =

N−1

∑
k=0

ck

∫ b

a
K(x, t)T∗

k (t)dt =

N−1

∑
k=0

ck · Ik(x) =
N−1

∑
k=0

ck

N−1

∑
j=0

kjkT∗
j (x) =

N−1

∑
j=0

[
N−1

∑
k=0

kjkck

]
T∗

j (x).

51Matrix Based Operatorial Approach to Differential and Integral Problems

www.intechopen.com

16 Will-be-set-by-IN-TECH

Consequently, if c = (c0, ..., cN−1)
T are the coefficients of y, then Kc are the coefficients of

A(y), given by the matrix K = (kjk)j,k=0,...,N−1.
The matrix K can be calculated starting from the physical values

Ik(xs) =
∫ b

a
K(xs, t)T∗

k (t)dt =
N−1

∑
i=0

wiK (xs, xi) T∗
k (xi), s, k = 0, ..., N − 1.

In matrix form, this means

(Ik(xs))k,s=0,...,N−1 = (K (xs, xi))s,i=0,...,N−1 · diag((wi)i=0,...,N−1) · T

where T=cpv(n,x,dom) and then we apply x2t, see also (Driscoll, 2010).
The Fredholm integral equation (16) becomes (IN − K)c = f where f are the Chebyshev
coefficients of f and we obtain the solution by solving this linear system. The corresponding
model code from the folder Chebpack\level1 is

[x,solnum]=fred_eq(n,dom,kind)

Similarly, for a Volterra integral equation

y(x) =
∫ x

a
K(x, t)y(t)dt + f (x) ≡ A(y)(x) + f (x), x ∈ [a, b]

we obtain, using (11), for the Volterra integral operator

A(y)(x) =
∫ x

a
K(x, t)y(t)dt =

[
TJ0T−1. ∗ K(xi, xj)

]
y,

where y are the values of y(x) at the grid points x. Consequently, the physical representation
of the Volterra integral operator is the matrix Vphys = TJ0T−1. ∗ K(xi, xj), see again (Driscoll,

2010) while its spectral representation is Vspec = T−1VphysT. The Volterra integral equation
becomes in physical representation (IN − K)y = f where f are now the values of f at the grid
points x.
The corresponding model code from Chebpack is

[x,solnum]=volt_eq(n,dom,kind)

from the folder Chebpack\level1. The folder Chebpack\examples\ex_level1
contains some examples in the files fred_eq_ex* and volt_eq_ex*.
Of course, these codes work well only if the kernel K(x, t) is sufficiently smooth such that it
can be spectrally represented by an acceptable number of Chebyshev polynomials.

3.6 Eigenvalues/eigenfunctions for Sturm-Liouville problems

Let us consider now the second order spectral problem

P2(x)y′′ + P1(x)y′ + P0(x)y = λR(x)y

with homogeneous boundary value conditions as above. Using tau method, we get the
following N – dimensional matrix eigenproblem

(P2(X)D2 + P1(X)D + P0(X))c = λR(X)c

52 MATLAB – A Ubiquitous Tool for the Practical Engineer

www.intechopen.com

Matrix Based Operatorial Approach to Differential and Integral Problems 17

of the form Ac = λBc. The conditions give Tc = 0 and combining these equations we derive
the generalized eigenproblem

(
T
A

)
c = λ

(
1

λ∗ T

B

)
c i.e. Ãc = λB̃c

where we retain only the first N rows of the matrices to obtain Ã and B̃. Here λ∗ is chosen by
the user as a large and known value. We remark that for λ
= λ∗ we get Tc = 0 as above but

now the matrix B̃ behaves well. Consequently, the eigenproblem has instead of two infinite
eigenvalues two known λ∗ eigenvalues that can be eliminated. The same procedure is applied
for higher order problems.
The corresponding model code from the folder Chebpack\level1 is

[lam,phi,x]=eig_ode2(n,dom,kind,numeigval)

The folder Chebpack\examples\ex_level1 contains some other examples in the files
eig_ode2_ex*, eig_ode3_ex and eig_ode4_ex. An older package LiScEig is also freely
accessible at (Trif, 2005).

4. Chebpack, nonlinear module

At the second level – level2, we have subroutines to solve
- initial and boundary value problems for nonlinear differential equations
- nonlinear integral equations.
Here the codes of the first level are used at each step of the Newton method applied in the
functional space. Another method could be the successive iteration method.

4.1 Successive iteration method

Let us consider, as an example, the nonlinear Emden boundary value problem

xy′′ + 2y′ = −xy5, y′(0) = 0, y(1) =

√
3

2
, x ∈ [0, 1] .

If the starting spectral approximation of y is, for example, Y0 = 1 then the discretization of the
problem is AY = F. Here A = XD2 + 2D and F = F(x, Y0) are the coefficients of the r.h.s.
modified by using the boundary value conditions. We apply successively

Yn+1 = A−1F(x, Yn), n = 0, 1, 2, ..., nmax.

If Yn converges, then it converges to a solution of the bvp.
The Matlab codes are ibvp_ode_succapprox.m from the folder Chebpack\level2 or
ibvp_ode_ex1.m from the folder Chebpack\examples\ex_level2.
Of course, the discretization could be performed using the integration matrix J instead of D.
Let us consider, for example, the Lotka-Volterra system

y′1 − Ay1 = −By1y2, y′2 + Cy2 = By1y2, t ∈ [0, 100]

y1(0) = y2 (0) = 0.5, A = 0.1, B = 0.2, C = 0.05.

53Matrix Based Operatorial Approach to Differential and Integral Problems

www.intechopen.com

18 Will-be-set-by-IN-TECH

We transform this system to integral form

y1 − A
∫

y1dt = −B
∫

y1y2dt, y2 + C
∫

y2dt = B
∫

y1y2dt

and the discretized form in spectral representation is
(

In − AJ 0
0 In + CJ

)(
Ynew

1
Ynew

2

)
=

(
−BJF
BJF

)

where F is the column vector of the coefficients of yold
1 (t)yold

2 (t) obtained by using t2x.m and
x2t.m. In this discretized form we implement the initial conditions as usually and we must
solve this system which has a sparsity factor of about 6% for n = 32 and about 3% for n = 64.
For a long interval dom given as dom = [d0, d1, ..., dm], we apply the successive approximations
method at each subinterval. The initial approximation for the following subinterval is given
by the final values of the solution for the current subinterval. To test the numerical solution,
we remark that the Lotka-Volterra system has as invariant Λ = By1 + By2 − C log y1 −
A log y2. The code is used by the command
[x,solnum]=ibvp_sys_succapprox(32,[0:10:100],2,[0.5,0.5]);

and the result is given in Fig. 4, with the value of the invariant Λ = 0.3039720770839.

Fig. 4. The solution of the Lotka-Volterra problem

In the case of nonlinear integral equations, for example

y(x) = f (x) +
∫ b

0
K(x, t, y(t))dt,

we perform successive iterations (if this method works)

ynew(x) = f (x) +
∫ b

0
K(x, t, yold(t))dt

54 MATLAB – A Ubiquitous Tool for the Practical Engineer

www.intechopen.com

Matrix Based Operatorial Approach to Differential and Integral Problems 19

starting with a suitable yold. For each x = xs in the grid and at each iteration, the integral is
evaluated as ∫ b

0
K(xs, t, yold(t))dt ≈

n

∑
k=1

wkK(xs, tk, yold(tk)),

where {tk, k = 1, ..., n} is the Chebyshev grid on [0, b] and {wk, k = 1, ..., n} are the
corresponding weights. Consequently, we obtain

ynew(xs) =
n

∑
k=1

wkK(xs, tk, yold(tk)), s = 1, ..., n.

Taking into account the nonlinearities, all the calculations are performed into the physical

space. Next, yold ←− ynew until
∥∥∥ynew − yold

∥∥∥ < ε. The corresponding code is

ibvp_int_succapprox.m from the folder Chebpack\level2.

4.2 Newton method

Let us consider again a nonlinear differential problem of the form

Ly(x) = f (x, y(x)), x ∈ [a, b]

where L is a linear differential operator, such as Ly(x) = xy′′(x)+ 2y′(x) and f is the nonlinear
part. We have also the boundary or initial conditions BC/IC. If we denote by

P(y)(x) = Ly(x)− f (x, y(x)), BC/IC

the problem is of the form P(y)(x) = 0 where P is the operator of the problem and y is the
unknown.
The Newton method works as follows. Starting with an initial approximation y0(x) verifying
the initial or boundary conditions, we must solve at each step n the linear problem

P′(yn)(yn+1 − yn)(x) = −P(yn)(x),

for yn+1 − yn, with the corresponding homogeneous IC/BC. Next, yn+1 = yn + (yn+1 − yn)
and we perform these iterations until ‖yn+1 − yn‖ < ε. For our problem, the linear step is

[
L − ∂ f (x, yn(x))

∂y

]
(yn+1 − yn)(x) = − [Lyn(x)− f (x, yn(x))] .

The corresponding code is ibvp_ode_newton.m from the folder Chebpack \level2. It
starts with y0(x) verifying or not the IC/BC and solves at each step the above linear problem
for yn+1 with the nonhomogeneous IC/BC.
A nonlinear system (of order 2 for example)

y′1 + a11y1 + a12y2 = f1(x, y1, y2), x ∈ [a, b]

y′2 + a21y1 + a22y2 = f2(x, y1, y2), y1(a) = y1a, y2(a) = y2a

is in matrix form
Y′(x) + A(x)Y(x) = F(x, Y).

At the linear step it becomes

[Z′ + [A(x)− JacF(x, Yn)] Z = −
[
Y′

n + AYn − F(x, Yn)
]

55Matrix Based Operatorial Approach to Differential and Integral Problems

www.intechopen.com

20 Will-be-set-by-IN-TECH

where Z = Yn+1 − Yn is the correction, Yn ≡ Y(xn) and

JacF(x, Yn) =

∣∣∣∣∣∣

∂ f1(x,y1n ,y2n)
∂y1

∂ f1(x,y1n ,y2n)
∂y2

∂ f2(x,y1n ,y2n)
∂y1

∂ f2(x,y1n ,y2n)
∂y2

∣∣∣∣∣∣
.

As above, Yn+1 = Yn + Z until ‖Z‖ < ε.
We remark that in the linear step we use the integration

Z +
∫

[A(x)− JacF(x, Yn)] Z = −
∫ [

Y′
n + AYn − F(x, Yn)

]

which becomes in the discrete form

[In + J (A(X)− JacF(X, Yn))] Z = −[Yn + JA(x)]Yn + JF(x, Yn).

i.e AZ = B. In the l.h.s the matrix J (A(X)− JacF(X, Yn)) is calculated using the code fact.m.
This code uses the physical values of A(x) − JacF(x, Yn) and converts them into spectral
coefficients. In the r.h.s the code also starts with the physical values and converts them into
their spectral coefficients. The initial conditions are implemented now in the rows 1, n + 1,
Of course, this code ibvp_sys_newton.m from the folder Chebpack\level2 can be used
in a long-term integration algorithm that starts with the initial values ya1, yb1, calculates the
solution on [a, b], extracts the final values yb1, yb2 which become initial values for the same
code on a new interval [b, c] and so on.
A short comparison between the successive approximations method (SA) and the Newton
method (N) for the example from ibvp_sys_newton_ex1 shows that, for the same n = 64,
dom = [0, 1, 2 : 2 : 200] and M = 8,
- SA: 2910 iterations, 3.4 sec elapsed time, 12940 Chebyshev coefficients calculated
- N : 490 iterations, 6 sec elapsed time, 6475 Chebyshev coefficients calculated.
In the case of a nonlinear integral equation (of Fredholm or Volterra) type

P(y) ≡ y(x)−
∫

a
K(x, t, y(t))dt − f (x) = 0,

we start with an initial approximation y0 (in physical space) and at each Newton step we
obtain the linear equation for the correction z

z(x)−
∫

a

∂K

∂y
(x, t, y0(t))z(t)dt = −y0(x) +

∫

a
K(x, t, y0(t))dt + f (x).

We solve this equation in spectral form as in the previous section and the corrected value of y
is y0 + z. We repeat this step until convergence, i.e. until ‖z‖ < ε. There are many examples
in the folder Chebpack\examples\level2.

5. Chebpack, experimental module

Finally, the package contains an experimental level – level3, in progress, for
- partial differential equations of evolution type
- fractional differential equations (i.e. differential equations of non-integer order).

56 MATLAB – A Ubiquitous Tool for the Practical Engineer

www.intechopen.com

Matrix Based Operatorial Approach to Differential and Integral Problems 21

5.1 Partial differential evolution equations

Let us consider, as a simple example, a problem from (Trefethen et al., 2011)

ut = uxx, x ∈ [−4, 2], t > 0

u(x, 0) = u(0)(x) ≡ max(0, 1 − abs(x)),

u(−4, t) = 1, u(2, t) = 2.

First, we discretize in time by a backward finite difference on the grid 0 = t0 < t1 < ... < tK

starting with u(0)(x)

u(k+1)(x)− u(k)(x)

dt
= u

(k+1)
xx (x),

where u(k)(x) = u(x, tk), u
(k)
xx (x) = uxx(x, tk). We obtain the second order boundary value

problems in x

(
I − dt

∂2

∂x2

)
u(k+1)(x) = u(k)(x), u(k+1)(−4) = 1, u(k+1)(2) = 2.

These problems, for each k = 1, 2, ..., K, are also discretized by the spectral Chebyshev method
with some N, dom = [−4, 2], kind as

(
In − dtD2

)
c(k+1) = c(k), u(k+1)(−4) = 1, u(k+1)(2) = 2.

Here c(k) are the Chebyshev spectral coefficients
(

c
(k)
0 , c

(k)
1 , ..., c

(k)
N−1

)
of u(k) (x) corresponding

to the grid x1, ..., xN in dom. This way we may obtain the solution u(xj,tk) on the

computational grid
(

xj, tk

)k=1,...,K

j=1,...,N
. The corresponding code is pde_lin.m from the folder

Chebpack\level3.
Similarly, for nonlinear equations of the form ut = Lu + Nu where L is a linear operator and
N a nonlinear one, for example for the Burgers equation

ut = νuxx −
(

u2

2

)

x

, x ∈ [−1, 1] , t > 0, ν =
0.01

π
,

u(x, 0) = sin πx, u(0, t) = u(1, t) = 0,

we may take the backward Euler finite difference for the linear part while the forward Euler
finite difference for the nonlinear part.

u(k+1)(x)− u(k)(x)

dt
= Lu(k+1)(x) + Nu(k)(x),

We obtain

(I − dt L) u(k+1)(x) = u(k)(x) + dt Nu(k)(x), u(k+1)(0) = u(k+1)(1) = 0

which is implemented in pde_nonlin.m.
Of course, we may take the approximating solution in the physical representation on the grid

x1, ..., xn and the semidiscrete problem becomes u′(x, t) = D̃u(x, t) where D̃ = TD2T−1 is
the physical second order derivative. The boundary value condition imposes u(x1, t) = α,

57Matrix Based Operatorial Approach to Differential and Integral Problems

www.intechopen.com

22 Will-be-set-by-IN-TECH

u(xn, t) = β and therefore at these points we don’t need to satisfy the equation. Consequently,

if D̂ = D̃ (2 : n − 1, 2 : n − 1) is obtained by eliminating the first and last rows and columns

from D̃, the problem becomes

û′(t) = D̂ ∗ û(t) + D̃(2 : n − 1, [1, n]) ∗ BC, û(0) = û(0),

where BC = (α, β)T , i.e. û′(t) = D̂ ∗ û(t) + b, û(0) = û(0) with the solution

û(t) = expm(tD̂) · û(0) + D̂−1 ·
(

expm(tD̂)− In−2

)
· b.

Here expm(A) is the matricial exponential function of A. The code pde_lin_matr.m uses
this procedure.
The same thing may be performed in spectral space. The problem

u′ = L · u, u(0) = u0, BC = T · u

(where L is a linear differential operator with constant coefficients and T is given by cpv from
level0) may be expanded as

(
û′

BC

)
=

(
L̂ ̂̂L
T̂ ̂̂T

)
·
(

û
̂̂u

)
.

Therefore, successively,

û′ = L̂û + ̂̂L̂̂u, BC = T̂û + ̂̂T̂̂u, ̂̂u = ̂̂T
−1 (

BC − T̂û
)

, (17)

û′ =
(

L̂ − ̂̂L̂̂T
−1

T̂

)
û + ̂̂L̂̂T

−1
BC, û′ = L̃ · û + ˜̃L · BC.

The exact solution of the last equation is given by

û (t) = etL̃ · û0 +
etL̃ − I

L̃

˜̃L · BC

and, using (17), u = (û, ̂̂u)T .
This procedure is coded in pde_lin_ex2.m from the folder
Chebpack\examples\ex_level3.
In the case of a nonlinear problem

u′ = L · u + Nu, u(0) = u0, BC = T · u

the same procedure leads to

û (t) = etL̃ · û0 +
etL̃ − I

L̃

(˜̃L · BC + N̂u
)

and to the same ̂̂u given by (17). This fixed point equation must now be solved using
successive iterations method (for t sufficiently small) or using Newton method. It is coded in

58 MATLAB – A Ubiquitous Tool for the Practical Engineer

www.intechopen.com

Matrix Based Operatorial Approach to Differential and Integral Problems 23

pde_nonlin_ex4.m in the folder Chebpack\examples\ex_level3 for the Korteweg-de
Vries problem

ut + 6u ux + uxxx = 0, x ∈ [−20, 20] , t ∈ [0, 4]

u(x, 0) = 2sech(x)2, u(−20, t) = u(20, t) = ux(20, t) = 0.

This problem of the form ut = Lu + N(u) is numerically solved in spectral space c′(t) =
Lc(t) + N(c(t)) by using the so called implicit exponential time differencing Euler method

c(k+1) = eLdtc(k) +
eLdt − I

L
N(c(k+1)),

applied in a symmetric form

c = eLdt/2c(k) +
eLdt/2 − I

L
N(c), c(k+1) = eLdt/2c +

eLdt/2 − I

L
N(c).

Here, the first fixed point problem is solved using successive iterations starting with c(k),

where c(k) are the Chebyshev coefficients of the numerical solution at the time level k.

5.2 Fractional differential equations

The fractional derivative Dq f (x) with 0 < q < 1, 0 < x ≤ b, in the Riemann-Liouville version,
is defined by (Podlubny, 1999)

Dq f (x) =
1

Γ(1 − q)

d

dx

∫ x

0
f (t)(x − t)−qdt

while the Caputo fractional derivative is

D
q
∗ f (x) =

1

Γ(1 − q)

∫ x

0
f ′(t)(x − t)−qdt

and we have

Dq f (x) =
f (0)x−q

Γ(1 − q)
+ D

q
∗ f (x).

Let us consider a function f : [0, b] → IR, with the spectral representation

f (x) =
n−1

∑
k=0

ckTk(αx + β), α =
2

b
, β = −1

Using the spectral derivative matrix D, we have

f ′(x) =
n−1

∑
k=0

(Dc)k Tk(αx + β)

and using the linearity of the fractional derivative of order q ∈ (0, 1), we obtain

D
q
∗ f (x) =

1

Γ(1 − q)

∫ x

0

f ′(t)dt

(x − t)q =
1

Γ(1 − q)

n−1

∑
k=0

(Dc)k

∫ x

0

Tk(αx + β)

(x − t)q dt.

59Matrix Based Operatorial Approach to Differential and Integral Problems

www.intechopen.com

24 Will-be-set-by-IN-TECH

By calculating the physical values of the above integrals in the columns k of a matrix I, each
row corresponding to a sample of x from the Chebyshev grid, the formula for the fractional
derivative is

D
q
∗ f (x) =

1

Γ(1 − q)
· I · D · T−1 f (x)

where T is the matrix given by cpv.m. This means that the Caputo fractional differentiation
matrix D in physical form is given by

Dphys =
1

Γ(1 − q)
· I · D · T−1

i.e. Dphys times the vector of physical values of f gives the vector of physical values of D
q
∗ f .

For the spectral form,

Dspec =
1

Γ(1 − q)
· T−1 · I · D,

i.e. Dspec times the vector T−1 f (x) of the coefficients of f gives the vector of the coefficients of

D
q
∗ f .

If q > 1 then let ex be [q] and q will be replaced by q − [q]. In this case, the differentiation
matrix will be

Dspec =
1

Γ(1 − q)
· T−1 · I · D(ex+1).

In order to avoid the singularity of the fractional derivative Dq f if f (0)
= 0, we suppose that
f(0) = 0. The problem of computing the integrals

Ik(x) =
∫ x

0

Tk(αx − 1)

(x − t)q dt

for each x of the grid may be solved iteratively, see (Piessens & Branders, 1976). Indeed, we
have, by direct calculation, using the recurrence formula for Chebyshev polynomials, as well
as for the derivatives of the Chebyshev polynomials, for k = 3, 4, ..

Ik(x) ·
(

1 +
1 − q

k

)
= 2 (αx − 1) · Ik−1(x) +

(
1 − q

k − 2
− 1

)
· Ik−2(x)− 2 (−1)k

k(k − 2)
x1−q

and

I0(x) =
x1−q

1 − q
/2, I1(x) =

αx2−q

(2 − q)(1 − q)
− x1−q

1 − q
,

I2(x) =
4α2x3−q

(3 − q)(2 − q)(1 − q)
− 4αx2−q

(2 − q)(1 − q)
+

x1−q

1 − q
.

This recurrence is as stable as the recurrence which calculates the Chebyshev polynomials.
The calculation of the fractional derivative matrix Dspec is coded in deriv_frac.m from the

folder Chebpack\level3. Next, if needed, Dphys =
1

Γ(1−q)
· I ·D(ex+1) ·T−1 = T ·Dspec ·T−1.

Using an idea of Sugiura & Hasegawa (Sugiura & Hasegawa, 2009), let J(s; f) be

J(s; f) =
∫ s

0
f ′(t)(s − t)−qdt

60 MATLAB – A Ubiquitous Tool for the Practical Engineer

www.intechopen.com

Matrix Based Operatorial Approach to Differential and Integral Problems 25

and, approximating f (t) by a combination pn(t) of Chebyshev polynomials on (0, 1) we have
the approximations |J(s; f)− J(s; pn)| ∼ O(nρ−n), for some ρ > 1.
Of course, this method is not suitable for the functions with a singularity in [0, 1] or
singularities of lower-order derivatives, like x0.1 for example. In this case, n must be
excessively large.
For the initial value problems for fractional differential equations, let us consider the problem

D
q
∗y(x) = x2 +

2

Γ(3 − q)
x2−q − y(x), y(0) = 0, q = 0.5, x ∈ [0, 1] .

The physical discretization is

Ay = b, A = T · DF · T−1 + IN , b = x2 + 2/Γ(3 − q) · x2−q

where, in order to implement the initial condition, the first row of A is replaced by [1, 0, ..., 0]
and b(1) is replaced by 0. The solution is now y(x) = A−1B. The example is coded in
deriv_frac_ex1.m from the folder Chebpack\examples\ex_level3.
If we use the spectral representation, for example for the problem

Dqy(x) + y(x) = 1, y(0) = 0, y′(0) = 0, q = 1.8, x ∈ [0, 5],

with the exact solution yex = xqEq,q+1(−xq), the spectral discretized form becomes

Ay ≡ (Dq + In) y = T−1 · 1 = B,

A(n − 1, :) = T(1, :), B(n − 1) = 0, A(n, :) = T(1, :) ∗ D, B(n) = 0,

see deriv_frac_ex2.m
For nonhomogeneous initial conditions like y(0) = c0, y′(0) = c1, we perform a function
change y(x) = c0 + c1x + z(x) where z verifies the same equation but with homogeneous
initial conditins (c0 + c1x disappears by differentiation), see deriv_frac_ex3.m. Examples
for discontinuous data, boundary value problems or eigenproblems are also given.

6. Conclusion

The new package Chebpack (Trif, 2011) is a large and powerful extension of LiScEig (Trif, 2005).
It is based on the Chebyshev tau spectral method and it is applied to linear and nonlinear
differential or integral problems, including eigenvalue problems. An experimental module
contains applications to linear or nonlinear partial differential problems and to fractional
differential problems. Each module is illustrated by many examples. A future version will
handle also piecewise functions as well as functions with singularities.
The following comparisons with MATLAB codes bvp4c, bvp5c as well as with DMS or Chebfun
prove the efficiency of Chebpack. The elapsed time was evaluated after three code executions.
The first test problem (test1.m in the folder Chebpack\tutorial) is

−u′′ − 1

6x
u′ +

1

x2
u =

19

6
x1/2, u(0) = u(1) = 0, x ∈ [0, 1]

with the exact solution uex(x) = x3/2 − x5/2. The elapsed time and the errors are presented in
Table 1. Here Chebpack uses the differentiation matrix.
The second test problem (test2.m in the folder Chebpack\tutorial) is (13) with ε = 10−4.
The elapsed time and the errors are presented in Table 2. Here Chebpack uses the integration
matrix.

61Matrix Based Operatorial Approach to Differential and Integral Problems

www.intechopen.com

26 Will-be-set-by-IN-TECH

bvp4c bvp5c dms Chebfun Chebpack
RelTol=1.e-5 RelTol=1.e-4 N=64 N=98 N=80

elapsed time (sec) 0.737 0.744 0.004 0.192 0.005

errors 3.2e-7 9.2e-8 2.3e-7 1.8e-7 4.6e-7

Table 1. Test 1

bvp4c bvp5c dms Chebfun Chebpack
default default N=1024 N=[13,114,109,14] N=1024

elapsed time (sec) 0.131 0.244 3.471 1.053 0.041

errors 8.6e-5 6.6e-6 8.4e-13 1.0e-12 1.e-14

Table 2. Test 2

7. References

Berrut, J. P. & Trefethen, L. N. (2004). Barycentric Lagrange interpolation, SIAM Review
Vol.46(No.3): 501–517.

Boyd, J. P. (2000). Chebyshev and Fourier Spectral Methods, Dover Publications, Inc.
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. (1988). Spectral Methods in Fluid

Dynamics, Springer-Verlag, Berlin.
Driscoll, T. A. (2010). Automatic spectral collocation for integral, integro-differential, and

integrally reformulated differential equations, J. Comp. Phys. Vol.229: 5980–5998.
Mason, J. & Handscomb, D. (2003). Chebyshev Polynomials, Chapman & Hall/CRC.
Ortiz, E. L. & Samara, H. (1981). An operational approach to the tau method for the numerical

solution of non-linear differential equations, Computing Vol.27: 15–25.
Piessens, R. & Branders, M. (1976). Numerical solution of integral equations of mathematical

physics, using Chebyshev polynomials, J. Comp. Phys. (1976) Vol.21: 178–196.
Podlubny, I. (1999). Fractional Differential Equations, Academic Press.
Sugiura, H. & Hasegawa, T. (2009). Quadrature rule for Abel’s equations: Uniformly

approximating fractional derivatives, J. Comp. Appl. Math. Vol.223: 459–468.
Trefethen, L. N. (2000). Spectral Methods in MATLAB, SIAM, Philadelphia.
Trefethen, L. N. (2008). Is Gauss quadrature better than Clenshaw–Curtis?, SIAM Review

Vol.50(No.1): 67–87.
Trefethen, L. N. et al. (2011). Chebfun Version 4.0, The Chebfun Development Team.

URL: http://www.maths.ox.ac.uk/chebfun/
Trif, D. (2005). LiScEig, MATLAB Central.

URL: http://www.mathworks.com/matlabcentral/fileexchange/8689-lisceig
Trif, D. (2011). Chebpack, MATLAB Central.

URL: http://www.mathworks.com/matlabcentral/fileexchange/32227-chebpack
Waldvogel, J. (2006). Fast construction of the Fejér and Clenshaw–Curtis quadrature rules,

BIT Numerical Mathematics Vol.46: 195–202.
Weideman, J. A. C. & Reddy, S. C. (2000). A MATLAB differentiation matrix suite.

URL: http://www.mathworks.com/matlabcentral/fileexchange/29-dmsuite

62 MATLAB – A Ubiquitous Tool for the Practical Engineer

www.intechopen.com

MATLAB - A Ubiquitous Tool for the Practical Engineer

Edited by Prof. Clara Ionescu

ISBN 978-953-307-907-3

Hard cover, 564 pages

Publisher InTech

Published online 13, October, 2011

Published in print edition October, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A well-known statement says that the PID controller is the â€œbread and butterâ€ ​ of the control engineer. This

is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the

paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that

MATLAB is the â€œbreadâ€ ​ in the above statement. MATLAB has became a de facto tool for the modern

system engineer. This book is written for both engineering students, as well as for practicing engineers. The

wide range of applications in which MATLAB is the working framework, shows that it is a powerful,

comprehensive and easy-to-use environment for performing technical computations. The book includes

various excellent applications in which MATLAB is employed: from pure algebraic computations to data

acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user

interface design for educational purposes to Simulink embedded systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Damian Trif (2011). Matrix Based Operatorial Approach to Differential and Integral Problems, MATLAB - A

Ubiquitous Tool for the Practical Engineer, Prof. Clara Ionescu (Ed.), ISBN: 978-953-307-907-3, InTech,

Available from: http://www.intechopen.com/books/matlab-a-ubiquitous-tool-for-the-practical-engineer/matrix-

based-operatorial-approach-to-differential-and-integral-problems

© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

