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Statistical Thermodynamics

Anatol Malijevský
Department of Physical Chemistry, Institute of Chemical Technology, Prague

Czech Republic

1. Introduction

This chapter deals with the statistical thermodynamics (statistical mechanics) a modern
alternative of the classical (phenomenological) thermodynamics. Its aim is to determine
thermodynamic properties of matter from forces acting among molecules. Roots of the
discipline are in kinetic theory of gases and are connected with the names Maxwelland
Boltzmann. Father of the statistical thermodynamics is Gibbs who introduced its concepts
such as the statistical ensemble and others, that have been used up to present.
Nothing can express an importance of the statistical thermodynamics better than the words
of Richard Feynman Feynman et al. (2006), the Nobel Prize winner in physics: If, in some
cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next
generations of creatures, what statement would contain the most information in the fewest words? I
believe it is the atomic hypothesis (or the atomic fact, or whatever you wish to call it) that All things
are made of atoms – little particles that move around in perpetual motion, attracting each
other when they are a little distance apart, but repelling upon being squeezed into one
another.
In that one sentence, you will see, there is an enormous amount of information about the
world, if just a little imagination and thinking are applied.
The chapter is organized as follows. Next section contains axioms of the phenomenological
thermodynamics. Basic concepts and axioms of the statistical thermodynamics and relations
between the partition function and thermodynamic quantities are in Section 3. Section 4 deals
with the ideal gas and Section 5 with the ideal crystal. Intermolecular forces are discussed in
Section 6. Section 7 is devoted to the virial expansion and Section 8 to the theories of dense
gases and liquids. The final section comments axioms of phenomenological thermodynamics
in the light of the statistical thermodynamics.

2. Principles of phenomenological thermodynamics

The phenomenological thermodynamics or simply thermodynamics is a discipline that deals
with the thermodynamic system, a macroscopic part of the world. The thermodynamic
state of system is given by a limited number of thermodynamic variables. In the
simplest case of one-component, one-phase system it is for example volume of the
system, amount of substance (e.g. in moles) and temperature. Thermodynamics studies
changes of thermodynamic quantities such as pressure, internal energy, entropy, e.t.c. with
thermodynamic variables.
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2 Will-be-set-by-IN-TECH

The phenomenological thermodynamics is based on six axioms (or postulates if you wish to
call them), four of them are called the laws of thermodynamics:

• Axiom of existence of the thermodynamic equilibrium
For thermodynamic system at unchained external conditions there exists a state of the
thermodynamic equilibrium in which its macroscopic parameters remain constant in time.
The thermodynamic system at unchained external conditions always reaches the state of
the thermodynamic equilibrium.

• Axiom of additivity
Energy of the thermodynamic system is a sum of energies of its macroscopic parts. This
axiom allows to define extensive and intensive thermodynamic quantities.

• The zeroth law of thermodynamics
When two systems are in the thermal equilibrium, i.e. no heat flows from one system to
the other during their thermal contact, then both systems have the same temperature as
an intensive thermodynamic parameter. If system A has the same temperature as system
B and system B has the same temperature as system C, then system A also has the same
temperature as system C (temperature is transitive).

• The first law of thermodynamics
There is a function of state called internal energy U. For its total differential dU we write

dU = d̄W +d̄Q , (1)

where the symbolsd̄Q andd̄W are not total differentials but represent infinitesimal values
of heat Q and work W supplied to the system.

• The second law of thermodynamics
There is a function of state called entropy S. For its total differential dS we write

dS =
d̄Q

T
, [reversible process] , (2)

dS >
d̄Q

T
, [irreversible process] . (3)

• The third law of thermodynamics
At temperature of 0 K, entropy of a pure substance in its most stable crystalline form is
zero

lim
T→0

S = 0 . (4)

This postulate supplements the second law of thermodynamics by defining a natural
referential value of entropy. The third law of thermodynamics implies that temperature
of 0 K cannot be attained by any process with a finite number of steps.

Phenomenological thermodynamics using its axioms radically reduces an amount of
experimental effort necessary for a determination of the values of thermodynamic quantities.
For example enthalpy or entropy of a pure fluid need not be measured at each temperature
and pressure but they can be calculated from an equation of state and a temperature
dependence of the isobaric heat capacity of ideal gas. However, empirical constants in an
equation of state and in the heat capacity must be obtained experimentally.
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Statistical Thermodynamics 3

3. Principles of statistical thermodynamics

3.1 Basic concepts

The statistical thermodynamics considers thermodynamic system as an assembly of a very
large number (of the order of 1023) of mutually interacting particles (usually molecules). It
uses the following concepts:

• Microscopic state of system
The microscopic state of thermodynamic system is given by positions and velocities of all
particles in the language of the Newton mechanics, or by the quantum states of the system
in the language of quantum mechanics. There is a huge number of microscopic states that
correspond to a given thermodynamic (macroscopic) state of the system.

• Statistical ensemble
Statistical ensemble is a collection of all systems that are in the same thermodynamic state
but in the different microscopic states.

• Microcanonical ensemble or NVE ensemble is a collection of all systems at a given
number of particles N, volume V and energy E.

• Canonical ensemble or NVT ensemble is a collection of all systems at a given number of
particles N, volume V and temperature T.

There is a number of ensembles, e.g. the grandcanonical (µVT) or isothermal isobaric
(NPT) that will not be considered in this work.

• Time average of thermodynamic quantity
The time average Xτ of a thermodynamic quantity X is given by

Xτ =
1

τ

∫ τ

0
X(t)dt , (5)

where X(t) is a value of X at time t and, τ is a time interval of a measurement.

• Ensemble average of thermodynamic quantity
The ensemble average Xs of a thermodynamic quantity X is given by

Xs = ∑
i

PiXi , (6)

where Xi is a value in the quantum state i, and Pi is the probability of the quantum state.

3.2 Axioms of the statistical thermodynamics

The statistical thermodynamics is bases on two axioms:
Axiom on equivalence of average values
It is postulated that the time average of thermodynamic quantity X is equivalent to its
ensemble average

Xτ = Xs . (7)

Axiom on probability
Probability Pi of a quantum state i is only a function of energy of the quantum state, Ei,

Pi = f (Ei) . (8)

719Statistical Thermodynamics
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3.3 Probability in the microcanonical and canonical ensemble

From Eq.(8) relations between the probability and energy can be derived:
Probability in the microcanonical ensemble
All the microscopic states in the microcanonical ensemble have the same energy. Therefore,

Pi =
1

W
for i = 1, 2, . . . , W , (9)

where W is a number of microscopical states (the statistical weight) of the microcanonical
ensemble.
Probability in the canonical ensemble
In the canonical ensemble it holds

Pi =
exp(−βEi)

Q
, (10)

where β =
1

kBT
, kB is the Boltzmann constant, T temperature and Q is the partition function

Q = ∑
i

exp(−βEi) , (11)

where the sum is over the microscopic states of the canonical ensemble.

3.4 The partition function and thermodynamic quantities

If the partition function is known thermodynamic quantities may be determined.
The following relations between the partition function in the canonical ensemble and
thermodynamic quantities can be derived

A = −kB T ln Q (12)

U = kBT2

(

∂ ln Q

∂T

)

V

(13)

S = kB ln Q + kB T

(

∂ ln Q

∂T

)

V

. (14)

CV =

(

∂U

∂T

)

V

= kB T2 ∂2 ln Q

∂T2
+ 2kB T

(

∂ ln Q

∂T

)

V

, (15)

p = −
(

∂A

∂V

)

T

= kB T

(

∂ ln Q

∂V

)

T

, (16)

H = U + pV = kB T2

(

∂ ln Q

∂T

)

V

+ V kB T

(

∂ ln Q

∂V

)

T

, (17)

G = A + pV = −kB T ln Q + V kB T

(

∂ ln Q

∂V

)

T

, (18)

Cp =

(

∂H

∂T

)

V

= CV + VkB
∂2 ln Q

∂V∂T
. (19)

A is Helmholtz free energy, U internal energy, S entropy, CV isochoric heat capacity, p
pressure, H enthalpy, G Gibbs free energy and Cp isobaric heat capacity.
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Statistical Thermodynamics 5

Unfortunately, the partition function is known only for the simplest cases such as the ideal
gas (Section 4) or the ideal crystal (Section 5). In all the other cases, real gases and liquids
considered here, it can be determined only approximatively.

3.5 Probability and entropy

A relation between entropy S and probabilities Pi of quantum states of a system can be proved
in the canonical ensemble

S = −kB ∑
i

Pi ln Pi . (20)

For the microcanonical ensemble a similar relation holds

S = kB ln W , (21)

where W is a number of accessible states. This equation (with log instead of ln) is written in
the grave of Ludwig Boltzmann in Central Cemetery in Vienna, Austria.

4. Ideal gas

The ideal gas is in statistical thermodynamics modelled by a assembly of particles that do not
mutually interact. Then the energy of i-th quantum state of system, Ei, is a sum of energies of
individual particles

Ei =
N

∑
i=1

ǫi,j . (22)

In this way a problem of a determination of the partition function of system is dramatically
simplified. For one-component system of N molecules it holds

Q =
qN

N!
, (23)

where
q = ∑

j

exp(−βǫj) (24)

is the partition function of molecule.
The partition function of molecule may be further simplified. The energy of molecule can be
approximated by a sum of the translational ǫtrans, the rotational ǫrot, the vibrational ǫvib, and
the electronic ǫel contributions (subscript j in ǫj is omitted for simplicity of notation)

ǫ = ǫ0 + ǫtrans + ǫrot + ǫvib + ǫel , (25)

where ǫ0 is the zero point energy. The partition function of system then becomes a product

Q =
exp(−Nβǫ0)

N!
qtransqrotqvibqel . (26)

Consequently all thermodynamic quantities of the ideal gas become sums of the
corresponding contributions. For example the Helmholtz free energy is

A = −kBT ln Q

= kBT ln N! + U0 − NkBT ln qtr − NkBT ln qrot − NkBT ln qvib − NkBT ln qel

= kBT ln N! + U0 + Atr + Arot + Avib + Ael , (27)

where U0 = Nǫ0 and Atr, Arot, Avib, Ael are the translational, rotational, vibrational,
electronic contributions to the Helmholtz free energy, respectively.

721Statistical Thermodynamics
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4.1 Translational contributions

Translational motions of a molecule are modelled by a particle in a box. For its energy a
solution of the Schrödinger equation gives

ǫtr =
h2

8m

(

n2
x

a2
+

n2
y

b2
+

n2
z

c2

)

, (28)

where h is the Planck constant, m mass of molecule, and a b c = V where V is volume of
system. Quantities nx, ny, nz are the quantum numbers of translation. The partition function
of translation is

qtr =

(

2πmkBT

h2

)3/2

V . (29)

Translational contribution to the Helmholtz energy is

Atr = −RT ln qtr = −RT ln
(

λ−3V
)

, (30)

where R = NkB is the gas constant and λ = h/
√

2πmkBT is the Broglie wavelength.
The remaining thermodynamic functions are as follows

Str = −
(

∂Atr

∂T

)

V

= R ln
(

λ−3V
)

+
3

2
R , (31)

ptr = −
(

∂Atr

∂V

)

T

=
RT

V
, (32)

Utr = Atr + TStr =
3

2
RT , (33)

Htr = Utr + ptrV =
5

2
RT , (34)

Gtr = Atr + ptrV = −RT ln
(

λ−3V
)

+ RT , (35)

CV,tr =

(

∂Utr

∂T

)

V

=
3

2
R , (36)

Cp,tr =

(

∂Htr

∂T

)

p

=
5

2
R . (37)

4.2 Rotational contributions

Rotations of molecule are modelled by the rigid rotator. For linear molecules there are two
independent axes of rotation, for non-linear molecules there are three.

4.2.1 Linear molecules

For the partiton function of rotation it holds

qrot =
8π I kB T

σ h2
, (38)

where σ is the symmetry number of molecule and I its moment of inertia

I =
n

∑
1

mir
2
i ,
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Statistical Thermodynamics 7

with n a number of atoms in molecule, mi their atomic masses and ri their distances from the
center of mass. Contributions to the thermodynamic quantities are

Arot = −RT ln qrot = −RT ln

(

8π2 IkBT

σh2

)

, (39)

Srot = R ln

(

8π2 IkBT

σh2

)

+ R , (40)

prot = 0 , (41)

Urot = RT , (42)

Hrot = Urot , (43)

Grot = Frot , (44)

CV,rot = R , (45)

Cp,rot = CV,rot . (46)

4.2.2 Non-linear molecules

The partition function of rotation of a non-linear molecule is

qrot =
1

σ

(

8π2kBT

h2

)3/2

(π IA IB IC)
1/2 , (47)

where IA, IB and IC the principal moments of inertia. Contributions to the thermodynamic
quantities are

Arot = −RT ln qrot = −RT ln

[

1

σ

(

8π2kBT

h2

)3/2

(π IA IB IC)
1/2

]

, (48)

Srot = R ln

[

1

σ

(

8π2kBT

h2

)3/2

(π IA IB IC)
1/2

]

+
3

2
R , (49)

prot = 0 , (50)

Urot =
3

2
RT , (51)

Hrot = Urot , (52)

Grot = Arot , (53)

CV,rot =
3

2
R , (54)

Cp,rot = CV,rot . (55)

4.3 Vibrational contributions

Vibrations of atoms in molecule around their equilibrium states may be at not very high
temperatures approximated by harmonic oscillators.

4.3.1 Diatomic molecules

In a diatomic molecule there is only one vibrational motion. Its partition function is

qvib = [1 − exp(hν0/kBT)]−1 , (56)

723Statistical Thermodynamics
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where ν0 is the fundamental harmonic frequency. Vibrational contributions to thermodynamic
quantities are

Avib = −RT ln qvib = RT ln
(

1 − e−x
)

, (57)

Svib = R
xe−x

1 − e−x
− R ln

(

1 − e−x
)

, (58)

pvib = 0 , (59)

Uvib = RT
xe−x

1 − e−x
, (60)

Hvib = Uvib , (61)

Gvib = Avib , (62)

CV,vib = R
x2e−x

(1 − e−x)2
, (63)

Cp,vib = CV,vib , (64)

where x =
hν0

kBT
.

4.3.2 Polyatomic molecules

In n-atomic molecule there is f fundamental harmonic frequencies νi where

f =

⎧

⎨

⎩

3n − 5 linear molecule

3n − 6 non-linear molecule

The partition function of vibration is

qvib =
f

∏
i=1

1

1 − exp(−hνi/kBT)
. (65)

For the thermodynamic functions of vibration we get

Avib = −RT ln qvib = RT
f

∑
i=1

ln
(

1 − e−xi
)

, (66)

Svib = R
f

∑
i=1

xie
−xi

1 − e−xi
− R

f

∑
i=1

ln
(

1 − e−xi
)

, (67)

pvib = 0 , (68)

Uvib = RT
f

∑
i=1

xie
−xi

1 − e−xi
, (69)

Hvib = Uvib , (70)

Gvib = Avib , (71)

CV,vib = R
f

∑
i=1

x2
i e−xi

(1 − e−xi )2
, (72)

Cp,vib = CV,vib , (73)
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Statistical Thermodynamics 9

where xi =
hνi

kBT
.

4.4 Electronic contributions

The electronic partition function reads

qel =
∞

∑
ℓ=0

gel,ℓe−εel,ℓ/kBT , (74)

where εel,ℓ the energy level ℓ, and gel,ℓ is its degeneracy. In most cases the electronic
contributions to the thermodynamic functions are negligible at not very hight temperatures.
Therefore they are not written here.

4.5 Ideal gas mixture

Let us consider two-component mixture of N1 non-interacting molecules of component 1 and
N2 non-interacting molecules of component 2 (extension to the case of a multi-component
mixture is straightforward). The partition function of mixture is

Q =
qN1

1

N1!

qN2
2

N2!
(75)

where q1 and q2 are the partition functions of molecules 1 and 2, respectively. Let us denote

Xm,i the molar thermodynamic quantity of pure component i, i = 1, 2 and xi =
Ni

N1+N2
its mole

fraction. Then

A = RT (x1 ln x1 + x2 ln x2) + x1 Am,1 + x2 Am,2 (76)

S = −R (x1 ln x1 + x2 ln x2) + x1Sm,1 + x2Sm,2 , (77)

G = RT (x1 ln x1 + x2 ln x2) + x1Gm,1 + x2Gm,2 , (78)

p = x1 pm,1 + x2 pm,2 = x1
RT

Vm
+ x2

RT

Vm
, (79)

U = x1Um,1 + x2Um,2 , (80)

H = x1Hm,1 + x2Hm,2 , (81)

CV = x1CVm,1 + x2CVm,2 , (82)

Cp = x1Cpm,1 + x2Cpm,2 . (83)

5. Ideal crystal

We will call the ideal crystal an assembly of molecules displayed in a regular lattice without
any impurities or lattice deformations. Distances among lattice centers will not depend
on temperature and pressure. For simplicity we will consider one-atomic molecules. The
partition function of crystal is

Q = e−U0/kB TQvib , (84)

where U0 is the lattice energy.
We will discuss here two models of the ideal crystal: the Einstein approximation and the
Debye approximation.

725Statistical Thermodynamics
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5.1 Einstein model

An older and simpler Einstein model is based on the following postulates

1. Vibrations of molecules are independent:

Qvib = qN
vib , (85)

where qvib is the vibrational partition function of molecule.

2. Vibrations are isotropic:

qvib = qxqyqz = q3
x . (86)

3. Vibrations are harmonical

qx =
∞

∑
v=0

e−ǫv/kB T , (87)

where

ǫv = hν

(

v +
1

2

)

is the energy in quantum state v and ν is the fundamental vibrational frequency.

Combining these equations one obtains

Q = e−U0/kB T

(

e−ΘE/(2T)

1 − e−ΘE/T

)3N

, (88)

where

ΘE =
hν

kB

is the Einstein characteristic temperature.
For the isochoric heat capacity it follows

CV = 3NkB

(

ΘE

T

)2 e−ΘE/T

(

1 − e−ΘE/T
)2

. (89)

5.2 Debye model

Debye considers crystal as a huge molecule (i.e he replaces the postulates of independence
and isotropy in the Einstein model) of an ideal gas; the postulate of harmonicity of vibrations
remains. From these assumptions it can be derived for the partition function

ln Q = − U0

kB T
− 9

8
N

ΘD

T
− 9N

(

T

ΘD

)3 ∫ ΘD/T

0
x2 ln(1 − e−x)dx , (90)

where

ΘD =
hνmax

kB

is the Debye characteristic temperature with νmax being the highest frequency of crystal.
For the isochoric heat capacity it follows

CV = 3R

(

4D(u)− 3u

eu − 1

)

. (91)
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Statistical Thermodynamics 11

where u = ΘD/T and

D(u) =
3

u3

∫ u

0

x3

ex − 1
dx .

It can be proved that at low temperatures the heat capacity becomes a cubic function of
temperature

CV = 36R

(

T

ΘD

)3 ∫ ∞

0

x3

ex − 1
dx = a T3 ,

while the Einstein model incorrectly gives

CV = 3R

(

ΘE

T

)2

e−ΘE/T .

Both models give a correct high-temperature limit (the Dulong-Petit law)

CV = 3R .

The same is true for the zero temperature limit

lim
T→0

CV = 0 .

5.3 Beyond the Debye model

Both the Einstein and the Debye models assume harmonicity of lattice vibrations. This is not
true at high temperatures near the melting point. The harmonic vibrations are not assumed in
the lattice theories (the cell theory, the hole theory, . . . ) that used to be popular in forties and
fifties of the last century for liquids. It was shown later that they are poor theories of liquids
but very good theories for solids.
Thermodynamic functions cannot be obtained analytically in the lattice theories.

6. Intermolecular forces

Up to now forces acting among molecules have been ignored. In the ideal gas (Section 4)
molecules are assumed to exert no forces upon each other. In the ideal crystal (Section 5)
molecules are imprisoned in the lattice, and the intermolecular forces are counted indirectly
in the lattice energy and in the Einstein or Debye temperature. For real gases and liquids the
intermolecular force must be included explicitly.

6.1 The configurational integral and the molecular interaction energy

The partition function of the real gas or liquid may be written in a form

Q =
1

N!
exp(−Nβǫ0)q

N
int

(

2πmkBT

h2

)
3
2 N

Z . (92)

where qint = qrotqvibqel is the partition function of the internal motions in molecule. Quantity
Z is the configurational integral

Z =
∫

(V)

∫

(V)
· · ·

∫

(V)
exp[−βuN(�r1,�r2, . . . ,�rN)]d�r1 d�r2 . . . d�rN , (93)
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where symbol
∫

(V)
· · ·d�ri =

∫ L

0

∫ L

0

∫ L

0
· · ·dxidyidzi and L3 = V .

The quantity uN(�r1,�r2, . . . ,�rN) is the potential energy of an assembly of N molecules. Here
and in Eq.(93) one-atomic molecules are assumed for simplicity. More generally, the potential
energy is a function not only positions of centers of molecules�ri but also of their orientations
�ωi. However, we will use the above simplified notation.
The interaction potential energy uN of system may be written as an expansion in two-body,
three-body, e.t.c contributions

uN(�r1,�r2, . . . ,�rN) = ∑
i<j

u2(�ri,�rj) + ∑
i<j<k

u3(�ri,�rj,�rk)) + · · · (94)

Most often only the first term is considered. This approximation is called the rule of pairwise
additivity

uN = ∑
i<j

u2(�ri,�rj) , (95)

where u2 is the pair intermolecular potential. The three-body potential u3 is used rarely at
very accurate calculations, and u4 and higher order contributions are omitted as a rule.

6.2 The pair intermolecular potential

The pair potential depends of a distance between centers of two molecules r and on their
mutual orientation �ω. For simplicity we will omit the angular dependence of the pair potential
(it is true for the spherically symmetric molecules) in further text, and write

u2(�ri,�rj) = u2(rij, �ωij) = u(r)

where subscripts 2 and ij are omitted, too.
The following model pair potentials are most often used.

6.2.1 Hard spheres

It is after the ideal gas the simplest model. It ignores attractive interaction between molecules,
and approximates strong repulsive interactions at low intermolecular distances by an infinite
barrier

u(r) =

{

∞ r < σ

0 r > σ
(96)

where σ is a diameter of molecule.

6.2.2 Square well potential

Molecules behave like hard spheres surrounded by an area of attraction

u(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∞ r < σ

−ǫ σ < r < λσ

0 r > λσ

(97)

Here σ is a hard-sphere diameter, ǫ a depth of the attractive well, and the attraction region
ranges from σ to λσ.
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6.2.3 Lennard-Jones potential

This well known pair intermolecular potential realistically describes a dependence of pair
potential energy on distance

u(r) = 4ǫ

[

(σ

r

)12
−

(σ

r

)6
]

. (98)

ǫ is a depth of potential at minimum, and 21/6σ is its position.
More generally, the Lennard-Jones n-m potential is

u(r) = 4ǫ
[(σ

r

)n
−

(σ

r

)m]

. (99)

6.2.4 Pair potentials of non-spherical molecules

There are analogues of hard spheres for non-spherical particles: hard diatomics or dumbbells
made of two fused hard spheres, hard triatomics, hard multiatomics, hard spherocylinders,
hard ellipsoids, and so on.
Examples of soft pair potentials are Lennard-Jones multiatomics, molecules whose atoms
interact according to the Lennard-Jones potential (98).
Another example is the Stockmayer potential, the Lennard-Jones potential with an indebted
dipole moment

u(r, θ1, θ2, φ) = 4ǫ

[

(σ

r

)12
−

(σ

r

)6
]

− µ2

r3
[2 cos θ1 cos θ2 − sin θ1 sin θ2 cos φ] , (100)

where µ is the dipole moment.

6.2.5 Pair potentials of real molecules

The above model pair potentials, especially the Lennard-Jones potential and its extensions,
may be used to calculate properties of the real substances. In this case their parameters, for
example ǫ and σ, are fitted to the experimental data such as the second virial coefficients,
rare-gas transport properties and molecular properties.
More sophisticated approach involving a realistic dependence on the interparticle separation
with a number of adjustable parameters was used by Aziz, see Aziz (1984) and references
therein.
For simple molecules, there is a fully theoretical approach without any adjustable parameters
utilizing the first principle quantum mechanics calculations, see for example Slaviček et al.
(2003) and references therein.

6.3 The three-body potential

The three-body intermolecular interactions are caused by polarizablilities of molecules. The
simplest and the most often used is the Axilrod-Teller-Muto term

u(r, s, t) =
ν

rst
(3 cos θ1 cos θ2 cos θ3 + 1) , (101)

where ν is a strength parameter. It is a first term (DDD, dipole-dipole-dipole) in the multipole
expansion. Analytical formulae and corresponding strength parameters are known for higher
order terms (DDQ, dipole-dipole-quadrupole, DQQ, dipole-quadrupole-quadrupole,. . . ) as
well.
More accurate three-body potentials can be obtained using quantum chemical ab initio
calculations Malijevský et al. (2007).
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7. The virial equation of state

The virial equation of state in the statistical thermodynamics is an expansion of the

compressibility factor z =
pV
RT in powers of density ρ = N

V

z = 1 + B2ρ + B3ρ2 + · · · , (102)

where B2 is the second virial coefficient, B3 the third, e.t.c. The virial coefficients of pure
gases are functions of temperature only. For mixtures they are functions of temperature and
composition.
The first term in equation (102) gives the equation of state of ideal gas, the first two
terms or three give corrections to non-ideality. Higher virial coefficients are not available
experimentally. However, they can be determined from knowledge of intermolecular forces.
The relations among the intermolecular forces and the virial coefficients are exact, the pair and
the three-body of potentials are subjects of uncertainties, however.

7.1 Second virial coefficient

For the second virial coefficient of spherically symmetric molecules we find

B = −2π
∫ ∞

0
f (r) r2dr = −2π

∫ ∞

0

(

e−βu(r) − 1
)

r2dr , (103)

where
f (r) = exp[−βu(r)]− 1

is the Mayer function. For linear molecules we have

B = −1

4

∫ ∞

0

∫ π

0

∫ π

0

∫ 2π

0

[

e−βu(r,θ1,θ2,φ) − 1
]

r2 sin θ1 sin θ2dr dθ1dθ2dφ . (104)

For general non-spherical molecules we obtain

B = − 2π
∫

�ω1

∫

�ω2
d�ω1d�ω2

∫ ∞

0

∫

ω1

∫

ω2

[

e−βu(r,�ω1,�ω2) − 1
]

r2drd�ω1d�ω2 . (105)

7.2 Third virial coefficient

The third virial coefficient may be written for spherically symmetric molecules as

C = Cadd + Cnadd , (106)

where

Cadd = −8

3
π2

∫ ∞

0

∫ r

0

∫ r+s

|r−s|

(

e−βu(r) − 1
) (

e−βu(s) − 1
) (

e−βu(t) − 1
)

r s t dr ds dt , (107)

and

Cnadd =
8

3
π2

∫ ∞

0

∫ r

0

∫ r+s

|r−s|
e−βu(r)e−βu(s)e−βu(t) {exp[−βu3(r, s, t)]− 1} r s t dr ds dt , (108)

where u3(r, s, t) is the three-body potential. Analogous equations hold for non-spherical
molecules.
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7.3 Higher virial coefficients

Expressions for higher virial coefficients become more and more complicated due to an
increasing dimensionality of the corresponding integrals and their number. For example,
the ninth virial coefficient consists of 194 066 integrals with the Mayer integrands, and their
dimensionalities are up to 21 Malijevský & Kolafa (2008) in a simplest case of spherically
symmetric molecules. For hard spheres the virial coefficients are known up to ten, which is at
the edge of a present computer technology Labík et al. (2005).

7.4 Virial coefficients of mixtures

For binary mixture of components 1 and 2 the second virial coefficient reads

B2 = x2
1B2(11) + 2x1x2B2(12) + x2

2B2(22) , (109)

where xi are the mole fractions, B2(ii) the second virial coefficients of pure components
and B2(12) the crossed virial coefficient representing an influence of the interaction between
molecule 1 and molecule 2.
The third virial coefficient reads

B3 = x3
1B3(111) + 3x2

1x2B3(112) + 3x1x2
2B3(122) + x3

2B3(222) . (110)

Extensions of these equations on multicomponent mixtures and higher virial coefficients is
straightforward.

8. Dense gas and liquid

Determination of thermodynamic properties from intermolecular interactions is much more
difficult for dense fluids (for gases at high densities and for liquids) than for rare gases and
solids. This fact can be explained using a definition of the Helmholtz free energy

A = U − TS . (111)

Free energy has a minimum in equilibrium at constant temperature and volume. At high
temperatures and low densities the term TS dominates because not only temperature but also
entropy is high. A minimum in A corresponds to a maximum in S and system, thus, is in the
gas phase. Ideal gas properties may be calculated from a behavior of individual molecules
only. At somewhat higher densities thermodynamic quantities can be expanded from their
ideal-gas values using the virial expansion.
At low temperatures the energy term in equation (111) dominates because not only
temperature but also entropy is small. For solids we may start from a concept of the ideal
crystal.
No such simple molecular model as the ideal gas or the ideal crystal is known for liquid and
dense gas. Theoretical studies of liquid properties are difficult and uncompleted up to now.

8.1 Internal structure of fluid

There is no internal structure of molecules in the ideal gas. There is a long-range order in
the crystal. The fluid is between of the two extremal cases: it has a local order at short
intermolecular distances (as crystal) and a long-range disorder (as gas).
The fundamental quantity describing the internal structure of fluid is the pair distribution
function g(r)
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g(r) =
ρ(r)

ρ
, (112)

where ρ(r) is local density at distance r from the center of a given molecule, and ρ is
the average or macroscopic density of system. Here and in the next pages of this section
we assume spherically symmetric interactions and the rule of the pair additivity of the
intermolecular potential energy.
The pair distribution function may be written in terms of the intermolecular interaction energy
uN

g(r) = V2

∫

(V) · · ·
∫

(V) e−βuN(�r1,�r2, ...,�rN)d�r3 . . . d�rN
∫

(V) · · ·
∫

(V) e−βuN(�r1,�r2, ...,�rN)d�r1 . . . d�rN

. (113)

It is related to the thermodynamic quantities using the pressure equation

z ≡ pV

RT
= 1 − 2

3
πρβ

∫ ∞

0

du(r)

dr
g(r)r3dr , (114)

the energy equation

U

RT
=

U0

RT
+ 2πρβ

∫ ∞

0
u(r)g(r)r2dr , (115)

where U0 internal energy if the ideal gas, and the compressibility equation

β

(

∂p

∂ρ

)

β

=

{

1 + 4πρ
∫ ∞

0
[g(r)− 1] r2dr

}−1

. (116)

Present mainstream theories of liquids can be divided into two large groups: perturbation
theories and integral equation theories Hansen & McDonald (2006), Martynov (1992).

8.2 Perturbation theories

A starting point of the perturbation theories is a separation of the intermolecular potential
into two parts: a harsh, short-range repulsion and a smoothly varying long-range attraction

u(r) = u0(r) + up(r) . (117)

The term u0(r) is called the reference potential and the term up(r) the perturbation potential. In
the simplest case of the first order expansion of the Helmholtz free energy in the perturbation
potential it holds

A

RT
=

A0

RT
+ 2πρβ

∫ ∞

0
up(r)g0(r)r2 dr , (118)

where A0 is the Helmholtz free energy of a reference system.
In the perturbation theories knowledge of the pair distribution function and the Helmholtz
free energy of the reference system is supposed. On one hand the reference system should be
simple (the ideal gas is too simple and brings nothing new; a typical reference system is a fluid
of hard spheres), and the perturbation potential should be small on the other hand. As a result
of a battle between a simplicity of the reference potential (one must know its structural and
thermodynamic properties) and an accuracy of a truncated expansion, a number of methods
have been developed.
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8.3 Integral equation theories

Among the integral equation theories the most popular are those based on the
Ornstein-Zernike equation

h(r12) = c(r12) + ρ
∫

(V)
h(r13)c(r32)d�r3 . (119)

where h(r) = g(r)− 1 is the total correlation function and c(r) the direct correlation function.
This equation must be closed using a relation between the total and the direct correlation
functions called the closure to the Ornstein-Zernike equation. From the diagrammatic analysis
it follows

h(r) = exp[−βu(r) + γ(r) + B(r)]− 1 , (120)

where
γ(r) = h(r)− c(r)

is the indirect (chain) correlation function and B(r) is the bridge function, a sum of elementary
diagrams. Equation (120) does not yet provide a closure. It must be completed by an
approximation for the bridge function. The mostly used closures are in listed in Malijevský &
Kolafa (2008). The simplest of them are the hypernetted chain approximation

B(r) = 0 (121)

and the Percus-Yevick approximation

B(r) = γ(r)− ln[γ(r) + 1] . (122)

Let us compare the perturbation and the integral equation theories. The first ones are simpler
but they need an extra input - the structural and thermodynamic properties of a reference
system. The accuracy of the second ones depends on a chosen closure. Their examples shown
here, the hypernetted chain and the Percus-Yevick, are too simple to be accurate.

8.4 Computer simulations

Besides the above theoretical approaches there is another route to the thermodynamic
quantities called the computer experiments or pseudoexperiments or simply simulations. For
a given pair intermolecular potential they provide values of thermodynamic functions in the
dependence on the state variables. In this sense they have characteristics of real experiments.
Similarly to them they do not give an explanation of the bulk behavior of matter but they serve
as tests of approximative theories. The thermodynamic values are free of approximations, or
more precisely, their approximations such as a finite number of molecules in the basic box or a
finite number of generated configurations can be systematically improved Kolafa et al. (2002).
The computer simulations are divided into two groups: the Monte Carlo simulations
and the molecular dynamic simulations. The Monte Carlo simulations generate the
ensemble averages of structural and thermodynamic functions while the molecular dynamics
simulations generate their time averages. The methods are described in detail in the
monograph of Allen and Tildesley Allen & Tildesley (1987).

9. Interpretation of thermodynamic laws

In Section 2 the axioms of the classical or phenomenological thermodynamics have been
listed. The statistical thermodynamics not only determines the thermodynamic quantities
from knowledge of the intermolecular forces but also allows an interpretation of the
phenomenological axioms.
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9.1 Axiom on existence of the thermodynamic equilibrium

This axiom can be explained as follows. There is a very, very large number of microscopic
states that correspond to a given macroscopic state. At unchained macroscopic parameters
such as volume and temperature of a closed system there is much more equilibrium states then
the states out of equilibrium. Consequently, a spontaneous transfer from non-equilibrium
to equilibrium has a very, very high probability. However, a spontaneous transfer from an
equilibrium state to a non-equilibrium state is not excluded.
Imagine a glass of whisky on rocks. This two-phase system at a room temperature transfers
spontaneously to the one-phase system - a solution of water, ethanol and other components.
It is not excluded but it is highly improbable that a glass with a dissolved ice will return to the
initial state.

9.2 Axiom of additivity

This axiom postulates that the internal energy of the macroscopic system is a sum of its two
macroscopic parts

U = U1 + U2 . (123)

However, if we consider a macroscopic system as an assembly of molecules, equation (123)
does not take into account intermolecular interactions among molecules of subsystem 1 and
molecules of subsystem 2. Correctly the equation should be

U = U1 + U2 + U12 . (124)

Due to the fact that intermolecular interactions vanish at distances of the order of a few
molecule diameters, the term U12 is negligible in comparison with U.

9.3 The zeroth law of thermodynamics and the negative absolute temperatures

The statistical thermodynamics introduces temperature formally as parameter β =
1

kBT
in the

expression (11) for the partition function

Q = ∑
i

exp(−βEi) .

As energies of molecular systems are positive and unbounded, temperature must be positive
otherwise the equation diverges. For systems with bounded energies

Emin ≤ Ei ≤ Emax

both negative and positive temperatures are allowed. Such systems are in lasers, for example.

9.4 The second law of thermodynamics

From equation (3) it follows that entropy of the adiabatically isolated system either grows for
spontaneous processes or remains constant in equilibrium

dS ≥ 0 . (125)

Entropy in the statistical thermodynamics is connected with probability via equation (20)

S = −kB ∑
i

Pi ln Pi .

Thus, entropy may spontaneously decrease but with a low probability.
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9.5 Statistical thermodynamics and the arrow of time

Direction of time from past to future is supported by three arguments

• Cosmological time
The cosmological time goes according the standard model of Universe from the Big Bang
to future.

• Psychological time
We as human beings remember (as a rule) what was yesterday but we do not "remember"
what will be tomorrow.

• Thermodynamic time
Time goes in the direction of the growth of entropy in the direction given by equation (125).

The statistical thermodynamics allows due to its probabilistic nature a change of a direction
of time "from coffin to the cradle" but again with a very, very low probability.

9.6 The third law of thermodynamics

Within the statistical thermodynamics the third law may be easily derived from equation (20)
relating entropy and the probabilities. The state of the ideal crystal at T = 0 K is one. Its
probability P0 = 1. By substituting to the equation we get S = 0.
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List of symbols

A Helmholtz free energy
B second virial coefficient
Bi i-th virial coefficient
B(r) bridge function
CV isochoric heat capacity
Cp isobaric capacity
c(r) direct correlation function
E energy
ǫ energy of molecule
G Gibbs free energy
g(r) pair distribution function
H enthalpy
h Planck constant
h(r) total correlation function
kB Boltzmann constant
N number of molecules, Avogadro number
P probability
p pressure
Q heat
Q partition function
q partition function of molecule
R (universal) gas constant (8.314 in SI units)
S entropy
T temperature
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τ time
U internal energy
uN potential energy of N particles
u pair potential
W work
W number of accessible states
X measurable thermodynamic quantity
x mole fraction
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