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1. Introduction 

Insect development proceeds through a series of discrete developmental stages called 

instars. During hexapod evolution, the development of complete metamorphosis introduced 

a novel mechanism for separating feeding and reproductive stages (Truman & Riddiford, 

2002), facilitating the tremendous evolutionary success of holometabolous insects. In 

contrast to hemimetabolous insects, which progress through a series of instars that appear 

as smaller iterations of the adult form, holometabolous insects proceed from egg to adult 

through a progression of isomorphic larval instars and a pupal transitory stage. In each case, 

the physical boundary for growth during an instar is established by a chitinous exoskeleton, 

which must be periodically shed. This molting process is under the control of two 

counteracting hormones.  

Toward the end of an instar, a pulse of the insect molting hormone, 20-hydroxyecdysone 

(20E) initiates a transcriptional cascade that carries the molt to a subsequent instar. 

However, it is the interaction of 20E and the sesquiterpenoid juvenile hormone (JH) that 

governs the developmental outcome of each molt. During larval development, an elevated 

JH titer and 20E directs the sequential progression through larval development until the 

final larval instar, when the JH titer substantially declines. The removal of circulating JH 

facilitates a 20E-directed developmental switch that initiates the metamorphic molt. Thus, it 

was proposed that JH can modulate 20E activity, maintaining the status quo during pre-

adult development.  

1.1 JH and JHAs: Insecticidal use of hormone agonists  

Since the first chemical analysis resolved the sesquiterpenoid structure of endogenous JH 
(Röller et al., 1967), several homologs have been identified, each bearing opposing, terminal 
epoxide and methyl ester functions. Variation in the degree and identity of alkyl group 
substitution at C3, C7, and C11 along the carbon skeleton defines the homologs. The 
evolutionary importance of multiple JH homologs is unclear. JH 0, I, II, and III have all been 
isolated from lepidopteran insects, whereas JH III, the presumed evolutionary precursor to 
the higher homologs, is found in all insects. JH bisepoxide (JHB3) has been identified as a 
product of the corpus allatum (CA) in higher Diptera including Drosophila melanogaster and 
Sarcophaga bullata (Richard et al., 1989; Bylemans et al., 1998). Nearly identical in structure to 
JH III, JHB3 is distinguished by an additional epoxide group spanning C6-C7.  
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The major JHs and some juvenile hormone analogs (JHAs) are presented in Figure 1. 
 

 
Methyl farnesoate JH III 

JHB3 JH II 

 
JH I JH 0 

 

Methoprene Pyriproxyfen 
  

Fig. 1. Structures of endogenous JH molecules and two synthetic JHAs, methoprene and 
pyriproxyfen. 

The physiology and chemistry of JH prompted intense research into the synthesis and 
commercial-scale production of JH analogs, or juvenoids, for agricultural use. The allure 
of these compounds was at least twofold. First, juvenoids exhibit extremely low non-
target (in particular, mammalian) toxicity. Second, it was originally thought that insect 
resistance to JHAs would be unlikely, since an insect was not likely to become refractory 
to an endogenous hormone (Williams, 1967). Methoprene, a juvenoid structurally similar 
to endogenous JH, has enjoyed success in the management of larval mosquito 
populations. However, JHAs need not mimic the chemical structure of endogenous JH, as 
exemplified by the pyridine-based pyriproxyfen, whose activity exceeds JH by two orders 
of magnitude in dipteran white puparial and larval assays (Riddiford and Ashburner, 
1991).  
Exogenous JH exposure can elicit classic antimetamorphic activity in both Lepidoptera and 

Coleoptera (Srivastava & Srivastava, 1983; Konopova & Jindra, 2007), extending larval 

development through one or more supernumerary instars. Also in these insects, exposure to 

exogenous JH or to its chemical analogs (JHA) can result in the deposition of a second pupal 

cuticle (Zhou & Riddiford, 2002). Thus, in Lepidoptera and Coleoptera, JH exposure at an 

inappropriate time inhibits 20E-directed developmental progression. 

In Diptera, treatment with exogenous JH produces dose-dependent lethality at the pharate 
adult stage. All adult structures arise from imaginal discs in flies, and these discs are 
insensitive to JH during development, unlike Lepidoptera and Coleoptera, in which the 
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polymorphic larval epidermis gives rise to pupal and adult structures. When flies are 
challenged with JHAs, the adult structures that differentiate from imaginal discs remain 
unaffected (Postlethwait, 1974). In D. melanogaster, only the abdominal histoblasts are JH 
sensitive; diagnostic (sublethal) doses of methoprene disrupt abdominal bristle formation in 
female flies (Madhavan, 1973).  

2. Molecular mechanism of JH signal transduction  

The molecular events underlying 20E signaling are relatively well understood. Ecdysone 
released from the prothoracic glands is converted to its active metabolite 20E in target 
tissues, where it regulates transcription through a heterodimeric receptor complex 
comprised of Ecdysone receptor (EcR) and Ultraspiracle (USP) proteins. When bound with 20E, 
ECR-USP recognizes and binds ecdysone response elements located in the promoter region 
of target genes, inducing transcription of a hierarchical network of early and late genes. The 
early genes either repress their own expression or induce expression of late genes 
(Ashburner et al., 1974). In this manner, the expression of genes involved in the 20E 
transcriptional cascade is tightly controlled. In contrast, the nature of JH signal transduction 
has been difficult to elucidate, largely due to the enigmatic nature of the JH receptor. A body 
of ever-increasing experimental evidence strongly supports the product of the Methoprene 
tolerant (Met) gene as the prime candidate for a JH receptor component (Wilson & Fabian, 
1986; Konopova & Jindra, 2007; Yang et al., 2011). 
Met was originally discovered by screening progeny of ethyl methanesulfonate (EMS)-
mutagenized D. melanogaster for resistance to methoprene (Wilson & Fabian, 1986). Met 
mutants show dramatically enhanced (~100 fold) resistance to both the toxicity and 
morphogenetic defects caused by methoprene exposure, but not to other classes of 
insecticides (Wilson & Fabian, 1986). Such resistance is not restricted to compounds with 
high structural similarity to JH; Met mutants are also resistant to the more potent, 
structurally distinct JHA pyriproxyfen (Riddiford & Ashburner, 1991).  
Cloning and sequence analysis identified Met as a member of the basic Helix-Loop-Helix 
Period Ahr Sim (bHLH PAS) family of transcriptional regulators (Ashok et al., 1998). PAS 
proteins function as dimers in a diverse array of functions in development, xenobiotic 
binding, and detection of environmental signals (Crews, 1993). Both the bHLH domain and 
the PAS repeats (PAS A and B) facilitate dimerization between PAS proteins (Huang, et al., 
1993). Additionally, the PAS domains function in small molecule ligand binding and target 
gene specificity. Each dimerization partner recognizes and binds one half of a palindromic 
E-box consensus sequence CANNTG in the promoter region of target genes via the stretch 
of basic residues immediately N-terminal to the HLH motif. Examples of PAS proteins with 
ligand binding activity include the bacterial photoreactive yellow protein (PYP), and the 
vertebrate aryl hydrocarbon receptor (Ahr).  
Genetic and biochemical data show that MET binds JH with nanomolar affinity 
(Shemshedini & Wilson, 1990) and that MET product is present in the nuclei of several 
known JH target tissues, including ovary, MAG, and larval fat body (Pursley et al., 2000). In 
addition, MET can drive the expression of a reporter gene in a JH-sensitive manner (Miura 
et al., 2005). All of the above data satisfy criteria for a hormone receptor. 
Analysis of the Met27 null allele provided the first demonstration of insecticide resistance 
due to the absence of a target macromolecule (Wilson & Ashok, 1998). Even though Met27 
flies are viable, Met deficiency carries reproductive consequences, namely substantially 
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reduced oogenesis (~20% compared to Met+), consistent with a role for JH in this 
physiology. However, since absence of a JH receptor is expected to preclude normal 
development, the viability of Met27 flies challenged the notion of Met as a bona fide JH 
receptor. Some evidence supports alternative mechanism(s) of JH signaling (see Flatt et al., 
2008; Riddiford et.al., 2010). In this chapter, we review data that support the notion of germ 
cell expressed (gce), the paralog of Met in higher Diptera, as conferring at least partial 
functional redundancy.  

3. Met homologs across holometabola 

Reports of methoprene resistance in mosquito populations (Dame et al., 1998; Cornel et al., 
2000; Cornel et al., 2002) led us to investigate the Met orthologs of three mosquito species: 
Aedes aegypti, Culex pipiens, and Anopheles gambiae. Using a combination of degenerate RT-
PCR and genomic database mining, we isolated a single Met homolog from each of these 
mosquitoes. Sequence analysis of these genes showed that they share high identity with 
both Met and the closely related gce from Drosophila, as expected. However, a comparison of 
the genomic structures among DmMet, Dmgce, and the three putative mosquito Met genes 
revealed higher structural conservation between each mosquito Met and Dmgce. 
Importantly, the intron number of these genes is more consistent with that of Dmgce than 
DmMet (from six to nine, versus one in DmMet). Furthermore, several introns in each 
mosquito gene are positionally conserved with those in Dmgce. This led to our proposal that 
the Met gene of higher Diptera originated via retrotransposition of a basal, gce-like gene of 
lower Diptera (Wang et al., 2007). 
Retrotransposition, or retroposition is a mechanism of gene duplication that proceeds 
through an mRNA intermediate. Following post-transcriptional splicing, the parental 
message is reintegrated into the genome. Ultimately, for the duplicate copy to escape the 
fate of becoming a pseudogene, it must reintegrate with associated regulatory elements 
intact or incorporate into a suitable transcriptional environment elsewhere in the genome. 
Following duplication, the increase in copy number of the parental gene affords a relaxation 
of selective constraint, facilitating functional divergence. This may manifest as 
subfunctionalization, in which a modification of the parental function evolves, or 
neofunctionalization, which refers to attainment of a novel function (MacCarthy & Bergman, 
2007). DmMet retains a strong diagnostic feature of retroposition: a paucity of introns 
relative to gce, which is consistent with splicing and genomic reintegration of an ancestral 
gce-like transcript.  
A conserved gce-like gene appears to be conserved across holometabolan genomes, 

including the red flour beetle, Tribolium castaneum, and the honeybee, Apis mellifera. An 

independent gene duplication within the Lepidoptera has given rise to two Met-like 

proteins, presently called Methoprene tolerant proteins I and II, whose functions are 

currently under investigation (i.e. Li et al., 2010). Despite a demonstrated sequence 

conservation favoring the Met-like genes of more primitive Holometabola as ancestral to gce, 

we will continue to refer to these genes as Met-like in this text.  

3.1 Met and gce within the genus Drosophila 

When the genomes of 12 representative Drosophila species became available (Ashburner, 
2007), we chose to examine the molecular evolution of Met and gce within this genus of flies. 
Both paralogs are conserved in each species, indicating that the origin of Met predates that 
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of the genus Drosophila, some 63 million years ago (Tamura et al., 2004). The architecture of 
these genes is generally conserved in each species, with a few notable exceptions. A single 
conserved intron is present in Met in the PAS B domain of 11 species. In addition to this 
conserved intron, independent intron gains have occurred in the lineages leading to D. 
simulans and D. willistoni. A single Met ortholog exists in each Drosophila genome examined, 
but D. persimilis harbors two separate, consecutive loci on the X chromosome, currently 
called GL13106 and GL13107, that align to distinct regions of DmMet. The 5’ putative gene 
GL13106 contains a complete PAS A domain followed by a severely truncated PAS B 
domain. We performed RT-PCR across these two genes and failed to obtain a single PCR 
product, suggesting that GL13106 and GL13107 indeed code for two distinct open reading 
frames. Eleven of the 12 representative gce orthologs contain at least six conserved introns, 
with independent intron gains evident in the lineages leading to D. melanogaster, D. 
pseudoobscura, and D. mojavensis, whereas a substantial deletion in D. persimilis gce has 
eliminated the central portion of this gene, including the PAS repeats.  
In addition to the bHLH, PAS, and PAC domains, putative transactivation domains (TAD) 

are evident in Met and gce orthologs. TADs are glutamine and/or aspartic acid-rich motifs 

whose amino acid sequences are broadly defined and generally reside in the C-terminal 

region of PAS proteins (Ramadoss & Perdew, 2005). Met homologs show Q- and D-rich 

motifs between the PAS B and PAC domains, while alignments of gce homologs indicate a 

D-rich region C-terminal to the PAC domain. Miura et al. (2005) suggest the presence of a C-

terminal TAD in recombinant MET protein, but this region has yet to be functionally 

defined.  

Using DmMet and Dmgce as query sequences, we conducted homology searches under 
tBLASTx criteria (translated nucleotide query to search a translated nucleotide database) 
against the publicly available EST library of Glossina morsitans, the tsetse fly. Our search 
recovered several clones, which were imported into the Sequencher program to produce 
two independent contigs. These composite nucleotide sequences were used to infer a gene 
tree with other holometabolan Met and gce orthologs, including those of two representative 
Drosophila species (Figure 2). This preliminary analysis reveals the presence of distinct Met 
and gce orthologs in the G. morsitans genome, indicating that the origin of Met predates the 
divergence of the Aschiza and Schizophora. These two taxonomic groups, which are 
estimated to have diverged more than 85 million years ago (Bertone & Wiegmann, 2009), 
reside within the brachyceran infraorder Muscomorpha. 

3.2 Evidence for differential selective constraint imposed on Met and gce 

Based on an a priori hypothesis that Met and gce were subject to differential post-duplication 

selective constraint, we performed analyses of nonsynonymous-to-synonymous (dN/dS) 

substitution ratios on codon alignments of these Drosophila paralogs. Datasets were analyzed 

using the DataMonkey tool (Kosakovsky-Pond & Frost, 2005), a web-based implementation 

of the HyPhy package (Kosakovsky Pond et al., 2005). dN/dS analyses can be used to infer 

the relative selective pressure along entire coding sequences or in a site-specific manner. A 

substantially depressed dN/dS ratio (i.e. zero or close to zero) implies purifying (negative) 

selection. That is, nonsynonymous changes are stringently selected against. In contrast, 

when dN/dS is nearly one, neutral evolution is inferred. A dN/dS value far in excess of one 

implies positive selection, or adaptive evolution. In this case, nonsynonymous substitutions 

confer a selective advantage. 
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The results of our dN/dS analyses showed dramatic dissimilarity in the relative selective 
pressures that have shaped the coding sequences of Met and gce. In the case of Met, dN/dS 
was generally suppressed along the entirety of the coding sequence, indicating strong 
selection against nonsynonymous codon substitution. This is perhaps surprising, since MET 
deficiency has no effect on viability (Wilson & Ashok, 1998). Possibly, mutations that alter 
amino acid identities are selected against in Met due its involvement in reproduction. In the 
absence of methoprene selection, Met mutants are quickly out-competed by wild type flies 
despite the seemingly slight fitness cost of Met loss (Minkhoff III & Wilson, 1992). In 
contrast, dN/dS values close to one dominate the C-terminal half of gce, indicating a 
substantial relaxation of selective constraint in this region. The N-terminal region of this 
gene, containing the canonical bHLH and PAS functional domains, shows a strongly 
depressed dN/dS. Based on functional data from other PAS proteins, this region is assumed 
to harbor DNA and ligand binding activity, whereas the C-terminal region contains putative 
TADs. C-terminal degeneracy was shown to confer differential target gene specificity 
between the Ahr homologs of mice and humans (Ramadoss & Perdew, 2005; Flaveny et al., 
2010). Similarly, the disparate selective constraints evident in the C-terminal regions of Met 
and gce may partially define these genes’ functions.  
 

 

Fig. 2. A gene tree of some holometabolous Met-like genes, showing placement of two 
distinct G. morsitans sequences as putative Met and gce orthologs. D. melanogaster Tango (tgo), 
the homolog of the vertebrate Aryl hydrocarbon receptor (Ahr), is used as an outgroup 
sequence. 
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4. Toward a functional definition of Dmgce 

A functional characterization of gce, named for its expression in a subset of embryonic germ 
cells (Moore et al., 2000), is in its infancy. Column pulldown assays showed MET, in addition 
to forming homodimers, forms heterodimers with GCE, and addition of JH or either of two 
JHAs significantly impaired these interactions (Godlewski et al., 2006). It is unknown 
whether GCE forms homodimers, like MET, or whether GCE can bind JH or its analogs. 
GAL4/UAS-driven (Brand & Perrimon, 1993) overexpression of Met+ from actin or tubulin 
promoters results in larval lethality in the absence of methoprene (Barry et al., 2008), perhaps 
by upsetting the stoichiometry of MET and GCE dimers, favoring MET homodimerization at 
inappropriate times or in inappropriate tissues. Recently, JH was shown to inhibit MET and 
GCE in D. melanogaster by preventing caspase-driven programmed cell death (PCD) and 
histolysis of the larval fat body. DRONC and DRICE, evolutionarily conserved caspase 
genes involved in this physiology at the onset of metamorphosis, were shown to be 
downregulated in Met and gce deficient flies (Liu et al., 2009). Similarly, methoprene 
interferes with caspase-driven midgut remodeling in A. aegypti (Nishiura et al., 2003; Wu et 
al., 2006) and T. castaneum (Parthasarathy et al., 2008; Parthsarathy et al., 2009), showing that 
this mechanism of JH action is evolutionarily conserved. It is noteworthy that recombinant 
MET can repress reporter gene expression in the absence of JH (presumably, MET forms 
homodimers in this system; Miura et al., 2005); transcriptional repression has previously 
been reported in other PAS proteins (Dolwick et al., 1993). Therefore, the JH-dependent, 
stage-specific formation of alternative MET/GCE dimers may have unique regulatory 
consequences on distinct suites of target genes.  

4.1 Dmgce substitution for DmMet  

To evaluate the notion that gce might confer viability to Met null flies, we manipulated gce 
expression using a binary UAS/GAL4 system to drive either a gce cDNA or an RNAi 
construct designed to target gce transcript. We carried these experiments out in a variety of 
genotypic contexts in order to examine the effect of gce transcript abundance on several 
methoprene conditional and non-conditional phenotypes (Baumann et al., 2010b). First, we 
explored the effect of gce over- and under-expression on a Met-specific non-conditional 
phenotype that manifests as a variable number of grossly malformed posterior facets of the 
compound eye (Figure 3). This phenotype is visible in Met27 and Metw3 flies, and is enhanced 
in the latter genotype. In our experiments, we found that gce overexpression in a Metw3 

genetic background can rescue the Met-specific eye phenotype, suggesting functional 
overlap of gce and Met. Notably, when gce was overexpressed in a Met27 background from 
the GawB}dan[AC116] promoter, targeting transgene expression to the compound eye, the 
eye phenotype was completely rescued (Baumann et al., 2010b).  
The Met27 phenotype mimics a set of defects resulting from genetic ablation of the JH-
producing corpus allatum (CAX), including a heterochronic shift in EcR-B1 expression in the 
optic lobe (Riddiford et.al., 2010). Exogenous JH application rescues the entire suite of 
defects in CAX prepupae, while JH provision to Met27 flies rescues only a subset of these 
defects, suggesting an alternate mechanism of JH signal transduction (Riddiford et al., 2010). 
Based on our findings that gce can substitute for Met in the compound eye, further study of 
GCE involvement in eye development may provide a link between these phenomena. For 
instance, GCE may partially substitute for MET as a ligand binder to mediate JH signaling 
when this hormone is supplied in excess. 
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Fig. 3. Left: malformed facets in the posterior compound eye of Metw3 flies appear dark 
under light microscopy. Right: EMS-induced production of an unidentified enhancer gene 
dramatically intensifies the Metw3 phenotype (T.G.W., unpublished). 

We also explored the effect of gce overexpression on several methoprene-conditional 

phenotypes. Overexpressed gce rescued both the diagnostic malrotation of male genitalia 

and sensitivity to the toxic effects of methoprene exposure. Sublethal doses of methoprene 

can induce malrotation of the male genital disc in D. melanogaster, resulting in terminalia 

that are improperly oriented for copulation (Bouchard & Wilson, 1987). Met27 males are 

resistant to this phenotype. We found that global gce overexpression in a Met27 background 

rescues blockage of the malrotation phenotype in Met27; UAS-gce/ tubulin-GAL4 flies. When 

these flies were exposed to methoprene, we observed malrotation close to levels seen in 

Met+ flies (Baumann et al., 2010b).  
Met and gce are generally co-expressed in JH target tissues, but we detected insignificant 
amounts of gce transcript in late third instar larval fat body. When gce was expressed from 
a construct targeting expression to this tissue, partial rescue of JH-induced pupal lethality 
was achived, perhaps as a result of supplying gce to a tissue in which its expression is 
normally depressed at this time in development. gce expression in the larval fat body was 
unable to rescue either the eye phenotype or to prevent methoprene-induced malrotation 
of the male genitalia, indicating that gce substitution for Met is tissue specific (Baumann et 
al., 2010b). 

4.2 Functional partitioning of DmMet and Dmgce in D. melanogaster reproduction 

Following metamorphosis, the interaction of 20E and JH is crucial in insect reproduction. 

JH was first isolated in large quantities from the MAG of Hyalophora cecropia (Williams, 
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1956), suggesting a role in male reproductive biology. In D. melanogaster, JH controls MAG 

protein accumulation (Yamamoto et al., 1988) and male apterous (ap) mutants court females 

less vigorously than wild-type flies (Tompkins, 1990). In females, the activity of these 

counteracting hormones is critical for ovarian development and oocyte maturation. 

Development of the D. melanogaster oocyte is under the control of JH through 

previtellogenic stages 8-9. Female D. melanogaster apterous4 mutants are sterile owing to 

reduced levels of JH synthesis (Bownes, 1989); provision of exogenous JH rescues 

vitellogenic oocyte development in ap females (Postlethwait & Weiser, 1973). In A. aegypti, 

JH also controls previtellogenic ovarian development (Clements, 1992). In this case, JH 

signaling is necessary to promote 20E competence in the fat body, the site of post-blood 

meal vitellogenin synthesis. In contrast, vitellogenesis is retarded by JH treatment in the 

gypsy moth, Lymantria dyspar (Davis et al., 1990). Thus, there is variation in hormonal 

control in insects.  

GCE clearly compensates for MET deficiency in preadult development (Baumann et al., 

2010b). In our experiments, over-expressed gce failed to rescue both the documented 

behavior of reduced courtship in Met27; UAS-gce/tubulin-GAL4 males and the reduction in 

oocyte development and oviposition in these females. Therefore, it appears that excess gce 

cannot compensate for Met-induced reduction of reproductive capacity. This result suggests 

that the functional roles for MET and GCE are incompletely partitioned between preadult 

development and reproduction in adults.  

In A. aegypti, AaMet regulates the transcription of several JH target genes in newly eclosed, 
previtellogenic adult females (Zhu et al., 2010). Presumably, the MET-like gene product in 
lower Diptera serves an analogous function both MET and GCE in JH signaling, but through 
the action of a single gene. This is perhaps accomplished by virtue of its modular 
architecture of DmMet- and Dmgce-specific domains. Higher sequence identity exists 
between the bHLH and PAS B of Dmgce and more primitive holometabolous Met-like genes, 
while the PAS A and PAC domains share higher sequence identity with DmMet. These 
domains may confer a discriminating Met-like function that may partially underlie the 
functional divergence of Met and gce in higher Diptera.  

4.3 Dmgce is a vital gene 

Overepxression studies demonstrated that gce can substitute for Met in a tissue specific 

manner to rescue several preadult Met mutant phenotypes. Hence, our results empirically 

support the notion of functional redundancy between Met and its paralog gce. To further 

explore the relationship between Met and gce in JH signaling, we carried out 

underexpression studies in Met+ and Met mutant backgrounds by driving the expression of 

a gce RNAi construct.  

First, we examined the consequence of gce deficiency in a Met mutant background under the 
justification that, if gce is responsible for Met27 viability, then concomitant reduction of Met 
and gce could result in lethality. Interestingly, Met27; UAS-gce-dsRNA/tubulin-GAL4 flies 
died as early pupae (0-2 days), whereas expression of the dsRNA construct from an actin-
GAL4 promoter caused lethality in the pharate adult stage. Next, we assessed the effects of 
gce reduction in Met+ flies. Surprisingly, Met+; UAS-gce-dsRNA/tubulin-GAL4 flies died as 
pharate adults, indicating that even in the presence of functional MET, gce is a vital gene. 
Driving the transgene from an actin-GAL4 promoter allowed some degree of adult survival, 
but these adults were clearly affected by insufficient gce, dying within two to three days. 
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Differential intensity of transgene expression from actin and tubulin promoters was 
previously reported in our lab (Barry et al., 2008).  
gce underexpression had no observable effect on embryonic development, a stage during 
which no role for JH has been demonstrated. We have shown that gce transcription begins 
after about eight hours in early embryos, in contrast to Met, which is supplied as a maternal 
message (Baumann et al., 2010a). The importance of such divergence in temporal expression 
profiles is unclear. 

5. Evolutionary conservation of JH signaling mechanisms 

Numerous JH target genes have been identified throughout Holometabola. Importantly, 
many of these genes are known components of the early 20E response. Table 1 lists some 
representative JH-inducible genes.  
 

Symbol Gene name Molecular function  Reference 
JhI-1 JH inducible protein 1 Endoribonuclease Dubrovsky et al., 

2000 JhI-26 JH inducible protein 26 Unknown 
Br Broad-Complex (BR-C) BTB POZ zinc finger 

transcription factor 
Zhou et al., 1998; 
Zhou & 
Riddiford, 2002 

mnd Minidisks Amino acid 
transmembrane 
transporter 

Dubrovsky et al., 
2002 

JhI-21 JH inducible protein 21 Amino acid 
transmembrane 
transporter 

JHE JH esterase JH-specific esterase Kethidi et al., 2005 
E75A Ecdysone-induced 

protein 75B 
Heme binding Dubrovsky et al., 

2004 
E74B Ecdysone-induced 

protein 74EF 
RNA polymerase II 
transcription factor 
activity 

Beckstead et al., 
2007 
 

pepck Phosphoenolpyruvate 
carboxykinase 

Phosphoenolpyruvate 
carboxykinase (GTP) 
activity 

CG14949 CG14949 Unknown 

Table 1. Representative JH-inducible genes. Many of these genes have evolutionarily 
conserved roles in JH signaling in holometabolous insects. In addition, several are known 
components of the 20E transcriptional cascade. 

The majority of the work done in our lab has been carried out on D. melanogaster, in which 
DmMet clearly plays a role in JH signaling: its absence both interferes with methoprene 
toxicity (Wilson & Fabian, 1986) and hinders JH-driven reproductive physiology (Wilson, 
1992; Wilson et al., 2003). However, Met involvement in metamorphosis has been difficult to 
demonstrate in Drosophila (Riddiford, 2008). As previously stated, JH exposure has no effect 
on dipteran entry into metamorphosis, unlike other insects (Williams, 1961; Zhou & 
Riddiford, 2002). In recent years, researchers have turned to the model coleopteran, T. 
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castaneum. These beetles are both amenable to genetic manipulation and gene knockdown 
owing to the dramatic effects of systemic RNAi, and the larvae of this species are very 
sensitive to JH, unlike D. melanogaster larvae. Exposure to JH or a number of its chemical 
analogs precipitates supernumerary larval instars, similar to the effects of JH on the model 
lepidopteran, Manduca sexta (Parthasarathy & Palli, 2009). T. castaneum, like mosquitoes, has 
a single Met-like gene. In their seminal paper, Konopova and Jindra (2007) demonstrated 
that RNAi-mediated knockdown of TcMet results not only in a methoprene resistance 
phenotype, but also in the precocious metamorphosis of early instar larvae. A long sought-
after result, the genetic reduction of TcMet provided the phenotype frustratingly absent in 
D. melanogaster: metamorphic disruption. Reproductive roles for TcMet have also been 
shown; TcMet knockdown results in a substantial decrease in vitellogenin transcription, 
(Parthasarathy, et al., 2010) consistent with Met deficiency in D. melanogaster females (Wilson 
& Ashok, 1998). These results demonstrate that the single Met-like genes in primitive 
Holometabola function in both development (metamorphosis) and reproduction. Further 
functional characterization of TcMet (and the single Met-like gene of lower Diptera) could 
lead to a better understanding of how DmMet has apparently co-opted reproductive 
functional roles from a gce-like ancestor in higher Diptera 

5.1 JH regulation of the E-20 transcriptional cascade 

The molecular networks that link JH and 20E signaling pathways form the foundation of 

multiple aspects of insect physiology, as evidenced by the criticality of both hormones in 

development, reproduction, and diapause (Zhou & Riddiford, 2002; Soller et al., 1999; 

Denlinger, 1985). Broad Complex (Broad or BR-C) is an early gene in the 20E cascade that 

encodes a family of alternatively spliced zinc finger transcription factors (four in D. 

melanogaster, Z1-Z4) fused to a common core protein. Certain Broad alleles phenocopy the 

morphogenetic defects incurred by methoprene exposure in D. melanogaster. Wilson et al 

(2006) showed phenotypic synergism in Met and broad double mutants, demonstrating JH-

sensitive MET and BROAD interaction (BROAD protein accumulation is comparable to that 

of wild type flies, suggesting physical interaction with, rather than transcriptional regulation 

by Met), and providing a link between JH and 20E signaling (Wilson et al., 2006).  

In a hemimetabolous insect, Oncopeltus fasciatus, continuous Broad expression directs 

progressive development through nymphal instars (Erezyilmaz et al., 2006). In 

Holometabola, Broad expression is confined to the prepupal stage, acting as a pupal specifier 

(Zhou & Riddiford, 2002). Loss of Broad expression, characteristic of the npr1 mutant (non-

pupariating; a deletion of the entire complementation group), results in the namesake 

phenotype of failure to enter the pupal program. Consequently, a restriction of Broad 

expression during this developmental stage may have contributed to the evolution of 

complete metamorphosis. During larval development in D. melanogaster, JH represses broad. 

At pupariation, exogenous JH induces a second wave of broad expression in the abdominal 

epidermis, resulting in the deposition of a second pupal cuticle (Zhou & Riddiford, 2002), 

demonstrating that the networks underlying these signaling mechanisms are complex.  

In T. castaneum, methoprene exposure induces Broad expression and this upregulation is 
ablated upon TcMet knockdown. Therefore, TcMet is upstream of Broad in JH signaling in 
these beetles (Konopova & Jindra, 2008). Krüppel homolog 1 (Kr-h1) is upstream of Broad in D. 
melanogaster JH signaling, where its expression in abdominal epidermis produces sternal 
bristle disruption similar to that seen following low dose JHA exposure (Minakuchi et al., 
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2008). Genetic suppression of TcKr-h1 induces precocious metamorphosis, similar to TcMet 
deficiency; TcMet knockdown in combination with JHA treatment demonstrated that TcKr-
h1 exists downstream of TcMet and upstream of TcBroad (Minakuchi et al., 2009). Similarly, 
Kr-h1 upregulation in newly eclosed A. aegypti females depends on AaMet expression (Zhu 
et al., 2010). Therefore, the relationships among these genes are generally conserved within 
holometabolan evolution.  
While Kr-h1 also has demonstrated roles in JH-influenced social behavior of honeybees, it 
has not been reported whether AmKr-h1 is under the transcriptional control of an A. mellifera 
Met-like protein. However, there is evidence for conservation in the sets of genes regulated 
by JH between flies and bees. This is perhaps unsurprising given the deep evolutionary 
conservation of these genetic mechanisms; Kr-h1 and Broad expression profiles in two 
species of hemimetabolous thrips, whose life histories involve pupa-like, quiescent or non-
feeding stages, are compatible with the expression profiles of Broad and Kr-h1 in 
holometabolous insects (Minakuchi et al., 2011).  
Microarray data from D. melanogaster and A. mellifera identified a subset of conserved, JH-
inducible genes (Li et al., 2007). In the promoter region of 16 of the D. melanogaster orthologs, a 
conserved JH response element (JHRE) was identified. RNAi-driven reduction of the 
expression of two proteins identified as JHRE binders, FKBP39 and Chd64, inhibits JHIII-
induced expression of a reporter construct, suggesting their involvement in JH-dependent 
transcriptional machinery. Bitra and Palli (2009) demonstrated physical interaction of MET 
with both ECR and USP. Furthermore, column pulldown assays showed FKBP39 and CHD64 
as binding partners of D. melanogaster ECR, USP, and MET, providing a more robust 
framework for a protein complex involving constituents of both JH and 20E signaling 
pathways (Li et al., 2007). FKBP39, which is present at the onset of metamorphosis (Riddiford, 
2008), is an inhibitor of autophagy in D. melanogaster; FKBP39 overexpression precludes the 
developmental autolysis of larval fat body cells in wandering third instar larvae (Juhász et al., 
2007), a physiology shown to be partially dependent on MET/GCE regulation of caspase gene 
expression (Liu et al., 2009). A role for GCE in any of these protein complexes has yet to be 
reported. Chd64 is expressed during larval molts, but not in the third instar or during 
metamorphosis (Riddiford, 2008). Accordingly, putative regulatory complexes consisting of 
different combinations of these elements may assemble in a stage- or tissue-specific manner. 
Assembly of differential protein complexes in response to JH, 20E, or both could be a strategy 
for the tight regulation of the activities of these counteracting hormones.  
The Met-like genes of Tribolium and Drosophila appear to act in similar genetic 
environments to regulate the expression of members of the 20E induced transcriptional 
cascade, including EcR (Riddiford et al., 2010) and USP (Xu et al., 2010), the heterodimeric 
components of the ecdysone receptor, various orphan nuclear receptors involved in 20E 
activity, and 20E-induced caspase genes involved in PCD (Liu et al., 2009). Knockdown of 
seven nuclear receptors (E75, HR3, EcR, USP, SVP, FTZ-F1, and HR4) results in a 
significant reduction of vitellogenin prouction in T. castaneum (Xu et al., 2010), a 
phenotype similar to that obtained via TcMet knockdown (Parthasarathy & Palli, 2009). 
The data presented in this section therefore strongly support for the action of Met-like 
genes as crucial to 20E/JH crosstalk. 

5.2 Discovery of an evolutionarily conserved Met binding partner  

Recent biochemical data from A. aegypti indicate that AaMet binds another bHLH PAS gene, 
AaFISC, and that this interaction requires a high JH titer. FISC is a coactivator of EcR/USP 
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(Chen, J.D., 2000; Zhu, et al., 2006), providing yet another link between 20E and JH signaling. 
The authors also report that coexpression of DmMet or Dmgce with DmTaiman (the D. 
melanogaster AaFISC ortholog) in the presence of JH III induced reporter gene expression in 
L57 cells (Li et al., 2011). Furthermore, this interaction has also been demonstrated in T. 
castaneum between TcMet and the FISC/TAI homolog, TcSRC (Steroid receptor coactivator; 
Zhang et al., 2011). This gene has previously been implicated in metamorphic activity. T. 
castaneum larvae treated with SRC RNAi fail to achieve critical weight and consequently die 
before the larval-pupal transition (Bitra et al., 2009). Therefore, MET interaction with 
FISC/SRC/TAIMAN underpins key transcriptional events of JH signaling throughout 
holometabolous insects.  
Structure-function analyses performed using site-directed mutagenesis identified regions of 
MET that are necessary for homodimerization and GCE binding. Point mutations in the 
bHLH and PAS A domains (Met1 and Metw3 alleles, respectively) had no effect on partner 
binding, whereas N- and C-terminal truncations, deletions in the HLH or PAS A domains, 
and a point mutation in the PAS B domain (Met128 allele) all inhibited dimerization 
(Godlewski, et al., 2006). Structure-function data for AaMET and AaFISC binding illustrates 
that the criticality of PAS domains for protein-protein interaction. Interestingly, two-hybrid 
assays showed that MET/FISC interaction increased when AaMET lacked a bHLH domain 
(Li et al., 2011). Therefore, this domain is unnecessary for MET-FISC interaction, suggesting 
that the sole function of the AaMet bHLH may be in DNA binding. In contrast, deletion of 
the bHLH domain in FISC hindered the JH-induced interaction with AaMET.  
Mixespression of DmTaiman in a variety of Met/gce genetic backgrounds will be valuable 
from both physiological and evolutionary perspectives. How do these proteins interact in 
the context of hormonal control of D. melanogaster development? Presumably, during larval 
development JH secreted from the CA inhibits MET and GCE interaction while promoting 
MET and GCE binding with TAIMAN. Are MET:TAI and GCE:TAI dimers functionally 
congruent in D. melanogaster or do these complexes preferentially regulate disparate target 
genes? Is the Met-like gene in A. aegypti and T. castaneum functionally analogous to Met/gce 
or are other, unidentified proteins involved? How has the interaction of these proteins 
changed during dipteran evolution following the origin of Met? 

6. Conclusions  

RT-PCR analysis with degenerate primers identified a single Met-like homolog in the 
genome of each of the three mosquito species, Aedes aegypti, Anopheles gambiae, and Culex 
pipiens. Likewise, a single Met-like ortholog exists in the beetle, T. castaneum, (Konopva & 
Jindra, 2007). Phylogenetic analysis and comparison of intron number and position in each 
of the identified mosquito genes indicates that the mosquito Met orthologs share higher 
sequence identity with Dmgce than DmMet, suggesting that DmMet arose from the 
duplication of an ancestral, gce-like gene in lower Diptera. To examine the evolutionary 
history of Met and gce within the Diptera, we mined the public G. morsitans EST library, 
recovering unique putative Met and gce orthologs in this fly, showing conservation of a Met 
homolog within the Schizophora. We also recently isolated a putative gce homolog from a 
Bombyliid, Bombylius major (A.A.B., unpublished). Taxonomically, this group of flies exists 
in the Asilomorpha, a paraphyletic sister taxon to the Muscomorpha within the dipteran 
infraorder, Brachycera. While this study is in its preliminary stages, only a single Met-like 
gene has thus far been obtained from this fly using degenerate PCR with cDNA and 
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genomic DNA templates, suggesting the possibility that the Met/gce duplication occurred 
within the Brachycera. Met function is evolutionarily conserved in Diptera; consistent with 
independent reports (Zhu et al., 2010) we observed that RNAi-driven reduction of AaMet 
results in concomitant reduction of JH-inducible genes (Figure 4). 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M et JHE (AAEL012886) JhI-1 (AAEL006600) JhI-26 (AAEL000516)

dsB-gal dsM et

 
 

Fig. 4. Expression of three JH-inducible genes following RNAi-induced knockdown of 
AaMet (dsMet: orange bars) vs. controls (dsB-gal: red bars). AaMet reduction produced 
concomitant suppression of the A. aegypti homologs of DmJHE, DmJhI-1, and DmJhI-26. 

Analysis of the nonsynonymous-to-synonymous substitution ratios (dN/dS) of Met and gce 

orthologs within the genus Drosophila indicates a substantial relaxation of selective 

constraint on the C-terminal half of gce, downstream of the functional domains. Conversely, 

nonsynonymous substitutions in the N-terminal half are stringently selected against. 

Depressed dN/dS values across the Met coding sequence indicate strong selective constraint 

over the entire open reading frame (Baumann et al., 2010b). 

RT-PCR analysis of selected D. melanogaster tissues shows that gce is generally co-expressed 
with Met in known JH target tissues, including ovary and MAG. Overexpression of gce in a 
Met mutant background results in a dramatic enhancement of methoprene-conditional toxic 
and morphogenetic defects, similar to those seen in wild type (Met+) flies after methoprene 
exposure. Met mutant flies overexpressing gce show rescue of a non-conditional adult 
phenotype, that of defective development of posterior facets in the compound eye. Our 
results therefore support the notion of functional redundancy that has been hypothesized to 
account for Met27 viability flies. On the other hand, we have also shown that these paralogs 
have undergone evolutionary subfunctionalization since their origin; gce overexpression 
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fails to rescue the phenotypes of deficient oogenesis or reduced male courtship characteristic 
of Met adults, showing that Met has co-opted therole as the mediator of JH-regulated 
reproductive functions in Drosophila. 
RNAi-driven reduction of gce expression from either an actin or tubulin promoter 
demonstrates that unlike Met, gce is a vital gene. Gce underexpression in both Met+ and Met 
genetic backgrounds results in lethality. Met+ ; UAS-gce-dsRNA / tubulin-GAL4 homo-
/hemizygotes do not survive to adulthood, and die primarily at the pharate adult stage, 
while the same gce RNAi construct expressed in a Met mutant background shifts lethality to 
early pupae (Baumann et al., 2010a). 

6.1 Directions 

Previously, USP was proposed as a candidate JH receptor (Jones, et al., 2001). Yet, USP only 
binds JH with micromolar affinity, requiring a hormone concentration that exceeds 
endogenous titers by orders of magnitude (Bownes & Rembold, 1987). It is now known that 
USP binds methyl farnesoate (MF), a precursor in the biological synthesis of JH III (Figure 
1), with nanomolar affinity both in D. melanogaster and in A. aegypti (Jones et al., 2006; Jones 
et al., 2010). Recent studies on natural farnesoid derivatives including MF, JH III, and JHB3 
(the main farnesoid secretion product of dipteran ring glands cultured in vitro) have teased 
out the relative activities of each of these compounds during development in a series of 
biological assays. Two recent studies have demonstrated that the activity series of these 
three compounds changes during development. Dietary MF and JH III (MF > JH III) were 
both more active than JHB3 in delaying larval attainment of the wandering stage. In 
contrast, JH III applied to prepupae (white puparial assay; Riddiford & Ashburner, 1991) 
showed much higher activity than MF or JHB3 in blocking adult eclosion (Jones et al., 2010; 
Harshman et al., 2010).  
Topical application or dietary provision of these compounds adds to endogenous hormone 
titers. Therefore, just as USP binds JH III at concentrations exceeding physiological levels, it 
is possible that MET nonspecifically binds MF or JHB3 under these conditions. It is an 
intriguing proposition that MET and USP, which interact both with each other and JHRE 
binding proteins (Bitra & Palli, 2009), may partner in a stage-specific manner throughout 
development in response to a fluctuating mélange of methyl farnesoids. Does GCE 
participate in the assembly of the molecular machinery that facilitates the crosstalk between 
JH and 20E signaling? This protein has been largely ignored in studies regarding the 
molecular interaction of these hormones. Further, it is unknown whether GCE binds any of 
the farnesoid products of the CA. There appears to be a correlation between the presence of 
paralogous Met-like genes and multiple JH isoforms in higher Diptera. If each of the 
farnesoids JH III, MF, and JHB3 indeed has a unique receptor protein, the possibility arises 
that GCE fills the role of JHB3 binder. Or perhaps in MET/GCE dimers, MET is the sole 
ligand binder, while GCE and MET are both necessary for target gene transcription. Clearly, 
further functional characterization of GCE is necessary to unravel the mechanisms through 
which JH signaling has evolved from the basal holometabola to the most evolutionarily 
diverged insects, the higher Diptera. 
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