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1. Introduction  

Feature selection is one of active research area in pattern recognition or data mining 

methods (Duda et al., 2001). The importance of feature selection methods becomes 

apparent in the context of rapidly growing amount of data collected in contemporary 

databases (Liu & Motoda, 2008). 

Feature subset selection procedures are aimed at neglecting as large as possible number of 

such features (measurements) which are irrelevant or redundant for a given problem. The 

feature subset resulting from feature selection procedure should allow to build a model on 

the base of available learning data sets that generalizes better to new (unseen) data. For the 

purpose of designing classification or prediction models, the feature subset selection 

procedures are expected to produce higher classification or prediction accuracy.  

Feature selection problem is particularly important and challenging in the case when the 

number of objects represented in a given database is low in comparison to the number of 

features which have been used to characterise these objects. Such situation appears typically 

in exploration of genomic data sets where the number of features can be thousands of times 

greater than the number of objects. 

Here we are considering the relaxed linear separability (RLS) method of feature subset 

selection (Bobrowski & Łukaszuk, 2009). Such approach to feature selection problem refers 

to the concept of linear separability of the learning sets (Bobrowski, 2008). The term 

“relaxation” means here deterioration of the linear separability due to the gradual neglect of 

selected features. The considered approach to feature selection is based on repetitive 

minimization of the convex and piecewise-linear (CPL) criterion functions. These CPL 

criterion functions, which have origins in the theory of neural networks, include the cost of 

various features (Bobrowski, 2005). Increasing the cost of individual features makes these 

features falling out of the feature subspace. Quality the reduced feature subspaces is 

assessed by the accuracy of the CPL optimal classifiers built in this subspace. 

The article contains a new theoretical and experimental results related to the RLS method of 

feature subset selection. The experimental results have been achieved through the analysis, 

inter alia, two sets of genetic data. 
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2. Linear separability of two learning sets 

Suppose that m objects Oj described in the database are represented by feature vectors 
xj[n] = [xj1,...,xjn]T (j = 1,…,m). The feature vectors xj[n] can be treated as points in the n-
dimensional feature space F[n] (xj[n]  F[n]). The component xji of the vector xj[n] is the 
numerical value of the i-th feature xi of the object Oj. For example, in the case of clinical 
database, components xji can be the numerical results of the i-th diagnostic examinations of a 
given patient Oj. 
Consider two learning sets G+

 and G- built from n-dimensional feature vectors xj[n]. The 
positive set G+

 contains m+
 feature vectors xj[n] and the negative set G- contains m-

 vectors xj[n]: 

 G+ 
= {xj[n]: j  J+}     and       G- = { xj[n]: j  J-} (1) 

where J+ and J- are disjoined sets (J+  J- = ) of indices j. 
The positive set G+ usually contains vectors xj[n] of only one category. For example, the set 
G+ may contain feature vectors xj[n] representing patients with cancer and set G- may 
represent patients without cancer. 
Definition 1: The sets G+

 and G- (1) are linearly separable, if and only if there exists such a 

weight vector w[n] = [w1,...,wn]T (w[n]Rn) and threshold  (R), that all the below 
inequalities are fulfilled: 
 

( w[n],  ) (xj[n]  G+) w[n]Txj[n]   

                 and (xj[n]  G-) w[n]Txj[n]   
(2) 

 

The parameters w[n] and  define the separating hyperplane H(w[n],) in the feature space 

F[n] (x[n]  F[n]): 

 H(w[n],) = {x[n]: w[n]Tx[n] = } (3) 

If the relations (2) are fulfilled, then all the elements xj[n] of the set G+ are located on the 

positive side of the hyperplane H(w[n],) (3) and all the elements of the set G- are located on 
the negative side of this hyperplane. 
 

 

Fig. 1. An example of linearly separable sets G+ (denoted by ○) and G- (denoted by �) in the 
two-dimensional feature space F[2], where m+ = 8 and m- = 6 
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Lemma 1: Such sets G+ and G- (1) which are linearly separable (2) in the feature space F[n], are 

also linearly separable in any greater feature space F[n], where F[n]  F[n]. 
The proof of the Lemma 1 is self-evident. The Lemma 1 shows, inter alia, that for any constant 

c the sets G+ 
= {xj[n]: xji  c} and G- ={xj[n]: xji  c} are linearly separable in each feature space 

F[n]. 
Lemma 2: The sets G+ and G- (1) constructed of linearly independent feature vectors xj[n] are 

always linearly separable (2) in the feature space F[n]. 

The Lemma 2 can be proved by using arguments related to the construction of bases in the 
feature space F[n] (Bobrowski, 2005). A base in the feature space F[n] can be created by any n 
feature vectors xj[n] which are linearly independent. Such n vectors xj[n] can be separated by 

the hyperplane H(w[n],) (3) for any subsets G+ and G- (1). 
It can be seen that the linear separability (2) can be formulated equivalently to (2) as 

(Bobrowski, 2005): 

 

( v[n+1])  ( yj[n+1]  G+)    v[n+1]Tyj[n+1]    1 
         and   ( yj[n+1]  G-)    v[n+1]Tyj[n+1]   -1

(4) 

 

where yj[n+1] are the augmented feature vectors, and v[n+1] is the augmented weight vector 
(Duda et al., 2001): 

 (j {1,…,m}) yj[n+1] = [xj[n]T, 1]T and v[n+1] = [w[n]T, -]T  (5) 

 

The inequalities (4) are used in the definition of the convex and piecewise-linear (CPL) 

penalty functions φj+(v[n+1]) and φj
-(v[n+1]). 

3. Convex and piecewise linear (CPL) criterion functions 

Let us define the convex and piecewise-linear penalty functions φj+(v[n+1]) and φj-(v[n+1]) 

using the augmented feature vectors yj[n+1] (5), and the weight vector v[n+1] (Bobrowski, 

2005): 

 

(yj[n+1]  G+)  φj+ (v[n+1]) =
1 - v[n+1]Tyj[n+1] if v[n+1]Tyj[n+1]  < 1 

0 if v[n+1]Tyj[n+1]   1 

 
and 
 

(yj[n+1]  G-)  φj- (v[n+1]) =
1 + v[n+1]Tyj[n+1] if v[n+1]Tyj[n+1]  > -1 

0 if v[n+1]Tyj[n+1]  ≤ -1 

 

The penalty function φj+(v[n+1]) is equal to zero if and only if the vector 

 yj[n+1] (yj[n+1]  G+) is situated on the positive side of the hyperplane H(v[n+1]) (3) and is not 

too near to it (Fig. 2). Similarly, φj-(v[n+1]) is equal to zero if the vector yj[n+1] (yj[n+1]  G-) is 

situated on the negative side of the hyperplane H(v[n+1]) and is not too near to it  

(Fig. 3). 

The perceptron criterion function (v[n+1]) is defined on the sets G+
 and G- (1) as the 

weighted sum of the penalty functions φj+(v[n+1]) and φj-(v[n+1]) (Bobrowski, 2005): 
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Fig. 2. The positive penalty function φj+(v[n+1]) (6).  

 

 

Fig. 3. The negative penalty function φj-(v[n+1]) (7). 

 

(v[n+1]) =  j φj+(v[n+1]) +  j φj-(v[n+1]) 
                                                                   j J+                                      j J-

(8)

where nonnegative parameters j determine prices of particular feature vectors xj[n]. 

We are interested in the finding minimum (vk*[n+1]) of the criterion function (v[n+1]): 

 (v[n+1]) (v[n+1])  (vk*[n+1]) = * (9) 

It has been proved that the minimal value * is equal to zero (* = 0) if and only if the sets 
G+

 and G- (1) are linearly separable (4) (Bobrowski, 2005). 

 (* = 0)  (G+
 and G-

 are linearly separable (4)) (10) 
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A modified CPL criterion function (v[n+1]) which includes additional penalty functions 

i(v[n+1]) and the costs i (i  0) related to particular features xi has been introduced in order 
of the feature selection (Bobrowski, 2005): 
 

(i  {1,...,n})  i(v[n+1]) = |wi| =
- ei[n+1]Tv[n+1]   if ei[n+1]Tv[n+1]  < 0      
  ei[n+1]Tv[n+1]   if ei[n+1]Tv[n+1]   0 

 

and 

(v[n+1]) = (v[n+1]) +   ii(v[n+1]) 
                                                                                                                          i  I

(12)

where  (  0) is the cost level, and I = {1,……,n}. 
Let us relate the hyperplane hj+[n+1] in the parameter space Rn+1 to each augmented feature 
vector yj[n+1] (5) from the set G+ (1), and the hyperplane hj-[n+1] to each element yj[n+1] (5) 
of the set G-. 

(j  J+) hj+[n+1] = {v[n+1]: yj[n+1]Tv[n+1] = 1} 

and 

(j  J-) hj-[n+1] = {v[n+1]: yj[n+1]Tv[n+1] = -1} 

(13)

The first n unit vectors ei[n+1] = [0,...,0,1,0,...,0]T (i = 1,...,n) without the vector  
en+1[n+1] = [0,…,0,1]T are used in defining hyperplanes hi0[n+1] in the augmented parameter 
space Rn+1 (5): 

  (i  {1,…,n})  hi0[n+1] = {v[n+1]: ei[n+1]Tv = 0}= {v[n+1]: vi = 0} (14) 

The hyperplanes hj+[n+1], hj-[n+1] and hi0[n+1] divide the parameter space Rn+1 (5) in the 
disjoined regions Rl[n+1]. Each region Rl[n+1] is a convex polyhedron in the parameter 
space with number of vertices vk[n+1]. The CPL criterion function Ψ(v[n+1]) (12) is linear 
inside each region Rl[n+1]. It has been shown based on the theory of linear programming 
that the minimum of the CPL criterion function Ψ(v[n+1]) (13) can be found in one of 
vertices vk[n+1] of some region Rl[n+1] (Bobrowski, 2005). Each vertex vk[n+1] in the 
parameter space Rn+1 is the intersection point of at lest (n + 1) hyperplanes hj+[n+1], hj-[n+1] 
or hi0[n+1]. The below equations are fulfilled in each vertex vk[n+1]: 

(j  Jk+) yj[n+1]Tvk[n+1] = 1, and 

 (j  Jk-) yj[n+1]Tvk[n+1] = -1, and 

  (i  Ik0) ei[n+1]Tvk[n+1] = 0        (15) 

where Jk+and Jk- are the sets of indices j such hyperplanes hj+[n+1], hj-[n+1] (13) that pass 
through the vertex vk[n+1], Ik0 is the set of indices i such hyperplanes hi0[n+1] (14) that pass 
through the vertex vk[n+1]. 
The above equations can be given in the matrix form: 

 Bk[n+1] vk[n+1] = k[n+1] (16) 

where Bk[n+1] is a non-singular matrix (basis) with the rows constituted by the linearly 
independent vectors yj[n+1] (j  Jk+ Jk-) or the unit vectors ei[n+1] (i  Ik0), and k[n+1] is 
the margin vector with components equal to 1, -1 or 0 according to (15). 
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Remark 1: The number n1 of the independent vectors yj[n+1] in the matrix Bk[n+1] (16) can be 
not greater than the rank r of the data set G+  G- (1). So, the number n0 of the unit vectors 
ei[n+1] (i  Ik0) (15) in the basis Bk[n+1] (16) is not less than n – r (n0  n – r ). 
The vertex vk[n+1] can be computed by using the basis Bk[n+1] and the margin vector 

k[n+1] (16): 

 vk[n+1] = Bk[n+1]-1 k[n+1] (17) 

The criterion function Ψ(v[n+1]) (12), similarly to the function (v[n+1]) (8) is convex and 
piecewise-linear (CPL). The minimum of this function is located in one of the vertices 
vk[n+1] (17): 

 (vk^[n+1]) (v[n+1]) (v[n+1])  (vk^[n+1]) = Ψ^ (18) 

The basis exchange algorithms allow to find efficiently the optimal vertex vk^[n+1] 

constituting the minimum of the CPL function Ψ(v[n+1]) (12), even in the case of large, 
multidimentional data sets G+

 and G-
 (1) (Bobrowski, 1991). 

Remark 2: Such components wki of the vertex vk[n+1] = [wk[n]T,-k]T = [wk1,...,wkn,-k]T (5) 

which are related to the unit vectors ei[n+1] (iIk0) in the basis Bk[n+1] (16) are equal to zero 
(wki = 0) (15). 
The n0 features xi (i  Ik0) (15) with the weights wi equal to zero in the optimal vertex 
vk^[n+1] (18) can be reduced without changing the separating hyperplane H(wk^[n+1],k^) 
(4). The following rule of feature reduction has been proposed on this base: 

  (i  Ik0) ei[n+1]Tvk^[n+1] = 0  wi = 0  the feature xi is reduced (19) 

Remark 3: A sufficiently large increase of the cost level  (  0) in the criterion function 
(v[n+1]) (12) results in an increase of the number n0 of unit vectors ei[n+1] in the basis 
Bk^[n+1] (16) linked to the optimal vertex vk^[n+1] (18) (Bobrowski, 2005). 
An arbitrary number n0 of features xi can be omitted and the feature space F[n] can be 
reduced to the subspace Fk^[n - n0] by using of adequate value k of the parameter  in the 
criterion function (v[n +1]) (12). For example, the value  = 0 means that the optimal 

vertex vk^[n +1] (18) constitutes the minimum of the perceptron criterion function (v[n+1]) 
(8) defined in the full feature space F[n]. On the other hand, sufficiently large value of the 
parameter  results in the optimal vertex vk^[n+1] (18) equal to zero (vk^[n+1] = 0). Such 
solution is not constructive, because it means that all the features xi have been reduced (19) 
and the separating hyperplane H(w[n],) (3) cannot be defined. 

For a given parameter value  = k (12) the optimal vertex vk^[n+1] (18) is determined 
unambiguously as the minimum (18) of the convex and piecewise linear function  
(v[n+1]) (12). This vertex is characterized by the subset of such n - n0 features xi which are 

not related to the unit vectors ei[n +1] (iIk0) in the basis Bk^[n +1] (16) related to the optimal 
vertex vk^[n+1] (18). The feature subspace Fk^[nk] = Fk^[n - n0] can be also determined by 
such n - n0 features xi. Quality of the feature subspace Fk^[nk] can be determined on the basis 
of the quality of the optimal linear classifier designed in this subspace of dimensionality nk. 
The optimal feature subspace Fk*[nk] can be identified as one that enables create the best 
linear classifier. The RLS method of feature subset selection is based on this scheme 
(Bobrowski, 2008; Bobrowski & Łukaszuk, 2009). 
Comparing our approach with the approach based on the least-squares criterion, we can 

conclude that the discriminant function based on the least-squares criterion can be linked to 
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the Euclidean distance L2, whereas our method based on the convex and piece-wise linear 

criterion function (CPL) can be linked to the L1 norm distance function. 

4. Characteristics of the optimal vertices in the case of linear separabilty  

Let us consider the case of long vectors in the exploratory data analysis. In this case, the 

dimensionality n of the feature vectors xj[n] is much greater than the number m (n  m) of 

these vectors (j = 1,…, m). We may expect in this case that the vectors xj[n] are linearly 

independent (Duda et al., 2001). In accordance with the Lemma 2, the arbitrary sets G+ and G- 

(1) of linearly independent vectors xj[n] are linearly separable (6). The minimal value * (9) 

of the criterion function (v[n+1]) (8) defined on linearly separable sets G+
 and G- (1) is 

always equal to zero (* = 0) (Bobrowski,2005). The minimum (vk*[n+1]) (9) of the function 

(v[n+1]) (8) can be located in the optimal vertex vk*[n+1] (9), where the below equations 

hold (15): 

(j  Jk+) vk*[n]Tyj[n] = 1 

 and (j  Jk-) vk*[n]Tyj[n] = -1 (20) 

 

where n = n - n0 is the dimensionality of the reduced feature vectors yj[n] obtained from 

yj[n+1] (5) after neglecting n0 features xi related to the set Ik0 (15) and vk*[n] is the reduced 
vertex obtained from vk*[n+1] (9) by neglecting n0 components wi equal to zero (wi = 0). 

The vectors yj[n] belong to the reduced feature subspace Fk[n] (yj[n] Fk[n]). We can 

remark that if the learning sets G+[n] and G-[n] constituted from the vectors yj[n] are 

linearly separable (4) in a given feature subspace Fk[n], there may be more than one optimal 

vertex vk*[n] creating the minimum (9) of the function k(v[n]) (8) (k(vk*[n]) = 0). In this 

case, each optimal vertex vk*[n] linearly separates (4) the sets G+[n] and G- [n] (Bobrowski, 
2005): 

 (yj[n]  G+[n]) vk*[n]Tyj[n]  1 

 and (yj[n]  G-[n]) vk*[n]T yj[n]  -1 (21) 

 

Moreover, in the case of long vectors there may exist many such feature subspaces Fk[n] of 

a given feature space F[n] (Fk[n]F[n]) which can assure the linear separability (21). 

Therefore, a question arises which of the vertices vk*[n] constituting the minimum (9) of the 

perceptron function (v[n+1]) (8) is the best one. 
The answer for a such question can be given on the basis of minimization of the modified 

criterion function (v[n+1]) (12). In contrary to the perceptron criterion function 

(v[n+1]) (8) the modified criterion function (v[n+1]) (12) has only one optimal vertex 

vk^[n+1] (16). The vertex vk^[n+1] (16) which constitutes minimum (18) of the function 

(v[n+1]) (12) is unambiguously determined and can be treated as the optimal one. 

It can be proved that the modified criterion function (v[n+1]) (12) with a sufficiently small 

cost level  (  0), has the minimal value (18) in the same vertex vk*[n+1] (9) as the 

perceptron criterion function (v[n+1]) (8) (Bobrowski, 2005): 

 ( max) ( (0, max)) (v[n+1]) (v[n+1])  (vk*[n+1]) (22) 
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In other words, the replacement of the perceptron criterion function (v[n+1]) (8) by the 

modified criterion function (v[n+1]) (12) does not necessarily mean changing the position 
of the minimum. 

The modified criterion function (v[n+1]) (12) can be expressed in the following manner 

for such points v[n+1] which separate linearly (4) the sets G+ and G- 
(1): 

 (v[n+1]) =   ii(v[n+1]) =   i|vki| (23) 
                  i  I                      i  I 

Therefore, the minimization of the criterion function (v[n+1]) (12) can be replaced by the 

minimization of the function (v[n+1]) (23) under the condition that the point v[n+1] 

linearly separates (4) the sets G+ and G- 
(1). 

Remark 5: If the sets G+ and G- (1) are linearly separable, then the vertex vk*[n+1] constituting 

the minimum of the function (v[n+1]) (23) with equal feature costs i has the lowest L1 

norm vk*[n+1]||L1 = i |vki| among all such vectors v[n+1] which linearly separate (4) 
these sets. 
The Remark 5 points out a possible similarity between the CPL solution vk*[n+1] (22) and the 
optimal vector v*[n+1] obtained in the Support Vector Machines (SVM) approach (Vapnik, 

1998). But the use of the CPL function (v[n+1]) (12) also allows obtain other types of 

solutions vk*[n+1] (22) by another specification of feature costs i and the cost level  

parameters. The modified criterion function (v[n+1]) (12) gives possibility to introduce 

different feature costs i (i  0) related to particular features xi. As a result,  
the outcome of feature subset selection process can be influenced by the feature costs  

i (12). 

5. Relaxed linear separability (RLS) approach to feature selection 

The initial feature space F[n] (xj[n]F[n]) is composed of the all n features xi from a given set 
{x1,… xn}. Feature reduction rule (19) results in appearance of the feature subspaces Fk[nk] 

(Fk[nk]  F[n] and nk  n). 

Successive increase of the value of the cost level  in the criterion function (v[n+1]) (12) 

allows to reduce (19) additional features xi and, as a result, allows generate the descended 

sequence of feature subspaces Fk[nk]: 

 F[n]  F1[n1]  F2[n2] …  Fk[nk], where nk  nk + 1 (24) 

The sequence (24) of the feature subspaces Fk[nk] is generated in a deterministic manner on 

the basis data sets G+
 and G-

 (1) in accordance with the relaxed linear separability (RLS) 

method (Bobrowski & Łukaszuk, 2009). Each step Fk[nk]  Fk+1[nk+1] is realized by an 

adequate increase k  k+1 = k + k (where k > 0) of the cost level  in the criterion 

function (w[n],) (12).  

One of the problems in applying the RLS method is to assess the quality characteristics of 
successive subspaces Fk[nk] (24). In this approach, a quality of a given subspace Fk[nk] is 
evaluated on the basis of the optimal linear classifier designed in this subspace. The better 
optimal linear classifier means the better feature subspace Fk[nk]. 
The feature subspace Fk[nk] can be obtained from the initial feature space F[n] by reducing 
the n - nk features xi. Such reduction can be based on the optimal vertex vk^[n+1] (18) with 
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the related basis Bk^[n+1] (16). The optimal vertex vk^[n+1] (18) appoints the minimum of 

the criterion function (v[n+1]) (12) with the adequate value k of the cost level . 

Definition 2: The reduced feature vectors yj[nk] (yj[nk]Fk[nk]) are obtained from the feature 

vectors yj[n+1] = [xj[n]T,1]T (5) after neglecting n - nk features xi related to the set Ik0 (15) of 

the optimal vertex vk^[n+1] (18). The reduced vertex (parameter vector) v^[nk]=[w^[nk-1]T,-^]T 

(5) and vk^[nk] is obtained from the optimal vertex vk^[n+1] (18) by neglecting of these n - nk 

components wi, which are equal to zero (wi = 0). 

The reduced parameter vector v[nk] = [w[nk-1]T,-]T (5) defines the linear classifier LC(v[nk]) 

in the feature subspace Fk[nk]. The linear classifier LC(v[nk]) can be characterized by the 

following decision rule: 

if v[nk]T y[nk]  0, then y[nk] is allocated to the category + 

 if v[nk]T y[nk]  0, then y[nk] is allocated to the category - (25) 

where y[nk]  Fk[nk], and the category (class) + is represented by elements xj[n] of the 

learning set G+
 (1) and the category - is represented by elements of the set G-. 

Definition 3: The CPL optimal linear classifier LC(v*[nk]) is defined in the feature subspace 

Fk[nk] by a reduced parameter vector v*[nk] that constitutes the minimum * = k(v*[nk]) (9) 

of the perceptron criterion function k(v[nk]) (8). 

The perceptron criterion function k(v[nk]) is defined (8) on reduced feature vectors yj[nk] 

(yj[nk]Fk[nk]) that belong to the reduced learning set G+[nk] or G-[nk] (1). 

 G+[nk]
 
= {yj[nk]: j  J+} and G-[nk]

 
= {yj[nk]: j  J-} (26) 

Remark 6: The minimal value k* of the criterion function k(v[nk]) (8) on reduced feature 

vectors yj[nk] is equal to zero (k* = 0 ) if and only if the sets G+[nk]
 
and G-[nk]

 
are linearly 

separable (4) in the feature subspace Fk[nk] (similarly as (10)) (Bobrowski, 2005). 

It has been proved that, if the learning sets G+[nk]
 
and G-[nk] (26)

 
are linearly separable (4), 

then the decision rule (25) based on the optimal vector vk*[nk] (9) allocates correctly all 

elements yj[nk] of these learning sets (Bobrowski, 2005). It means that (21): 

(yj[nk]  G+[nk]) v*[nk]Tyj[nk]  0, and  

  (yj[nk]  G-[nk]) v*[nk]Tyj[nk]  0            (27) 

If the sets G+[nk]
 
and G-[nk] (26)

 
are not linearly separable (4), then not all but only a majority 

of the vectors yj[nk] fulfil the above inequalities. 

According to the considerations of the previous paragraph, if the learning sets  

G+[nk]
 
and G-[nk] (26)

 
are linearly separable (4), then there is more than one vertex vi*[nk] 

forming a minimum of the function k(v[nk]) (8). To avoid such ambiguity, the criterion 

function k(v[nk]) (8) can be replaced by the modified criterion function k(v[nk]) (12) with 

the small value (22) of the parameter . 

6. Evaluation of linear classifiers 

The quality of the linear classifier LC(v*[nk]) (25) can be evaluated by using the error 

estimator (apparent error rate) ea(v*[nk]) as the fraction of wrongly classified elements yj[nk] of 

the learning sets G+[nk]
 
and G-[nk] (26): 
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 ea(v*[nk]) = me(v*[nk]) / m (28) 

where m is the number of all elements yj[nk] of the learning sets G+[nk]
 
and G-[nk] (26) xj[n], 

and me(v*[nk]) is the number of elements yj[nk] wrongly allocated by the rule (25). 

The parameters v*[nk] of the linear classifier LC(v*[nk]) (25) are estimated from the learning 

sets G+[nk]
 

and G-[nk] (26) through minimization of the perceptron criterion function 

k(v[nk]) (8) determined on elements yj[nk] of these sets. It is known that if the same data 

yj[nk] is used for classifier designing and for classifier evaluation, then the evaluation results 

are too optimistic (biased). The error rate (28) evaluated on the elements yj[nk] of the learning 

sets is called the apparent error (AE). For example, if the learning sets G+[nk]
 
and G-[nk] (26) 

are linearly separable (4), then the relation (27) holds and, as a result, the apparent error (28) 

evaluated on elements yj[nk] is equal to zero (ea(v*[nk]) = 0). But it is observed in practice 

that the error rate of the classifier (25) evaluated on new vectors y[nk] is usually greater than 

zero. 

For the purpose of the classifiers bias reducing, the cross validation procedures are applied 

(Lachenbruch, 1975). The term p-fold cross validation means that the learning sets G+[nk]
 
and 

G-[nk] (26) have been divided into p parts Gi, where i = 1,…,p (for example p = 10). The 

vectors yj[nk] contained in p – 1 parts Gi are used for definition of the criterion function 

k(v[nk]) (8) and computing of the parameters v*[nk]. The remaining vectors yj[nk] are used 

as the test set (one part Gi) for computing (evaluation) the error rate e(v*[nk]) (28). Such 

evaluation is repeated p times, and each time different part Gi is used as the test set. The 

cross valid1ation procedure allows to use different vectors yj[nk] (1) for the classifier (25) 

designing and evaluation (28) and as a result, to reduce the bias of the error rate estimation 

(28). The error rate (28) estimated during the cross validation procedure will be called the 

cross-validation error (CVE). 

The CVE error rate eCVE(v*[nk]) (28) of the linear classifier (25) is used in the relaxed linear 

separability (RLS) method as a basic criterion in evaluation of particular feature subspaces 

Fk[nk] in the sequence (24) (Bobrowski & Łukaszuk, 2009). Feature subspace Fk[nk] that is 

linked to the linear classifier LC(v*[nk]) (25) with the lowest CVE error rate eCVE(v*[nk]) can be 

considered as the optimal one in accordance with the RLS method of feature selection. 

7. Toy example 

The data set used in the experiment was generated by the authors. In the two-dimensional 

space seven points were selected. Four of them were assigned to the positive set G+, three to 

the negative set G-. The allocation of points to the sets G+ and G- were made in a way that the 

linear separability of sets was preserved. After that each point was extended to 10 

dimensions. The values the remaining coordinates were drawn from the distribution N(0,1). 

Table 1 contains the complete data set. Features x2 and x7 constitute the coordinates of points 

in the initial two-dimensional space.  

Previously described the RLS method was applied to the data set presented in Table 1. Table 

2 shows a sequence of feature subsets studied by the method and values of the apparent error 

(28) and the cross-validation error obtained in particular subsets of features. The best subset of 

features designated by the method is a subset Fk[2] = {x7, x2}. It is characterized by the lowest 

value of the cross-validation error. 
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 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 subset 

x1[10] 0,04 -0,20 0,66 0,83 0,12 -0,06 2,70 -0,37 0,04 -0,43 G+ 

x2[10] -1,47 0,70 1,16 -0,54 -0,15 -0,47 1,80 0,24 0,12 0,15 G+ 

x3[10] 0,34 1,10 0,27 0,22 2,45 1,19 1,30 0,45 -1,06 -1,25 G+ 

x4[10] -1,44 2,60 1,23 -1,86 -0,31 1,26 -0,30 0,34 0,19 0,14 G+ 

x4[10] -0,48 -0,80 -0,55 -0,77 -0,13 0,41 1,10 -0,13 -0,83 -0,97 G- 

x6[10] 0,54 0,20 -0,53 0,90 -0,25 0,54 0,30 -0,34 -0,60 0,70 G- 

x7[10] -0,06 1,20 1,65 -1,77 0,34 1,41 -0,80 -0,65 0,98 -0,27 G- 

Table 1. Feature vectors xj[10] constituting the sets G+
 and G- 

 

Subset of features AE CVE

Fk[5] = {x7, x2, x1, x8, x3} 0 0,28571

Fk[4] = {x7, x2, x8, x3} 0 0,14286

Fk[3] = {x7, x2, x3} 0 0,14286

Fk[2] = {x7, x2} 0 0

Fk[1] = {x7} 0,2619 0,28571

Table 2. Subsets of features evaluated by the RLS method, apparent error rate (AE) and cross-
validation error rate (CVE) obtained in particular subsets of features 

 

 

Fig. 4. Points in the feature space selected by the RLS method, hyperplane separated points 
falling within the sets G+

 (denoted by circles) and G- (denoted by squares) 

The RLS method in addition to the designation of the best subset of features has also 
determined the hyperplane separating objects from the sets G+

 and G-. 

 H(w[2],) = {x[2]: 1,0204 x7 + 1,0884 x2 = 1,5238} (29) 
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8. Experiment on synthetic data 

The data set used in the experiment contained 1000 objects, each described by 100 features. 
Data were drawn from a multivariate normal distribution. The values of each feature had a 
mean equal to 0 and standard deviation equal to 1. All the features were independent of 
each other (diagonal covariance matrix). The objects were divided into two disjoined subsets 
G+

 and G- (1) in accordance with the values of the following linear combination: 

 3x4+4x10-7x17+2x28-6x36+3x41+3x58-8x63+x75-x92+5 (30) 

Objects corresponded to the value of expression (30) greater than 0 were assigned to subset 
G+. Objects corresponded to the value of expression (30) less than 0 were assigned to subset 
G-. The result was two linearly separable subsets G+

 and G- (1) containing 630 and 370 
objects. 
The RLS method of feature selection was applied in analysis of the so-prepared synthetic 
data. The expected result was the preference by the method the subset of features used in 
the expression (30). 
Figure 4 shows the apparent error (AE) and cross-validation error (CVE) values in the various 
tested features subspaces generated by the RLS method. Each subspace larger than 10 
features ships with all 10 features used in the expression (30). Subspace of size 10 consists 
only of the features used in the expression (30). 
 

 
 
 

 
 
 
 

Fig. 5. The apparent error (AE) and the cross-validation error (CVE) in different feature 
subspaces Fk[nk] of the synthetic data set 
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9. Experiment on the Leukemia and the Breast cancer data sets 

The Leukemia (Golub et al., 1999) data set contains expression levels of 7129 genes taken over 72 
samples. Labels of objects indicate which of two variants of leukemia is present in the sample: 
acute myeloid (AML, 25 samples), or acute lymphoblastic leukemias (ALL, 47 samples).  
The Breast cancer (van’t Veer et al., 2002) data set describes the patients tested for the presence 
of breast cancer. The data contains 97 patient samples, 46 of which are from patients who had 
developed distance metastases within 5 years (labelled as “relapse”), the rest 51 samples are 
from patients who remained healthy from the disease after their initial diagnosis for interval of 
at least 5 years (labelled as “non-relapse”). The number of genes is 24481. 
 

 

Fig. 6. The apparent error (AE) and the cross-validation error (CVE) in different feature 
subspaces Fk[nk] of the Leukemia data set 

 

feature name 
Fk[7] 

weights wi 
Fk[3] 

weights wi 

attribute4951 -0,99614 -1,71845 

attribute1882 -0,73666 -11,6251 

attribute3847 -0,55316 - 

attribute6169 -0,47317 - 

attribute4973 0,41573 - 

attribute6539 -0,25898 - 

attribute1779 -0,1519 -1,69028 

threshold  -0,55316 2,53742 

Table 3. Features xi constituting the optimal subspace Fk[7] characterised by the lowest cross-
validation error (CVE) and features xi constituting the lowest subspace Fk[3] with apparent 
error (AE) equal to 0 of the Leukemia data set 
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Original data sets come with training and test samples that were drawn from different 
conditions. Here we combine them together for the purpose of cross validation. Data have 
also been standardized before experiment. 
 

 

Fig. 7. The apparent error (AE) and the cross-validation error (CVE) in different feature 
subspaces Fk[nk] of the Breast cancer data set 

 

feature name 
Fk[14]

weights wi

Fk[11]
weights wi

Contig32002_RC 0,81467 1,89334
NM_000127 0,76305 2,67913
Contig412_RC -0,71647 -
D86979 0,65172 -
Contig38438_RC -0,63018 -1,58491
NM_016153 0,62345 1,81026
NM_015434 0,58631 1,43095
NM_013360 -0,58122 -1,38681
NM_002200 0,47752 1,94796
Contig44278_RC -0,42246 -0,906564
NM_019886 0,4143 2,75393
AF055033 0,37546 1,24607
AL080059 0,31843 1,50648
NM_000909 -0,27537 -

threshold  0,1117 -0,247492

Table 4. Features xi constituting the optimal subspace Fk[14] characterised by the lowest 
cross-validation error (CVE) and features xi constituting the lowest subspace Fk[11] with 
apparent error (AE) equal to 0 of the Breast cancer data set 
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Figures 6 and 7 show the apparent error (AE) and cross-validation error (CVE) obtained in 
different feature subspaces generated by the RLS method. Full separability of data subsets is 
preserved in feature subsets much smaller than the initial very large sets of genes. 

10. Conclusion  

The problem of feature selection is usually resolved in practice through the evaluation of the 
usefulness (the validity) of individual features (attributes, factors) (Liu & Motoda, 2008). In 
this approach, resulting feature subsets are composed of such features which have the 
strongest individual influence on the analysed outcome. Such approach is related to the 
assumption about the independence of the factors. However, in a complex system, such as 
the living organism, these factors are often related. An advantage of the relaxed linear 
separability (RLS) method is that one may identify directly and efficiently a subset of 
features that influences the outcome and assesses the combined effect of these features as 
prognostic factors.  
In accordance with the RLS method, the feature selection process involves two basic actions. 
The first of these actions is to generate the descending sequence (24) of feature subspaces 
Fk[nk]. The second of the these actions is to evaluate the quality of the individual feature 
subspaces Fk[nk] in the sequence (24). 
Generation of descending sequence (24) of feature subspaces Fk[nk] is done in the 
deterministic manner by multiple minimization of the criterion function the criterion 
function (v[n+1]) (12) combined with gradual increasing of the parameter  value. The 
criterion function (v[n+1]) (12) depends on the three nonnegative parameters: j - prices of 
the particular feature vectors xj[n] (1), i - feature costs, and  - the cost level. The 
composition of the consecutive feature subspaces Fk[nk] (24) depends on the choice of these 
parameters. For example, the costly features xi should have a sufficiently large values of the 
parameter i. A high value of the parameter i increases the chance for elimination of a given 
feature xi.  
Evaluation of the quality of the individual feature subspaces Fk[nk] is based in the RLS 
method on the cross-validation of the CPL optimal (Definition 3) linear classifier (25) 
designed in this subspace. The optimal linear classifier (25) is designed in the feature 
subspace Fk[nk] through the multiple minimization of the perceptron criterion function 
k(v[nk]) defined (8) on the reduced feature vectors yj[nk] (yj[nk]Fk[nk]) or the modified 
criterion function k(v[nk]) (12) with a small value (22) of the cost level .  
This article also contains a description of the experiments with feature selection based on the 
RLS method. Experiments of the first group were carried out on synthetic data. The 
multivariate synthetic data were generated randomly and deterministically divided into two 
learning sets according of predetermined key. The given key was in the form of linear 
combination of the unknown number of selected features. The aim of the experiment was to 
find an unknown key, based on available sets of multidimensional data. The experiment 
confirmed this possibility. 
Experiments of the second group were carried out on the genetic data sets Leucemia (Golub 
et al., 1999) and Brest cancer (van’t Veer et al., 2002). These experiments have shown, inter 
alia, that the RLS method enables finding interesting and not too large subsets of features, 
even if the number of features at the beginning is a huge. For example, in the case of the 
Brest cancer set, the feature space was reduced from the dimensionality n = 24481 till nk = 11 
while the linear separability (27) of the learning sets G+[nk]

 
and G-[nk] (26) were preserved. 

The results of calculations described in this paper were obtained by using its own 
implementation of the basis exchange algorithms (http://irys.wi.pb.edu.pl/dmp). 

www.intechopen.com



 
Selected Works in Bioinformatics 

 

118 

Calculations in so high dimensional feature space F[n] as n = 24481 were made possible by 
achieving a high efficiency of these algorithms. 

11. Acknowledgment 

This work was supported by the by the NCBiR project N R13 0014 04, and partially financed 
by the project S/WI/2/2011 from the Białystok University of Technology, and by the project 
16/St/2011 from the Institute of Biocybernetics and Biomedical Engineering PAS.  

12. References 

Bobrowski, L. (1991). Design of piecewise linear classifiers from formal neurons by some 

basis exchange technique, In: Pattern Recognition, 24(9), pp. 863-870 

Bobrowski, L. & Łukaszuk, T. (2004). Selection of the linearly separable feature subsets, In: 

Artificial Intelligence and Soft Computing - ICAISC 2004, eds. L. Rutkowski et al., 

Springer Verlag, pp. 544-549 

Bobrowski, L. (2005). Eksploracja danych oparta na wypukłych i odcinkowo-liniowych funkcjach 

kryterialnych (Data mining based on convex and piecewise linear (CPL) criterion 

functions) (in Polish), Białystok University of Technology 

Bobrowski, L. (2008). Feature subsets selection based on linear separbilty, In: Lecture Notes of 

the VII-th ICB Seminar: Statistics and Clinical Practice, ed. by H. Bacelar-Nicolau, L. 

Bobrowski, J. Doroszewski, C. Kulikowski, N. Victor, June 2008, Warsaw 

Bobrowski L. & Łukaszuk T. (2009). Feature selection based on relaxed linear separability, 

In: Biocybernetical and Biomedical Engineering, vol.29, nr 2, pp. 43-58 

Duda, O. R.; Hart, P. E. & Stork D. G. (2001). Pattern Classification, J. Wiley, New York  

Fukunaga, K. (1972). Introduction to Statistical Pattern Recognition, Academic Press 

Golub, T. R., et al. (1999). Molecular classification of cancer: class discovery and class 

prediction by gene expression monitoring, Sciences, 286, pp. 531–537 

Guyon, I.; Weston, J.; Barnhill, S. & Vapnik, V. N. (2002). Gene Selection for Cancer 

Classification using Support Vector Machines, In: Machine Learning, 46, pp. 389-422 

Lachenbruch, P.A. (1975). Discriminant Analysis, Hafner Press, New York. 

Liu, H. & Motoda, H. (Eds.) (2008). Computational Methods of Feature Selection, Chapmann & 

Hall/CRC, New York 

Vapnik, V. N. (1998). Statistical Learning Theory, J. Wiley, New York 

van’t Veer, L. J., et al. (2002). Gene expression profiling predicts clinical outcome of breast 

cancer, Nature, 415(6871), pp. 530–536 

www.intechopen.com



Selected Works in Bioinformatics

Edited by Dr. Xuhua Xia

ISBN 978-953-307-281-4

Hard cover, 176 pages

Publisher InTech

Published online 19, October, 2011

Published in print edition October, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book consists of nine chapters covering a variety of bioinformatics subjects, ranging from database

resources for protein allergens, unravelling genetic determinants of complex disorders, characterization and

prediction of regulatory motifs, computational methods for identifying the best classifiers and key disease

genes in large-scale transcriptomic and proteomic experiments, functional characterization of inherently

unfolded proteins/regions, protein interaction networks and flexible protein-protein docking. The computational

algorithms are in general presented in a way that is accessible to advanced undergraduate students, graduate

students and researchers in molecular biology and genetics. The book should also serve as stepping stones

for mathematicians, biostatisticians, and computational scientists to cross their academic boundaries into the

dynamic and ever-expanding field of bioinformatics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Leon Bobrowski and Tomasz Łukaszuk (2011). Relaxed Linear Separability (RLS) Approach to Feature

(Gene) Subset Selection, Selected Works in Bioinformatics, Dr. Xuhua Xia (Ed.), ISBN: 978-953-307-281-4,

InTech, Available from: http://www.intechopen.com/books/selected-works-in-bioinformatics/relaxed-linear-

separability-rls-approach-to-feature-gene-subset-selection



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


