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Towards the Authentic Ab Intio Thermodynamics

In Gee Kim
Graduate Institute of Ferrous Technology,

Pohang University of Science and Technology, Pohang
Republic of Korea

1. Introduction

A phase diagram is considered as a starting point to design new materials. Let us quote the
statements by DeHoff (1993):

A phase diagram is a map that presents the domains of stability of phases and their
combiations. A point in this space, which represents a state of the system that is of
interest in a particular application, lies within a specific domain on the map.

In practice, for example to calculate the lattice stability, the construction of the phase diagram
is to find the phase equilibria based on the comparison of the Gibbs free energies among
the possible phases. Hence, the most important factor is the accuracy and precesion of the
given Gibbs free energy values, which are usually acquired by the experimental assessments.
Once the required thermodynamic data are obtained, the phase diagram construction
becomes rather straightforward with modern computation techniques, so called CALPHAD
(CALculation of PHAse Diagrams) (Spencer, 2007). Hence, the required information for
constructing a phase diagram is the reliable Gibbs free energy information. The Gibbs free
energy G is defined by

G = E + PV − TS, (1)

where E is the internal energy, P is the pressure, V is the volume of the system, T is
the temperature and S is the entropy. The state which provides the minimum of the
free energy under given external conditions at constant P and T is the equilibrium state.
However, there is a critical issue to apply the conventional CALPHAD method in general
materials design. Most thermodynamic information is relied on the experimental assessments,
which do not available occasionally to be obtained, but necessary. For example, the direct
thermodynamic information of silicon solubility in cementite had not been available for long
time (Ghosh & Olson, 2002; Kozeschnik & Bhadeshia, 2008), because the extremely low silicon
solubility which requires the information at very high temperature over the melting point
of cementite. The direct thermodynamic information was available recently by an ab initio
method (Jang et al., 2009). However, the current technology of ab initio approaches is usually
limited to zero temperature, due to the theoretical foundation; the density functional theory
(Hohenberg & Kohn, 1964) guarrentees the unique total energy of the ground states only. The
example demonstrates the necessity of a systematic assessment method from first principles.
In order to obtain the Gibbs free energy from first principles, it is convenient to use the
equilibrium statistical mechanics for grand canonical ensemble by introducing the grand
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partition function

Ξ (T, V, {µi}) = ∑
Ni

∑
ζ

exp

(

−β

(

Eζ (V)− ∑
i

µiNi

))

, (2)

where β is the inverse temperature (kBT)−1 with the Boltzmann’s constant kB, µi is the
chemical potential of the ith component, Ni is the number of atoms. The sum of ζ runs
over all accessible microstates of the system; the microstates include the electronic, magnetic,
vibrational and configurational degrees of freedom. The corresponding grand potential Ω is
found by

Ω (T, V, {µi}) = −β−1 ln Ξ. (3)

The Legendre transformation relates the grand potential Ω and the Helmholtz free energy F as

Ω (T, V, {µi}) = F − ∑
i

µiNi = E − TS − ∑
i

µi Ni. (4)

It is noticeable to find that the Helmholtz free energy F is able to be obtained by the relation

F (T, V, N) = −β−1 ln Z, (5)

where Z is the partition function of the canonical ensemble defined as

Z (T, V, N) = ∑
ζ

exp
(

−βEζ (V, N)
)

. (6)

Finally, there is a further Legendre transformation relationship between the Helmholtz free
energy and the Gibbs free energy as

G = F + PV. (7)

Let us go back to the grand potential in Eq. (4). The total differential of the grand potential is

dΩ = −SdT − PdV − ∑
i

Nidµi, (8)

with the coefficients

S = −
(

∂Ω

∂T

)

Vµ

, P = −
(

∂Ω

∂V

)

Tµ

, Ni = −
(

∂Ω

∂µi

)

TV

. (9)

The Gibss-Duhem relation,
E = TS − PV + ∑

i

µiNi, (10)

yields the thermodynamic functions as

F = −PV + ∑
i

µi Ni, G = ∑
i

µi Ni, Ω = −PV. (11)

Since the thermodynamic properties of a system at equilibrium are specified by Ω and
derivatives thereof, one of the tasks will be to develop methods to calculate the grand potential
Ω.
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In principle, we can calculate any macroscopic thermodynamic states if we have the complete
knowledge of the (grand) partition function, which is abled to be constructed from first
principles. However, it is impractical to calculates the partition function of a given system
because the number of all accessible microstates, indexed by ζ, is enormously large.
Struggles have been devoted to calculate the summation of all accessible states. The number of
all accessible states is evaluated by the constitutents of the system and the types of interaction
among the constituents. The general procedure in statistical mechanics is nothing more than
the calculation of the probability of a specific number of dice with the enormous number
of repititions of the dice tosses. The fundamental principles of statistical mechanics of a
mechanical system of the degrees of freedom s is well summarized by Landau & Lifshitz
(1980). The state of a mechanical system is described a point of the phase space represented
by the generalized coordinates qi and the corresponding generalized momenta pi, where the
index i runs from 1 to s. The time evolution of the system is represented by the trajectory in
the phase space. Let us consider a closed large mechanical system and a part of the entire
system, called subsystem, which is also large enough, and is interacting with the rest part of
the closed system. An exact solution for the behavior of the subsystem can be obtained only
by solving the mechanical problem for the entire closed system.
Let us assume that the subsystem is in the small phase volume ∆p∆q for short intervals. The
probability w for the subsystem stays in the ∆p∆q during the short interval ∆t is

w = lim
D→∞

∆t

D
, (12)

where D is the long time interval in which the short interval ∆t is included. Defining the
probability dw of states represented in the phase volum,

dpdq = dp1dp2 . . . dpsdq1dq2 . . . dqs,

may be written
dw = ρ (p1, p2, . . . , ps, q1, q2, . . . , qs)dpdq, (13)

where ρ is a function of all coordinates and momenta in writing for brevity ρ (p, q). This
function ρ represents the density of the probability distribution in phase space, called
(statistical) distribution function. Obviously, the distribution function is normalized as

∫

ρ (p, q)dpdq = 1. (14)

One should note that the statistical distribution of a given subsystem does not depend on
the initial state of any other subsystems of the entire system, due to the entirely outweighed
effects of the initial state over a sufficiently long time.
A physical quantity f = f (p, q) depending on the states of the subsystem of the solved
entire system is able to be evaluated, in the sense of the statistical average, by the distribution
function as

f̄ =
∫

f (p, q)ρ(p, q)dpdq. (15)

By definition Eq. (12) of the probability, the statistical averaging is exactly equivalent to a time
averaging, which is established as

f̄ = lim
D→∞

1
D

∫ D

0
f (t)dt. (16)
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In addition, the Liouville’s theorem

dρ

dt
=

s

∑
i=1

(

∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)

= 0 (17)

tells us that the distribution function is constant along the phase trajectories of the subsystem.
Our interesting systems are (quantum) mechanical objects, so that the counting the number of
accessible states is equivalent to the estimation of the relevant phase space volume.

2. Phenomenological Landau theory

A ferromagnet in which the magnetization is the order parameter is served for illustrative
purpose. Landau & Lifshitz (1980) suggested a phenomenological description of phase
transitions by introducing a concept of order parameter. Suppose that the interaction
Hamiltonian of the magnetic system to be

∑
i,j

JijSi · Sj, (18)

where Si is a localized Heisenberg-type spin at an atomic site i and Jij is the interaction
parameter between the spins Si and Sj.
In the ferromagnet, the total magnetization M is defined as the thermodynamic average of the
spins

M =

〈

∑
i

Si

〉

, (19)

and the magnetization m denotes the magnetization per spin

m =

〈

1
N ∑

i

Si

〉

, (20)

where N is the number of atomic sites. The physical order is the alignment of the microscopic
spins.
Let us consider a situation that an external magnetic field H is applied to the system. Landau’s
idea1 is to introduce a function, L (m, H, T), known as the Landau function, which describes
the “thermodynamics” of the system as function of m, H, and T. The minimum of L indicates
the system phase at the given variable values. To see more details, let us expand the Ladau
function with respect to the order parameter m:

L (m, H, T) =
4

∑
n

an (H, T) mn, (21)

where we assumed that both the magnetization m and the external magnetic field H are
aligned in a specific direction, say ẑ. When the system undergoes a first-order phase transition,
the Landau function should have the properties

∂L
∂m

∣

∣

∣

∣

mA

=
∂L
∂m

∣

∣

∣

∣

mB

= 0, L (mA) = L (mB) , (22)

1 The description in this section is following Negele & Orland (1988) and Goldenfeld (1992).
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for the minima points A and B. For the case of the second-order phase transition, it is required
that

∂L
∂m

=
∂2L
∂m2 =

∂3L
∂m3 = 0,

∂4L
∂m4 > 0. (23)

The second derivative must vanish because the curve changes from concave to convex and the
third derivative must vanish to ensure that the critical point is a minimum. It is convenient
to reduce the variables in the vicinity of the critical point t ≡ T − TC and h ≡ H − Hc = H,
where TC is the Curie temperature and Hc is the critical external field, yielding the Landau
coefficient

an (H, T) �→ an (h, t) = bn + cnh + dnt, (24)

and then the Ladau function near the critical point is

L (m, h, t) = c1hm + d2tm2 + c3hm3 + b4m4, d2 > 0, b4 > 0. (25)

Enforcing the inversion symmetry, L (m, H, T) = L (−m,−H, T), the Landau function will be

L (m, h, t) = d2tm2 + b4m4.

In order to see the dependency to the external field H, we add an arbitrary H field coupling
term and change the symbols of the coefficients d2 to a and b4 to 1

2 b:

L = atm2 +
1
2

bm4 − Hm. (26)

Let us consider the second-order phase transition with H = 0. For T > TC, the minimum of
L is at m = 0. For T = TC, the Landau function has zero curvature at m = 0, where the point
is still the global minimum. For T < TC, the Landau function Eq. (26) has two degenerate
minima at ms = ms (T), which is explicitly

ms (t) = ±
√

−at

b
, for t < 0. (27)

When H �= 0, the differentiation of L with respect to m gives the magnetic equation of state
for small m as

atm + bm3 =
1
2

H. (28)

The isothermal magnetic susceptibility is obtained by differentiating Eq. (28) with respect to
H:

χT (H) ≡ ∂m (H)

∂H

∣

∣

∣

∣

T

=
1

2
{

at + 3b (m (H))2
} , (29)

where m (H) is the solution of Eq. (28). Let us consider the case of H = 0. For t > 0, m = 0
and χT = 1/ (2at), while m2 = −at/b and χT = −1/ (4at). As the system is cooled down,

the nonmagnetized system, m = 0 for t > 0, occurs a spontaneous magnetization of (−at/b)
1
2

below the critical temperature t < 0, while the isothermal magnetic susceptibility χT diverges
as 1/t for t → 0 both for the regions of t > 0 and t < 0.
For the first-order phase transition, we need to consider Eq. (25) with c1 = 0 and changing the
coefficient symbols to yield

L = atm2 +
1
2

m4 + Cm3 − Hm. (30)
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For H = 0, the equilibrium value of m is obtained as

m = 0, m = −c ±
√

c2 − at/b, (31)

where c = 3C/4b. The nonzero solution is valid only for t < t∗, by defining t∗ ≡ bc2/a. Let
Tc is the temperature where the coefficient of the term quadratic in m vanishes. Suppose t1
is the temperature where the value of L at the secondary minimum is equal to the value at
m = 0. Since t∗ is positive, this occurs at a temperature greater than Tc. For t < t∗, a secondary
minimum and maximum have developed, in addition to the minimum at m = 0. For t < t1,
the secondary minimum is now the global minimum, and the value of the order parameter
which minimizes L jumps discontinuously from m = 0 to a non-zero value. This is a first-order
transition. Note that at the first-order transition, m (t1) is not arbitrarily small as t → t−1 . In
other words, the Landau theory is not valid. Hence, the first-order phase transition is arosen
by introducing the cubic term in m.
Since the Landau theory is fully phenomenological, there is no strong limit in selecting order
parameter and the corresponding conjugate field. For example, the magnetization is the order
parameter of a ferromagnet with the external magnetic field as the conjugate coupling field,
the polarization is the order parameter of a ferroelectric with the external electric field as
the conjugate coupling field, and the electron pair amplitude is the order parameter of a
superconductor with the electron pair source as the conjugate coupling field. When a system
undergoes a phase transition, the Landau theory is usually utilized to understand the phase
transition.
The Landau theory is motivated by the observation that we could replace the interaction
Hamiltonian Eq. (18)

∑
i,j

JijSiSj = ∑
i

Si ∑
j

Jij

[

〈Sj〉+
{

Sj − 〈Sj〉
}]

(32)

by ∑ij Si Jij〈Sj〉. If we can replace SiSj by Si〈Sj〉, it is also possible to replace 〈SiSj〉 by 〈Si〉〈Sj〉
on average if we assume the translational invariance. The fractional error implicit in this
replacement can be evaluated by

ε ij =

∣

∣

∣
〈SiSj〉 − 〈Si〉〈Sj〉

∣

∣

∣

〈Si〉〈Sj〉
, (33)

where all quantities are measured for T < TC under the Landau theory. The numerator is just

a correlation function C and the interaction range
∣

∣

∣
ri − rj

∣

∣

∣
∼ R will allow us to rewrite ε ij as

εR =
|C (R)|

m2
s

, (34)

where we assume the correlation function being written as

C (R) = g f

(

R

ξ

)

, (35)

where f is a function of the correlation length ξ. For T ≪ TC, the correlation length ξ ∼ R,
and the order parameter m is saturated at the low temperature value. The error is roughly
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estimated as

εR ≃
(

T

TC

)

( a

R

)d
, (36)

where a is the lattice constant and d is the dimensionality of the interaction. In Eq. (36),

(a/R)−d is essentially the corrdination number z > 1, so that εR < 1 and the mean field
theory is self-consistent.
On the other hand, the correlation length grows toward infinity near the critical point; R ≪
ξ for t → 0. A simple arithematics yields m ∼ |t|β, where a critial exponent β is 1

2 for a
ferromagnet. This result leaves us the error

εR ∼ 1

|t|2β

( a

R

)d
, (37)

which tends to infinity as t → 0. Hence, the Landau theory based on the mean-field
approximation has error which diverges as the system approaches to the critical point.
Mathematically, the Landau theory expands the Landau function in terms of the order
parameter. The landau expansion itself is mathematically non-sense near the critical point
for dimensions less than four. Therefore, the Landau theory is not a good tool to investigate
significantly the phase transitions of the system.

3. Matters as noninteracting gases

Materials are basically made of atoms; an atom is composed of a nucleus and the surrounding
electrons. However, it is convenient to distinguish two types of electrons; the valence electrons
are responsible for chemical reactions and the core electrons are tightly bound around the
nucleus to form an ion for screening the strongly divergent Coulomb potential from the
nucleus. It is customary to call valence electrons as electrons.
The decomposition into electrons and ions provides us at least two advantages in treating
materials with first-principles. First of all, the motions of electrons can be decoupled
adiabatically from the those of ions, since electrons reach their equilibrium almost
immediately by their light mass compared to those factors of ions. The decoupling of
the motions of electrons from those of ions is accomplished by the Born-Oppenheimer
adiabatic approximation (Born & Oppenheimer, 1927), which decouples the motions of
electrons approximately begin independent adiabatically from those of ions. In practice, the
motions of electrons are computed under the external potential influenced by the ions at
their static equilibrium positions, before the motions of ions are computed under the external
potential influenced by the electronic distribution. Hence, the fundamental information for
thermodynamics of a material is its electronic structures. Secondly, the decoupled electrons of
spin half are identical particles following the Fermi-Dirac statistics (Dirac, 1926; Fermi, 1926).
Hence, the statistical distribution function of electrons is a closed fixed form. This feature
reduces the burdens of calculation of the distribution function of electrons.

3.1 Electronic subsystem as Fermi gas

The consequence of the decoupling electrons from ions allows us to treat the distribution
functions of distinguishable atoms, for example, an iron atom is distinguished from a carbon
atom, can be treated as the source of external potential to the electronic subsystem. Modelling
of electronic subsystem was suggested firstly by Drude (1900), before the birth of quantum
mechanics. He assumes that a metal is composed of electrons wandering on the positive
homogeneous ionic background. The interaction between electrons are cancelled to allow us

549Towards the Authentic Ab Intio Thermodynamics
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for treating the electrons as a noninteracting gas. Albeit the Drude model oversimplifies the
real situation, it contains many useful features of the fundamental properties of the electronic
subsystem (Aschcroft & Mermin, 1976; Fetter & Walecka, 2003; Giuliani & Vignale, 2005).
As microstates is indexed as i of the electron subsystem, the Fermi-Dirac distribution function
is written in terms of occupation number of the state i,

n0
i =

1

eβ(ǫi−µ) + 1
, (38)

where ǫi is the energy of the electronic microstate i and µ is the chemical potential of the
electron gas. At zero-temperature, the Fermi-Dirac distribution function becomes

1

eβ(ǫ−µ) + 1
= θ (µ − ǫ) (39)

and the chemical potential becomes the Fermi energy ǫF. In the high-temperature limit, the
Fermi-Dirac distribution function recudes to

n0 = eβ(ǫ−µ), (40)

the Maxwell-Boltzmann distribution function. With the nonrelativistic energy spectrum

ǫp =
p2

2m
=

h̄2k2

2m
= ǫk, (41)

where p is the single-particle momentum, k is the corresponding wave vector, the grand
potential in Eq. (3) is calculated in a continuum limit2 as

− βΩ0 = βPV =
2
3

gV

3π2

(

2m

h̄2

)
3
2
∫ ∞

0
dǫ

ǫ
3
2

eβ(ǫ−µ) + 1
(42)

and the number density is written as

N

V
=

g

4π2

(

2m

h̄2

) 3
2
∫ ∞

0
dǫ

ǫ
1
2

eβ(ǫ−µ) + 1
, (43)

where g is 2, the degeneracy factor of an electron. After math (Fetter & Walecka, 2003), we
can obtain the low-temperature limit (T → 0) of the grand potential of the noninteractic
homogeneous electron gas as

PV =
2
3

gV

4π2

(

2m

h̄

)
3
2
[

2
5

µ
5
2 + β−2 π2

4
µ

1
2 + · · ·

]

(44)

2 It is convenient to convert a summation over single-particle spectra to an integral over wavenumbers
according to ∑i → g

∫

d3n = gV (2π)−3 ∫ d3k for a very large periodic system, hence a continuum case.
If we have knowledge of the single-particle energy dispersion relation, the wavenumber integral is also
replaced by an integral over energy as gV (2π)−3 ∫ d3kF (ǫk) → g

∫ ∞

−∞
dǫD (ǫ) F (ǫ) , where D (ǫ) is

the density of states.
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and the chemical potential from the relation N = (∂ (PV) /∂µ)TV as

µ = ǫF

[

1 − π2

12

(

1
βǫF

)2

+ · · ·
]

. (45)

The low temperature limit entropy S is calculated as

S (β, V, µ) =

(

∂ (PV)

∂T

)

Vµ

=
gV

4π2

(

2m

h̄

)
3
2 2

3

[

2π2

4
kB

β
+ · · ·

]

. (46)

It is thus the heat capacity of the noninteracting homogeneous electron gas to be

CV = T

(

∂S

∂T

)

VN

=
π2

2
NkB

1
ǫFβ

. (47)

The internal energy is simply calculated by a summation of the microstate energy of all the
occupied states to yield

E

V
=

g

4π2

∫ µ

0
ǫ

3
2 dǫ =

g

4π2

(

2m

h̄2

)
3
2 2

5
µ

5
2 . (48)

All the necessary thermodynamic information of the homogeneous noninteracting electron
subsystem is acquired.

3.2 Elementary excitation as massive boson gas

For the case of ions, the treatment is rather complex. One can immediately raise the same
treatment of the homogeneous noninteracting ionic gas model as we did for the electronic
subsystem. Ignoring the nuclear spins, any kinds of ions are composed of fully occupied
electronic shells to yield the effective zero spin; ions are massive bosons. It seems, if the system
has single elemental atoms, that the ionic subsystem can be treated as an indistinguishable
homogeneous noninteracting bosonic gas, following the Bose-Einstein statistics (Bose, 1926;
Einstein, 1924; 1925). However, the ionic subsystem is hardly treated as a boson gas.
Real materials are not elemental ones, but they are composed of many different kinds of
elements; it is possible to distinguish the atoms. They are partially distinguishable each
other, so that a combinatorial analysis is required for calculating thermodynamic properties
(Ruban & Abrikosov, 2008; Turchi et al., 2007). It is obvious that the ions in a material
are approximately distributed in the space isotropically and homogeneously. Such phases
are usually called fluids. As temperature goes down, the material in our interests usually
crystalizes where the homogeneous and isotropic symmetries are broken spontaneously and
individual atoms all occupy nearly fixed positions.
In quantum field theoretical language, there is a massless boson, called Goldstone boson,
if the Lagrangian of the system possesses a continuous symmetry group under which the
the ground or vacuum state is not invariant (Goldstone, 1961; Goldstone et al., 1962). For
example, phonons are emerged by the violation of translational and rotational symmetry of
the solid crystal; a longitudinal phonon is emerged by the violation of the gauge invariance
in liquid helium; spin waves, or magnons, are emerged by the violation of spin rotation
symmetry (Anderson, 1963). These quasi-particles, or elementary excitations, have known in
many-body theory for solids (Madelung, 1978; Pines, 1962; 1999). One has to note two facts:
(i) the elementary exciations are not necessarily to be a Goldstone boson and (ii) they are not
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necessarily limited to the ionic subsystem, but also electronic one. If the elementary excitations
are fermionic, thermodynamics are basically calculable as we did for the non-interacting
electrons gas model, in the beginning of this section. If the elementary excitations are
(Goldstone) bosonic, such as phonons or magnons, a thermodynamics calculation requires
special care. In order to illustrative purpose, let us see the thermodynamic information of a
system of homogeneous noninteracting massive bosons.
The Bose-Einstein distribution function gives the mean occupation number in the ith state as

n0
i =

1

eβ(ǫi−µ) − 1
. (49)

Since the chemical potential of a bosonic system vanishes at a certain temperature T0, a special
care is necessary during the thermodynamic property calculations (Cornell & Wieman, 2002;
Einstein, 1925; Fetter & Walecka, 2003). The grand potential of an ideal massive boson gas,
where the energy spectrum is also calculated as in Eq. (41), is

− βΩ0 = βPV = − gV

4π2

(

2m

h̄2

)
3
2
∫ ∞

0
dǫ ǫ

1
2 ln
(

1 − eβ(µ−ǫ)
)

. (50)

The integration by part yields

PV =
gV

4π2

(

2m

h̄2

)
3
2 2

3

∫ ∞

0
dǫ

ǫ
3
2

eβ(ǫ−µ) − 1
. (51)

The internal energy is calculated to be

E = ∑
i

n0
i ǫi =

3
2

PV =
gV

4π2

(

2m

h̄2

) 3
2
∫ ∞

0
dǫ

ǫ
3
2

eβ(ǫ−µ) − 1
, (52)

and the number density is calculated to be

N

V
=

g

4π2

(

2m

h̄2

)
3
2
∫ ∞

0
dǫ

ǫ
1
2

eβ(µ−ǫ) − 1
. (53)

A care is necessary in treating Eq. (53), because it is meaningful only if ǫ − µ ≥ 0, or

µ ≤ 0 (54)

with the consideration of the fact ǫ ≥ 0.
In the classical limit T → ∞, or β → 0, for fixed N, we have

βµ → −∞. (55)

Recall that the classical limit yields the Maxwell-Boltzmann distribution

n0
i = e−β(ǫi−µ) (56)

for both fermions and bosons, and the corresponding grand potential becomes

Ω0 = −PV = − 1
β ∑

i

eβ(µ−ǫi). (57)
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The classical chemical potential µc is now calculated as

βµc = ln

⎡

⎣

N

gV

(

2πh̄2

m

) 3
2

β
3
2

⎤

⎦ . (58)

As β increases at fixed density, βµc passes through zero and becomes positive, diverging to
infinity at β → ∞. This contradicts to the requirement Eq. (54). The critical temperature β0,
where the chemical potential of an ideal boson gas vanishes, is calculated by using Eq. (53)
with µ = 0 to be

1
β0

=
h̄2

2m

⎛

⎝

4π2

gΓ
(

3
2

)

ζ
(

3
2

)

⎞

⎠

2
3
(

N

V

)
2
3

, (59)

where Γ and ζ are Gamma function and zeta function, respectively. For µ = 0 and β > β0, the
integral in Eq. (53) is less than N/V because these conditions increase the denominator of the
integrand relative to its value at β0.
The breakdown of the theory was noticed by Einstein (1925) and was traced origin of
the breakdown was the converting the conversion of the summation to the integral of the
occupation number counting in Eq. (53). The total number of the ideal massive Bose gas is
counted, using the Bose-Einstein distribution function Eq. (49), by

N = ∑
i

1

eβ(ǫi−µ) − 1
. (60)

It is obvious that the bosons tends to occupy the ground state for the low temperature
range β > β0, due to the lack of the limitation of the occupation number of bosons. As
temperature goes down, the contribution of the ground state occupation to the number
summation increases. However, the first term of Eq. (60) is omitted, in the Bose-Einstein
distribution, during the conversion to the integral Eq. (53) as µ → 0− for β > β0, because the

fact that ǫi = 0 vanishes the denominator ǫ
1
2 of the integrand in Eq. (53). The number density

of the Bose particles with energies ǫ > 0 is computed by Eq. (53) to be

Nǫ>0

V
=

N

V

(

β

β0

)− 3
2

, (61)

while the number density at the ground state is evaluated to be

Nǫ=0

V
=

N

V

[

1 −
(

β

β0

)− 3
2

]

, (62)

with the chemical potential µ = 0− for β > β0. The internal energy density of the degenerate
massive boson gas for β > β0 is then computed (Fowler & Jones, 1938) as

E

V
=

g

4π2

(

2m

βh̄2

) 3
2 1

β
Γ

(

5
2

)

ζ

(

5
2

)

. (63)
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The constant-volume heat capacity for β > β0 becomes

CV =
5
2

⎡

⎣

Γ
(

5
2

)

ζ
(

5
2

)

Γ
(

3
2

)

ζ
(

3
2

)NkB

(

β

β0

)− 3
2

⎤

⎦ , (64)

and the pressure for β > β0 becomes

P =
2
3

2
√

2
4π2 Γ

(

5
2

)

ζ

(

5
2

)

m
3
2 g

h̄3 β−
5
2 . (65)

It is interesting to find that the pressure approaches to zero as temperature goes to zero,
i.e. β → ∞. In other words, the Bose gas exerts no force on the walls of the container at
T = 0, because all of the particles condensate in the zero-momentum state. The pressure
is independent of the number density N/V, depending only on temperature β. The two
different summations above and below the temperature β0 lead us that the heat capacity as a
function of temperature has discontinuity in its slope (Landau & Lifshitz, 1980) as

∆

(

∂CV

∂V

)

β0

= − 27
4

⎡

⎣

Γ
(

3
2

)

ζ
(

3
2

)

π

⎤

⎦

2

Nk2
Bβ−1

0 . (66)

This implies that a homogeneous massive ideal Bose gas system exhibits a phase transition at
β0 without interaction. This phenomenon is known as the Bose-Einstein condensation. A good
review for the realization of the Bose-Einstein condensation is provided by Cornell & Wieman
(2002).

3.3 Elementary excitations as massless boson gas

As we stated previously, some elementary excitations emerged by the spontaneous symmetry
breaking are massless bosons (Goldstone, 1961; Goldstone et al., 1962) as well as gauge bosons,
which are elemental particles, e.g. photons, arosen from the fundamental interactions,
electromagnetic fields for photons, with gauge degrees of freedom. Whether a boson is a
Goldstone boson or a gauge one, the procedure described above is not appliable to the
massless character of the boson, because its energy spectrum is not in the form of Eq. (41).
One has to remind that a masselss boson does not carry mass, but it carries momentum and
energy. The energy spectrum of a massless boson is given by

ǫ = h̄ω (67)

and the frequency ω is obtained by the corresponding momentum p = h̄k through a
dispersion relation

ω = ω (k) . (68)

The number of bosons N in the massless boson gas is a variable, and not a given constants
as in an ordinary gas. Therefore, N itself must be determined from the thermal equilibrium
condition, the (Helmholtz) free energy minimum (∂F/∂N)T,V = 0. Since (∂F/∂N)T,V = µ,
this gives

µ = 0. (69)

554 Thermodynamics – Interaction Studies – Solids, Liquids and Gases

www.intechopen.com



Towards the Authentic Ab Intio Thermodynamics 13

In these conditions, the mean occupation number is following the Planck distribution function
(Planck, 1901)

n0
k =

1

eβh̄ωk − 1
, (70)

which was originally suggested for describing the distribution function problem of
black-body radiations. Note that the Planck distribution function is a special case of the
Bose-Einstein distribution function with zero chemical potential.
Considering the relation Eq. (4) and the condition Eq. (69), the grand potential of a massless
Bose gas subsystem becomes the same as the Helmholtz free energy. The details of the
thermodynamic properties are depending on the dispersion relation of the bosons. Photons
are quantized radiations based on the fact of the linearity of electrodynamics,3 so that photons
do not interact with one another. The photon dispersion relation is linear,

ω = ck, (71)

where k includes the definite polarizations. The photon Helmholtz free energy is calculated
as

F0 = T
V

π2c3

∫ ∞

0
dωω2 ln

(

1 − e−βh̄ω
)

. (72)

The standard integration method yields

F = − 4
3

σV

c
T4, (73)

where σ is called the Stefan-Boltzmann constant defined as

σ =
π2

60
k4

B

h̄3c2
. (74)

The entropy is

S = − ∂F

∂T
=

16
3

σV

c
T3. (75)

The total radiation energy E = F + TS is

E =
4σV

c
T4 = −3F, (76)

which propotional to the fourth power of the temperature; Boltzmann’s law. The constant
volume heat capacity of the radiation is

CV =

(

∂E

∂T

)

V

=
16σV

c
T3, (77)

and the pressure is

P = −
(

∂F

∂V

)

T

=
4σ

3c
T4. (78)

Hence, the equation of states of the photon gas is

PV =
1
3

E. (79)

3 The nonlinear character appeared in the qunatum electrodynamics will not be discussed here.
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The procedure for the photonic subsystem is quite useful in computing thermodynamics
for many kinds of elementary exciations, which are usually massless (Goldstone) bosons
in a condensed matter system. It is predicted that any crystal must be completely
ordered, and the atoms of each kind must occupy entirely definite positions, in a state
of complete thermodynamic equilibrium (Andreev & Lifshitz, 1969; Leggett, 1970). It is
well known that the ions vibrate even in the zero temperature with several vibration
modes (Aschcroft & Mermin, 1976; Callaway, 1974; Jones & March, 1973a; Kittel, 2005;
Landau & Lifshitz, 1980; Madelung, 1978; Pines, 1999). The energy spectrum of a phonon
in a mode j and a wavevector q contains the zero vibration term

ǫiq =

(

njq +
1
2

)

h̄ωj (q) , (80)

where njq is the occupation number of the single-particle modes of j and q. The corresponding
partition function is then written as

Z = ∑
nj ,q

exp
[

−βǫj (q)
]

= ∏
j,q

exp
[

−βh̄ωj (q)
]

1 − exp
[

−βh̄ωj (q)
] . (81)

The Helmholtz free energy of the phonon subsystem is

F = −β ln Z = β ∑
j,q

ln

{

2 sinh

[

βh̄ωj (q)

2

]}

. (82)

In the noninteracting phonon gas condition, the entropy S, internal energy E, and the volume
constant specific heat C becomes

S = −
(

∂F

∂T

)

V

= kB ∑
j,q

[

β

2
h̄ωj (q) coth

(

β

2
h̄ωj (q)

)

− ln
{

2 sinh
(

β

2
h̄ωj (q)

)}]

. (83)

E = F − TS −
(

∂F

∂T

)

V

= ∑
j,q

{

h̄ωj (q)

2
+

h̄ωj (q)

eβh̄ωj(q) − 1

}

, (84)

CV =

(

∂E

∂T

)

V

= kB

∑j,q

[

h̄ωj(q)
2

]2

sinh
[

h̄ωj(q)
2

] . (85)

Although the realistic phonon dispersion relations are complicated (Aschcroft & Mermin,
1976; Kittel, 2005), there are two useful model dispersion relations of phonons. Einstein
(1907; 1911) modelled the density of states as constant frequences in each vibrational mode
as D (ω) = Nδ (ω − ω0), where delta function is centered at ω0. This model is, in turn, useful
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to treat high temperature phonon thermodynamics. The thermal energy of the noninteracting
phonon system is

E = Nn0h̄ω =
Nh̄ω

eβh̄ω − 1
, (86)

and so the heat capacity of the system is

CV =

(

∂E

∂T

)

V
= NkB (βh̄ω)2 eβh̄ω

(

eβh̄ω − 1
)2 . (87)

On the other hand, Debye (1912) approximated that the velocity of sound is taken as constant
for each phonon mode with the dispersion relation ω ∼ q. In this case, the method used for
the photon gas is directly applied. At low temperature limit, the Debye extracted the T3 law
of the heat capacity as

CV ≃ 12π4

5
nkB

(

T

ΘD

)3

, (88)

where ΘD is known as the Debye temperature.

4. Matters as interacting liquids

The discussions in Sec. 3 has succeed to describe the thermodynamic properties of materials
in many aspects, and hence such descriptions were treated in many textbooks. However,
the oversimplified model fails the many important features on the material properties.
One of the important origin of such failures is due to the ignorance of the electromagnetic
interaction among the constituent particles; electrons and ions, which carry electric charges.
However, the inclusion of interactions among the particles is enormously difficult to treat.
To date the quantum field theory (QFT) is known as the standard method in dealing with
the interacting particles. There are many good textbooks on the QFT (Berestetskii et al.,
1994; Bjorken & Drell, 1965; Doniach & Sondheimer, 1982; Fetter & Walecka, 2003; Fradkin,
1991; Gross, 1999; Itzykson & Zuber, 1980; Mahan, 2000; Negele & Orland, 1988; Parisi, 1988;
Peskin & Schroeder, 1995; Zinn-Justin, 1997) in treating the interacting particles systematically
in various aspects. In this article, the idea of the treatments will be reviewed briefly, instead
of dealing with the full details.
The idea of noninteracting particles inspires an idea to deal with the electronic subsystem
as a sum of independent particles under a given potential field (Hartree, 1928), with the
consideration of the effect of Pauli exclusion principle (Fock, 1930), which it is known as
the exchange effect. This idea, known as the Hartree-Fock method, was mathematically
formulated by introducing the Slater determinant (Slater, 1951) for the many-body electronic
wave function. The individual wave function of an electron can be obtained by solving either
Schrödinger equation (Schrödinger, 1926a;b;c;d) for the nonrelativistic cases or Dirac equation
(Dirac, 1928a;b) for the relativistic ones.4

Since an electron carries a fundamental electric charge e in its motion, it is necessary to deal
with electromagnetic waves or their quanta photons. Immediate necessity was arosen in
order to deal with both electrons and photons in a single quantum theoretical framework
in consideration of the Einstein’s special theory of relativity (Einstein, 1905). Jordan & Pauli
(1928) and Heisenberg & Pauli (1929) suggested that a new formalism to treat both the

4 The immediate relativistic version of the Schrödinger equation was derived by Gordon (1926) and Klein
(1927), known as the Klein-Gordon equation. The Klein-Gordon equation is valid for the Bose-Einstein
particles, while the Dirac equation is valid for the Fermi-Dirac particles.
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electrons and the radiations as quantized objects in such a way of a canonical transformation
to the normal modes of their fields; this method is called the second quantization or the
field quantization. The canonical transformation technique to the normal mode is a well
established classical method for continuous media (Goldstein, 1980). The idea treats both
the electrons and radiations as continuous fields and quantized them for their own normal
modes (Heisenberg & Pauli, 1929; Jordan & Pauli, 1928). The practically available solutions
was suggested for the nonrelativistic case by Bethe (1947) followed by the fully relativistic
case by Dyson (1949a;b); Feynman (1949a;b); Schwinger (1948; 1949a;b); Tomonaga (1946),
so called the renormalization for cancelling the unavoidable divergencies appeared in the
quantum field theory. This kind of theory on the electrons and radiations is called as the
quantum electrodynamics (QED), which is known to be the most precise theory ever achieved
(Peskin & Schroeder, 1995) with the error between the theory and experiment to be less than
a part per billion (ppb) (Gabrielse et al., 2006; 2007; Odom et al., 2006).

4.1 The concepts of quantum field theory

Feynman (1949b) visulized the underlying concept of the quantum field theory by
reinterpreting the nonrelativistic Schrödinger equation with the Green’s function concept.
As in classical mechanics, a Hamiltonian operator Ĥ contains all the mechanical interactions
of the system. The necessary physical information of the system is contained in the wave
function ψ. The Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ, (89)

describes the change in the wave function ψ in an infinitesimally time interval ∆t as due to

the operation if an operator is e−i Ĥ
h̄ ∆t. This description is equivalent to the description that the

wave function ψ (x2, t2) at x2 and t2 is evolved one from the wave function ψ (x1, t1) at x1 and
t1 through the equation

ψ (x2, t2) =
∫

K (x2, t2; x1, t1)ψ (x1, t1)d3x1, (90)

where K is the kernel of the evolution and t2 > t1. If ψ (x1, t1) is expanded in terms of the eigen
function φn with the eigenvalue En of the constant Hamiltonian operator Ĥ as ∑n cnφn (x), one
can find for t2 > t1

K (2, 1) = ∑
n

φn (x2) φ∗
n (x1) e−i En

h̄ (t2−t1), (91)

where we abbreviated 1 for x1, t1 and 2 for x2, t2 and define K (2, 1) = 0 for t2 < t1. It is
straightforward to show that K can be defined by that solution of

(

ih̄
∂

∂t2
− Ĥ2

)

K (2, 1) = ih̄δ (2, 1) , (92)

where δ (2, 1) = δ (t2 − t1) δ (x2 − x1) δ (y2 − y1) δ (z2 − z1) and the subscript 2 on Ĥ2 means
that the operator acts on the variables of 2 of K (2, 1). The kernel K is now called as the Green’s
function and it is the total amplitude for arrival at x2, t2 starting from x1, t1. The transition
amplitude for finding a particle in state χ (2), if it was in ψ (1), is

∫

χ∗ (2)K (2, 1) ψ (1) d3x1d3x2. (93)
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A quantum mechanical system is described equally well by specifying the function K, or by
specifying the Hamiltonian operator Ĥ from which it results.
Let us consider a situation that a particle propagates from 1 to 2 through 3 in a weak potential
operator Û (3), which differs from zero only for t between t1 and t2. The kernel is expanded
in powers of Û that

K (2, 1) = K0 (2, 1) + K(1) (2, 1) + K(2) (2, 1) + · · · . (94)

To zeroth order in Û, K is that for a free particle, K0 (2, 1). Let us consider the situation if U
differs from zero only for the infinitesimal time interval ∆t3 between some time t3 and t3 + ∆t3
for t1 < t3 < t2. The particle will propagate from 1 to 3 as a free particle,

ψ (3) =
∫

K0 (3, 1) ψ (1) d3x1. (95)

For the short time interval ∆t3, the wave function will change to

ψ (x, t3 + ∆t3) = e−i Ĥ
h̄

∆t3 ψ (x, t3) , (96)

after solving the Schrödinger equation in Eq. (89). The particle at 2 then propagates freely from
x3, t3 + ∆t3 as

ψ (x2, t2) =
∫

K0 (x2, t2; x3, t3 + ∆t3) ψ (x3, t3 + ∆t3) . (97)

We can decompose the Hamiltonian operator Ĥ by Ĥ0 + Û, where Ĥ0 is the Hamiltonian
operator of the free particle. The change in wave function by Û will be

∆ψ = − i

h̄
Û (3) ψ (3) ∆t3. (98)

The wave function at 2 is that of the propagated particle from t3 + ∆t3 to be

ψ (2) =
∫

K0
(

2, 3′
)

ψ
(

3′
)

d3x3, (99)

where 3′ abbreviates x3, t3 + ∆t3, by a free propagation. The difference of the wave function
at 2 is obtained by

∆ψ (2) = −∆t3
i

h̄

∫

K0 (2, 3) Û (3) K0 (3, 1)ψ (1) d3x3d3x1. (100)

Therefore, the first order expansion of the kernel K is then

K(1) (2, 1) = − i

h̄

∫

K0 (2, 3) Û (3) K0 (3, 1) d3, (101)

where d3 = d3x3dt3. We can imagine that a particle travels as a free particle from point
to point, but is scattered by the potential operator Û at 3. The higher order terms are also
analyzed in a similar way.
The analysis for the charged free Dirac particle gives a new interpretation of the antiparticle,
which has the reversed charge of the particle; for example, a positron is the antiparticle of
an electron. The Dirac equation (Dirac, 1928a;b) has negative energy states of an electron.
Dirac interpreted himself that the negative energy states are fully occupied in vacuum, and an
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elimination of one electron from the vacuum will carry a positive charge; the unoccupied
state was interpreted as a hole. Feynman (1949b) reinterpreted that the hole is a positron,
which is an electron propagting backward in time. The interpretation has the corresponding
classical electrodynamic picture. If we record the trajectory of an electron moving in a
magnetic field, the trajectory of the electron will be bent by the Lorentz force exerting on
the electron. When we reverse the record in time of the electron in the magnetic field, the
bending direction of the trajectory is that of the positively charged particle with the same
mass to the electron. Therefore, we understand that a particle is propagting forward in time,
while the corresponding antiparticle or the hole is propagating backward in time. Due to the
negative energy nature of the hole or antiparticle, a particle-hole pair will be annihilated when
the particle meet the hole at a position during their propagations in space-time coincidently.
Reversely, vacuum can create the particle-hole pair from the vacuum fluctuations.
Now consider a system of two particles a and b propagate from 1 to 3 interacting at 5 for the
particle a and from 2 to 4 interacting at 6 for the particle b. In the case of free particles, the
kernel K0 is a simple multiple of two free particle kernels K0a and K0b as

K0 (3, 4; 1, 2) = K0a (3, 1)K0b (4, 2) . (102)

When two particles are interacting through a two particle potential Û, the first-order
expansion term of K may be written (Feynman, 1949a) as

K(1) (3, 4; 1, 2) = − i

h̄

∫∫

K0a (3, 5) K0b (4, 6) Û (5, 6) K0a (5, 1) K0b (6, 2) d5d6. (103)

One important difference from Eq. (101) is that the interaction Û at a specific space-time
position 3 is replaced by the interaction field Û (5, 6). The interaction field is also able to
be quantized and the interaction field Û (5, 6) is interpreted as an interaction field quantum
propagating freely between 5 and 6. For the case of two-electron interaction, the particles
are electrons interacting through the electromagnetic interaction. One electron a propagates
from 1 to 3 and the other b propagates from 2 to 4. During their propagations, the electron
a emits (aborbs) a photon at point 5, while the electron b absorbs (emits) the photon at 6.
The wave function of each electron differs by the emission of the photon at 5 or 6 from its
wave function at the origin of the propagation. The process of emission and absorption of
the photons during the electrons propagations change the energy of the electronic subsystem.
The process to compute the energy of the Fermi liquid in the perturbative treatment of the
interaction requires the consideration of the essential many-body treatment available by the
procedures suggested by Dyson (1949a;b); Feynman (1949a;b); Schwinger (1948; 1949a;b);
Tomonaga (1946).
For the future reasons, it is useful to see the consequence of the step function behavior of the
kernel K. As described above, K (2, 1) has its meaning as the solution of the Green’s function
Eq. (92) only if t2 > t1. It is convenient to use multiply the step function θ (t2 − t1) to the
kernel K for implying the physical meaning. The step function has an integral representation

θ
(

t − t′
)

= −
∫ ∞

−∞

dω

2πi

e−iω(t−t′)

ω + iη
, (104)

where η is an positive real number. If t > t′, then the contour must be closed in the lower-half
ω plane, including the simple pole at ω = −iη with residue −1. If t < t′, then the contour
must be closed in the upper-half ω plane and gives zero, because the integrand has no
singularity for ℑω > 0.
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For a noninteracting particle, the eigen function will be a plane wave

φk (x) =
1√
V

eik·x, (105)

and the eigenvalue will be ǫ0
k = h̄ω0

k. In the limit of an infinite volume, the summation over
n, to be over k, in Eq. (91) becomes an integration and then the consideration of the identities
given in Eqs. (104) and (105) yields

K0
(

x, t; x′, t′
)

=
1

2π4

∫

d3k

∫ ∞

−∞
dωeik·xe−iω(t−t′)

[

θ (k − kF)

ω − ω0
k + iη

+
θ (kF − k)

ω − ω0
k − iη

]

,

which immediately yields

K0 (k, ω) =

[

θ (k − kF)

ω − ω0
k + iη

+
θ (kF − k)

ω − ω0
k − iη

]

, (106)

where kF is the Fermi wave vector. Since the ±iη were introduced to render the time integral
in Eq. (104) convergent, it is convenient to take the limit η → 0+. Eq. (106) diverges at
ω = ω0

k ± iη. If we compute the transition amplitude in Eq. (93) from the state ψ (1) to the
state ψ (2) in the Fourier transformed space, the kernel function form of Eq. (106) implies that
the transition amplitude will be maximum around ω = ω0

k ± iη. In the limit η → 0+, the
free particle remains in the state k: the particle will keep its momentum and hence its (kinetic)
energy. This is nothing more than the celebrating statement of inertial motion by Galileo.

4.2 Self-energy

This idea that a particle propagates freely until it faced with the a scattering center, where the
particles emit or absorb the interacting quanta, is nothing more than an extension of the model
introduced by Drude (1900) for electrons in metals. We already obtained the thermodynamic
information of noninteracting gases in Sec. 3. Hence, the remaining task is to see the effects of
the interaction from the noninteracting gas.
Let us come back to the case of a particle propagating from 1 to 2 in the way given in Eq.
(101) by considering the interaction process demonstrated in Eq. (103). The perturbation
procedure for the interacting fermions includes, in its first-order expansion, two fundamental
processes (Fetter & Walecka, 2003), which are the prototypes of the interactions of all order
perturbation expansion. For the first case, the particle a propagates from 1 to 3, emits
(absorbs) a boson propagating to 4, where the other particle b absorbs (emits) the boson.
The particle b propagates after the absoption (emission) at 4 to the position 4 again, just
before it absorbing (emitting) the boson. This process is known as the vacuum polarization
and it is equivalent, for an electronic system, to the method of Hartree (1928). In terms of
the classical electrodynamics, the process is nothing more than that an electron moves in
a Coulomb potential generated by the neighboring charge density. Secondly, the particle
propagates firstly from 1 to 3 and it emits (absorbs) a boson at 3 to change its state. The
particle in the new state then propagates from 3 to 4, where the new state particle absorbs
(emits) the boson propagated from 3, and change its states to the original one in propagating
to 2. This process is known as the exchange and it is equivalent, for the electronic system, to
the Fock (1930) consideration of the Pauli’s exclusion principle.
The energy spectrum of the particle itself will change during both the processes. Dyson
(1949a;b) discussed that the changing the particle energy itself by the perturbative treatment of
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the fermion interaction when we consider single particle propagation from 1 to 2. The energy
of the particle differs from the noninteracting particle propagation, and it can be systematically
included to the particle propagation kernel as

K (2, 1) = K0 (2, 1) +
∫∫

K (2, 4) Σ (4, 3) K (3, 1)d3d4, (107)

where Σ is known as the self-energy. When we consider the all order perturbation, the exact
single-particle propagation can be obtained by using the successive self-energy inclusion as

K (2, 1) = K0 (2, 1) +
∫∫

K (2, 4) Σ (4, 3) K (3, 1) d3d4

+
∫∫∫∫

K (2, 6) Σ (6, 5) K (5, 4) Σ (4, 3)K (3, 1) d3d4d5d6 + · · · , (108)

with the special care of the self-energy to be proper.5 This equation is known as the Dyson
equation.
The consequence of the Dyson equation can be seen easily if we perform a four dimensional
Fourier transform on Eq. (108) with respect to the difference y − x, t2 − t1 into the momentum
space to an algebraic form

K (k) = K0 (k) + K0 (k) Σ (k) K (k) , (109)

where k abbreviates (k, ω). We can solve Eq. (109) as

K (k) =
1

K−1
0 (k)− Σ (k)

. (110)

Considering the self-energy Σ is complex, the iη in the free particle kernel Eq. (106) is no more
relevant. Therefore, we obtain the solution of the Dyson equation as

K (k) = K (k, ω) =
1

ω − h̄−1ǫ0
k − Σ (k, ω)

. (111)

The physical meaning of Eq. (111) is straightforward: an interacting particle propagates as the
free particle does, but its excitation energy differs by a dressing term Σ (k, ω).
Lehmann (1954) and Galitskii & Migdal (1958) discussed the usefulness of Eq. (111) in the
applications for many-body systems. In the Lehmann representation, the frequency ω is a
complex number to be

h̄ω = ǫk − iγk, (112)

where γk is the damping of the particle. The singularity of the exact Green’s function K (k, ω),
considered as a function of ω, determine both the excitation energy ǫk of the system and
its damping γk. Furthermore, the chemical potential can be determined as the point where
ℑΣ (k, ω) changes the sign, because

ℑΣ (k, ω) ≥ 0, ω < µ/h̄
ℑΣ (k, ω) ≤ 0, ω > µ/h̄. (113)

5 The proper implies the terms that cannot be disintegrated into the lower order expansion terms during
the perturbation expansion.
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A similar analysis can be carried out for the interaction between two particles, which
always consists of the lowest-order interaction plus a series of proper expansion. The four
dimensional Fourier transformation to the q coordinates yields

U (q) =
U0 (q)

1 − Π (q)U0 (q)
. (114)

Introducing a generalized dielectric function

κ (q) = 1 − U0 (q)Π (q) , (115)

the screening of the lowest-order interaction by the polarization of the medium is obtained as

U (q) =
U0 (q)

κ (q)
. (116)

4.3 Goldstone’s theorem: the many-body formalism

Goldstone (1957) provided a new picture of the many-body systems with the quantum field
theoretic point of view, presented above. Let us the free particle Hamiltonian Ĥ has a
many-body eigenstate Φ, which is a determinant formed from N particles of the ψn, and
which is able to be described by enumerating these N one-particle states. Suppose that Ĥ0
has a non-degenerate ground state Φ0 formed from the lowest N of the ψn. The states ψn

occupied in Φ0 will be called unexcited states, and all the higher states ψn will be called excited
states. An eigenstate Φ of Ĥ0 can be described by enumerating all the excited states which are
occupied, and all the unexcited states which are not occupied. An unoccupied unexcited state
is regarded as a hole, and the theory will deal with particles in excited states and holes in
the unexcited states. In this treatment, the ground state Φ0 is considered as a new vacuum,
a particle is considered as an occupied states in the excited states, and the hole is essentially
different from the positrons, in which are the symmetric counterpart of the electrons.
Goldstone (1957) derived the energy difference between the system with and without
interactions, Ĥ1, in the Dirac notation,6 as

E − E0 = 〈Φ0| Ĥ1 ∑
n

(

1

E0 − Ĥ0
Ĥ1

)n

|Φ0〉 , (117)

where the summation should do on the linked7 terms of the perturbation. The noninteracting
Hamiltonian Ĥ0 in the denominator can be replaced by the corresponding eigenvalues,
because Eq. (117) is interpreted by inserting a complete set of eigenstates of Ĥ0 between
each interaction Ĥ1. The physical situation can be visualized as follows: (1) The interaction
Hamiltonian Ĥ1 operate on |Φ0〉 creates a state with two particles and two holes. This

state propagates with
(

E0 − Ĥ0
)−1

. (2) The next Ĥ1 can create more particle-hole pairs
or scatter the existing particle-hole pair and so on. (3) The final Ĥ1 must then return the
system to the ground state |Φ0〉. This process gives the difference in energy of the interacting
many-body system from the noninteracting one. By choosing the first-order perturbation in

6 In the Dirac notation, a quantum state n is written in the Hilbert space of form |n〉 and the corresponding
conjugate state is written as 〈n|. The wave function is the projection to the position space, such that
ψn (x) = 〈x| n〉. For an operator Â, 〈m| Â |n〉 is called as a matrix element to represent the probability
for transtion from the state |n〉 by the operation Â to the state 〈m|. Readers can see the details in Dirac
(1998); Sakurai (1994).

7 During the expansion, there are terms describing pair creation and annihilations corresponding to the
free particle Green’s function.
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the Goldstone scheme, it is successfully reproduced the Hartree-Fock equation. The method
for the perturbation expansion in the Goldstone scheme is usually called as coupled cluster
expansion.

4.4 Matsubara method for finite temperatures

For simplicity, consider a system with one kind of particles in dealing with the grand partition
function defined in Eq. (2), i.e.,

Ξ = ∑
i

e−β(ǫi−µN). (118)

It is convenient to introduce a grand canonical Hamiltonian operator

K̂ = Ĥ − µN̂. (119)

The operator form forces the equivalent form of Eq. (118) to be a trace

Ξ = e−βΩ = Tre−βK̂, (120)

and its corresponding statistical density matrix in the form

ρ̂ =
e−βK̂

Ξ
= eβ(Ω−K̂). (121)

Armed with Eqs. (120) and (121), all the thermodynamic information are calculable. However,
difficulty is in its thermally evolving nature of those equations, instead of their time evolving
nature of the Schrödinger equation.
In order to compute thermodynamic properties of ferromagnetic materials, Bloch (1932)
suggested a statistical equation, resembling the ordinary Schrödinger equation, by treating
the evolution of the statistical density with respect to temperature as

− ∂ρ

∂β
= Ĥρ. (122)

Matsubara (1955) and Gaudin (1960) proved that the Green’s function formalism in quantum
field theory also satisfies the Wick’s theorem (Wick, 1950), hence the perturbation expansion
in all order satisfies, when the “single-particle” field operator follows the Bloch equation by
switching the real-time t to the imaginary-time, τ = it. Note that the term “single-particle”
does not mean a real single-particle.
The procedure in Sec. 4.1 is applied also. The single-particle temperature Green’s function G
may follow the Green’s function equation

[

h̄
∂

∂τ2
− K̂

]

G (x1τ1; x2τ2) = ±h̄δ(x2 − x1)δ (τ2 − τ1) , (123)

where ± indicates the temperature Green’s function for fermions and bosons, respectively.
However, the temperature Green’s function does not depend on τ1 and τ2 separately, but
it depends on the difference τ ≡ τ1 − τ2. Each imaginary time τ has βh̄ periodicity. The
temperature Green’s function is then in the form

G (x1, τ1; x2, τ2) = G (x1, x2; τ) . (124)
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For both fermionic and bosonic statistics, G is periodic over the range 2βh̄ and may expanded
in a Fourier seriese

G (x1, x2, τ) =
1

βh̄ ∑
n

eiωnτG (x1, x2, ωn) , (125)

where
ωn =

nπ

βh̄
. (126)

This shows that e−iωnβh̄ is equal to e−inπ = (−1)n, and the factor 1
2

(

1 ± e−iωnβh̄
)

reduces to
1
2

[

1 ± (−1)n]. The Fourier coefficient in Eq. (125) is then

G (x1, x2, ωn) =
∫ βh̄

0
dτeiωnτG (x1, x2, τ) , (127)

where

ωn =

{ 2nπ
βh̄ , boson
(2n+1)π

βh̄ , fermion
. (128)

This is known as the Matsubara frequency.
The coordinates in x can be transformed to the momentum space k. There is a corresponding
solution of the Dyson equation in Eq. (110) for the temperature Green’s function as

G (k, ωn) =
1

G−1
0 − Σ (k, ωn)

, (129)

with the noninteracting temperature Green’s function of the form

G0 (k, ωn) =
1

iωn − h̄−1 (ǫ0
k − µ

)
. (130)

The thermodynamic variables N, E, and Ω can by obtained by the Eq. (129):
The grand potential is

Ω (T, V, µ) = Ω0 (T, V, µ)

∓V (2s + 1)
∫ 1

0

dλ

λ

∫ d3k

(2π)2
1

βh̄ ∑
n

eiωnη

×
[

1
2

h̄ +
1
2 Σλ (k, ωn)

iωn − h̄−1 (ǫ0
k − µ

)

− Σλ (k, ωn)

]

, (131)

where s is the spin of the particles, η is the infinitesimally small positive number, and λ is the
interaction strength control parameter.8 The internal energy is

E (T, V, µ) = ∓V (2s + 1)
∫ d3k

(2π)2
1

βh̄ ∑
n

eiωnη

×
[

1
2

h̄ +
ǫ0

k + 1
2 Σλ (k, ωn)

iωn − h̄−1 (ǫ0
k − µ

)

− Σλ (k, ωn)

]

, (132)

8 When an interacting Hamiltonian ĤI is applied to the noninteracting system with the Hamiltonian
Ĥ0, the interaction strength is controlled by the parameter λ to yield Hamiltonian Ĥ = Ĥ0 +
λĤI with its λ parameterized eigenstate |Ψ0 (λ)〉. The energy difference E − E0 is calculated by
∫ 1

0
dλ
λ 〈Ψ0 (λ)| λĤI |Ψ0 (λ)〉.
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and the number of particles is

N (T, V, µ) = ∓V (2s + 1)
∫

d3k

(2π)2
1

βh̄ ∑
n

eiωnη

iωn − h̄−1 (ǫ0
k − µ

)

− Σλ (k, ωn)
. (133)

The temperature Green’s function in Eq. (129) is very similar to Eq. (110), which includes
the real single-particle energy spectrum. However, there is one important difference that the
frequency is not a real frequency or energy, because ωn is a discrete variable. The computation
of the energy spectra is available by using the temperature Green’s function.
It is convenient to introduce a real-time Green’s function corresponding to the real-time trace
in Eq. (120) multiplied by the statistical grand distribution Eq. (121). The real-time Green’s
function is then written (Fetter & Walecka, 2003) in the momentum space representation as

Ḡ (k, ω) =
1

1 ∓ e−βh̄ω
ḠR (k, ω) +

1

1 ∓ eβh̄ω
ḠA (k, ω) . (134)

Let us introduce a generic real-time Green’s function of a complex variable z which satisfies

Γ̄ (k, z) =
∫ ∞

−∞

dω′

2π

A (k, ω′)
z − ω′ , (135)

where A (k, ω′) is the spectral weight function (Galitskii & Migdal, 1958), which yields the
integral representations of the retarded Green’s function

ḠR (k, ω) = Γ̄ (k, ω + iη) =
∫ ∞

−∞

dω′

2π

A (k, ω′)
ω − ω′ + iη

, (136)

and the advanced Green’s function

ḠA (k, ω) = Γ̄ (k, ω − iη) =
∫ ∞

−∞

dω′

2π

A (k, ω′)
ω − ω′ − iη

. (137)

The spectral weight function should satisfy the sum rule

∫ ∞

−∞

dω′

2π
A
(

k, ω′) = 1 (138)

for both bosons and fermions. With this sum rule, we have an asymptoctic behavior of the
Green’s function

Γ̄ (k, ω) ∼ 1
ω

∫ ∞

−∞

dω′

2π
A
(

k, ω′) ∼ 1
ω

for |ω| → ∞. (139)

The spectral function constructs also the temperature Green’s function

G (k, ωn) =
∫ ∞

−∞

dω′

2π

A (k, ω′)
iωn − ω′ . (140)

In other words, the function Γ̄ (k, z) in Eq. (135) determines the temperature Green’s function
G as well as the real-time Green’s funcitons ḠR and ḠA by analytic continuation technique
in the complex ω plane. The sum rule ensures the uniqueness of the analytic continuation
(Baym & Mermin, 1947). Once we evaluate the temperature Green’s function G only at the
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discrete set of points {iωn}, the thermodynamic variables Ω, E, and N are obtained. The
spectral weight function is able to be derived from the temperature Green’s function G . Then
we can have the real-time Green’s functions ḠR and ḠA, which give us the quasiparticle
energy spectrum.
Hence, we complete the equilibrium thermodynamics; information on macroscopic
thermodynamic variables as well as microstates.

5. Irreversible processes

The Green’s function method reviewed above describes the equilibrium thermodynamics
of a matter composed of fermions with the interactions mediated by the corresponding
bosons. The power of the Green’s function method does not limited to the equilibrium
thermodynamics, but does solve many irreversible thermodynamic problems for the situation
not far from the equilbrium states. The information from the irreversible processes of
not-so-far from the equilibrium is extremely important for building an equilibrium phase
diagram.
The procedure for acquiring the thermodynamic information includes a certain perturbation
to the system for equilibrium process. For example, one should apply the external pressure
to the system for changing its volume, one should apply a magnetic field H to the system
for measuring its magnetization, one should should add heat to the system for increasing its
temperature, etc. Such realistic experimental procedure should be considered for comparing
the theoretical and experimental thermodynamic data assessments. However, a certain
kind of phases in the system does not stable under the given condition. Even the Gibbs
free energies for some metastable/unstable structures are undefinable because they are
dynamically unstatble. This kind of problems has been studies extensively in the CALPHAD
society, see Kaufman (2001) for example.
Many difficulties in practical CALPHAD computations arise when the system has magnetic
instabilities. The inclusion of magnetism in the CALPHAD method has been devoted for
long time (Hillert & Jarl, 1978; Midownik, 1977). However, the current methods to build any
phase diagram with magnetism are hardly thought to be completed, in terms of both the
first-principles and the empirical one. The apparent reason for this failure is due to the nature
of magnetism, which we have not understood its underlying physics yet.
Once magnetism involves, we are facing Invar effects (Kim, 1988; 1999), magnetostrictions
(Lines, 1979), and magnetocaloric effects (de Oliveira & von Ranke, 2010). As stated in
Sec. 3.2, there are spontaneous symmetry breaking related with elementary excitations, for
example magnons or spin waves emerge when the spin rotation symmetry is broken. In
a ferromagnetic system, the magnetic susceptibility which is defined by the magnetization
with respect to the external magnetic field diverges below the Curie temperature TC without
external magnetic fields. In general, the computation of the magnetic susceptibility should
consider the correct underlying physical mechanism. The experimental procedure for
measuring any susceptibilities is the irreversible processes. This is also in great importance to
understand the phase transitions.

5.1 Linear response theory

A theory for phase transition should be developed; the theory leaves the non-diverging
error near the critical region, where a set of physical observables diverges. Kubo (1957) and
Kubo et al. (1957) developed such a theory, called as the linear reponse theory, for the case
of not-so-far from equilibrium, by the quantum mechanical interpretations on the Liouville’
theorem in Eq. (17) and the Bloch equation in Eq. (122).

567Towards the Authentic Ab Intio Thermodynamics

www.intechopen.com



26 Will-be-set-by-IN-TECH

Let the Hamiltonian of the natural motion of a many-body system to be Ĥ. We would like to
apply an external perturbation Ĥ′ to the system, which yields now the total Hamiltonian

Ĥtotal = Ĥ + Ĥ′. (141)

We consider the external perturbation being a time dependent driving force

Ĥ′ (t) ∼ −F (t) . (142)

When the system is in its natural motion, the statistical distribution function, or the density

matrix, ρ̂, is calculated by Eq. (121). With the external perturbation Ĥ′, the total density matrix
will be differ from its natural density matrix as

ρ̂total = ρ̂ + ρ̂′. (143)

For any physical observables Â, the thermal expectation value of Â is given by
〈

Â
〉

= Tr
(

ρ̂′ (t) Â
)

≡ 〈A (t)〉 . (144)

The initial ensemble which represents statistically the initial state of the system is specified by
the density matrix ρ̂ satisfying

[

Ĥ, ρ̂
]

∓ =
[

K̂, ρ̂
]

∓ = 0, (145)

where
[

Â, B̂
]

∓ is the Poisson bracket to be ÂB̂ ∓ B̂Â, for any quantum operators Â and B̂. The
symbol ∓ indicates the Poisson bracket for bosons and fermions, respectively. On the other
hand, the motion of the ensemble under the perturbation Eq. (142) is represented by ρ̂′ (t),
which obeys the equation

ih̄
∂

∂t

(

ρ̂ + ρ̂′
)

=
[

Ĥ + Ĥ′, ρ̂ + ρ̂′
]

∓

=
[

K̂+ Ĥ′, ρ̂ + ρ̂′
]

∓ . (146)

By assuming that the external perturbation is sufficiently weak, we have a linear equation

ih̄
∂

∂t
ρ̂′ =

[

K̂, ρ̂
]

∓ +
[

Ĥ′, ρ̂
]

∓ , (147)

with Eq. (145) and the neglecting the second order term,
[

Ĥ′, ρ̂′
]

∓.
Let us solve Eq. (147) by introducing the interaction representation of the density matrix as

ρ̂′I (t) = eiK̂t/h̄ ρ̂′e−iK̂t/h̄. (148)

Differntiation both sides of Eq. (148) with respect to t yields

ih̄
∂

∂t
ρ̂′I (t) = −

[

K̂, ρ̂′ (t)
]

∓ + eiK̂t/h̄

(

ih̄
∂

∂t
ρ̂′
)

e−iK̂t/h̄,

where the second term on the right hand side is replaced by Eq. (148) to obtain

ih̄
∂

∂t
ρ̂′I (t) = eiK̂t/h̄ [Ĥ′, ρ̂

]

∓ e−iK̂t/h̄ ≡ k (t) .
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This differential equation is readily solved as

ρ̂′I (t) =
1
ih̄

∫ t

−∞
k
(

t′
)

dt′ + c, (149)

where c is a constant. Let us assume that the system is in its equilibrium at t = −∞, i.e.,
Ĥ′ (t = −∞) = 0, and consequently ρ̂ = ρ̂′ = 0 for t = −∞. In this case, the constant c = 0.
Considering the interaction representation in Eq. (148), we arrive at the solution

ρ̂′ (t) =
1
ih̄

e−iK̂t/h̄
∫ t

−∞
dt′k

(

t′
)

eiK̂t/h̄

=
1
ih̄

∫ t

−∞
dt′e−iK̂(t−t′)/h̄ [Ĥ′ (t′

)

, ρ̂
]

∓ eiK̂(t−t′)/h̄. (150)

Therefore, the linear response Â (t) by the external perturbation Ĥ′ is able to be computed by
using Eqs. (144) and (150) to be

〈

Â (t)
〉

=
1
ih̄

∫ t

−∞
dt′Tr

(

e−iK̂(t−t′)/h̄ [Ĥ′ (t′
)

, ρ̂
]

∓ eiK̂(t−t′)/h̄ Â
)

. (151)

When the external perturbation Hamiltonian in Eq. (142) can be written in an oscillatory form

Ĥ′ = −B̂eiωt, (152)

we have the linear response as

〈

Â (ω)
〉

= ± i

h̄

∫ ∞

0
eiω(t−t′)Tr

(

ρ̂
[

ÂI

((

t − t′
))

, B̂
]

∓
)

d
(

t − t′
)

, (153)

where AI (t − t′) is in the interaction representation as in Eq. (148) and we use the cyclic
property of trace.
Since the external perturbation Ĥ′ does not appear in Eq. (153) at all, we can treat ÂI as the
Heisenberg representation with respect to the natural motion described by K̂. Consequently,
the linear response is determined from a correlation function of the fluctuations of the relevant
quantities in the absence of the external perturbation.
Computation of the dynamic magnetic susceptibility illustrates the usefulness of the linear
response theory. When the oscillatory external field in Eq. (152) is applied in the ν-direction,
the thermal expectation value of the magnetization in the µ-direction is obtained as

〈

M̂µ (ω)
〉

=
i

h̄

∫ ∞

0
eiωτTr

(

ρ̂
[

M̂µ (τ) , M̂ν
]

−
)

Hνdτ, (154)

where we use the abbreviation τ = t − t′ and replaces B̂ by M̂ν Hν, where Hν is the ν-the
component of the external magnetic field H. Dynamic magnetic susceptibility, defined as

χµν (ω) ≡
〈

M̂µ (ω)
〉

Hν
, (155)

is then calculated as

χµν (ω) =
i

h̄

∫ ∞

0
eiωτTr

(

ρ̂
[

M̂µ (τ) , M̂ν
]

−
)

dτ. (156)
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The extension to the case of the response to an magnetic field oscillating in space with the
wave vector q is straightforward to be

χµν (q, ω) =
i

h̄

∫ ∞

0
eiωτTr

(

ρ̂
[

M̂µ (q, τ) , M̂ν (−q)
]

−
)

dτ. (157)

In general, a linear response function is given in the form

χAB (q, ω) = ± i

h̄

∫ ∞

0
eiωτTr

(

ρ̂
[

Â (q, τ) , B̂ (−q)
]

∓
)

dτ. (158)

This is the virtue of the linear response theory.

5.2 Fluctuation-dissipation theorem

The Kubo formula of the linear response function, or the generalized susceptibilty, is given
in Eq. (158). By extending the interval of integration to (−∞, ∞) in Eq. (158), we define a
function f as

fAB (q, ω) = ± i

h̄

∫ ∞

−∞
eiωτTr

(

ρ̂
[

Â (q, τ) , B̂ (−q)
]

∓
)

dτ. (159)

The integration is now devided into the negative and positive ranges as

fAB (q, ω) = ± i

h̄

∫ ∞

0
eiωτTr

(

ρ̂
[

Â (q, τ) , B̂ (−q)
]

∓
)

dτ

∓ i

h̄

∫ ∞

0
eiωτTr

(

ρ̂
[

Â (q) , B̂ (−q,−τ)
]

∓
)

dτ, (160)

where we changed τ to −τ in the second term of the right hand side, and moved the factors
exp (±iKτ/h̄) around A (q) to aound B (−q) using the cyclic property of trace. Since Eq.
(158) has a symmetry

χ∗
AB (q, ω) = χAB (−q,−ω) , (161)

it is able to denote fAB as
fAB = χAB (q, ω)∓ χ∗

BA (q, ω) . (162)

Eq. (159) is written as

fAB (q, ω) =
(

1 ∓ e−βh̄ω
) i

h̄

∫ ∞

−∞
eiωτTr

(

ρ̂
[

Â (q, τ) , B̂ (−q)
]

∓
)

dτ, (163)

because of the identity
∫ ∞

−∞
eiωτTr

(

ρ̂
[

Â (τ) , B̂
]

∓
)

dτ = ±eβh̄ω
∫ ∞

−∞
eiωτTr

(

ρ̂
[

B̂, Â (τ)
]

∓
)

dτ. (164)

The two representations of fAB in Eqs. (162) and (163) lead us a result

∫ ∞

−∞
eiωtTr

(

ρ̂
[

Â (q, t) , B̂ (−q)
]

∓
)

dt =
ih̄

e−βh̄ω ∓ 1
{χAB (q, ω)∓ χ∗

BA (q, ω)} , (165)

where we changed the variable τ by t. Eq. (165) relates the linear response function and the
ordinary correlation function. For a special case of A = B, Eq. (165) is reduced to

∫ ∞

−∞
eiωtTr

(

ρ̂
[

Â (q, t) , Â (−q)
]

∓
)

dt = − h̄

e−βh̄ω ∓ 1
2ℑχAA (q, ω) . (166)
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The physical meaning of Eq. (166) is now clear: the correlation function of the thermal
fluctuation determines the imaginary part of the linear response function, i.e., the dissipation
of the system. Therefore, we call Eqs. (165) and (166) as the fluctuation-dissipation theorem.
One can easily find a similarity between the fluctuation-dissipation theorem in Eqs.
(165)–(166) and Eq. (134). The spectral representation of the retarded real-time Green’s
function Eq. (136) is the momentum space Lehmann representation of the two-time retarded
Green’s function defined by

iḠR
αβ

(

xt, x′t′
)

= θ
(

t − t′
)

Tr
(

ρ̂
[

ψ̂α (xt) , ψ̂†
β

(

x′t′
)

]

∓

)

. (167)

The corresponding advanced Green’s function is defined by

iḠA
αβ

(

xt, x′t′
)

= −θ
(

t − t′
)

Tr
(

ρ̂
[

ψ̂α (xt) , ψ̂†
β

(

x′t′
)

]

∓

)

. (168)

In these definitions of the two-time Green’s functions, ψ̂ and ψ̂† are respectively the field
annihilation and creation operators in the Heisenberg representation

Â (xt) ≡ eiK̂t/h̄ Âe−iK̂t/h̄. (169)

A two-time Green’s function represents the correlation of thermal fluctuation of the process
that a particle created at x′t′ and it annihilated at xt. In other words, the two-time Green’s
functions are nothing more than the correlation functions of two operators ψ̂α and ψ̂†

β. Note

that all the quantum operators are composed of the field operators ψ̂α and ψ̂†
β, so that the

two-time Green’s function can be used to describe all the physical correlations of the system.
In the linear response theory, the interaction representation of an operator is not different
from the Heisenberg representation in the two-time Green’s functions. Therefore, the linear
response is nothing more than the retarded two-time Green’s function. Note that the causality
of any physical process stresses that the dissipation χ should be the imaginary part of the
retarded Green’s function.
Now, we have completed the formal theory for computing thermodynamic properties in
terms of the quantum field theory. An experimental observation is indeed a measurement
of a response of the system by a corresponding external perturbation. The response function
is related to the retarded two-time Green’s function in terms of the fluctuation-dissipation
theory. The two-time Green’s function provides the quasiparticle energy spectra. The
two-time Green’s function can be transformed to a temperature Green’s function by
introducing the spectral weight function. Once we have the temperature Green’s function,
we can calculate the thermodynamic information, such as the number of particles N, the
internal energy E, and the grand potential Ω, directly. By performing derivatives on the grand
potential, the remaining thermodynamic functions can be evaluated. When there is a phase
transition, the response function diverges near the critical region, but the grand potential does
not, because the grand potential is a integrated value of the temperature Green’s function in
the complex ω plane.
Kubo (1966) himself demonstrated the applications of the fluctuation-dissipation theorem
to compute the density response, conduction and diffusion. The fluctuation-dissipation
theorem (Kubo, 1957) is able to explain the irreversible processes related with fluctuations
(Callen & Welton, 1951; Casimir, 1945; Nyquist, 1928; Onsager, 1931a;b). Further applications
are well summarized by Gammaitoni et al. (1998).
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The remained work is mainly on the applications to the realistic matter.

6. Inhomogeneity is reality

We have a brief review on the formalism of the quantum field theoretic approach for
thermodynamics properties of the system in homogeneous (and isotropic) distributions.
The homogeneous approximation of a matter has served as a model system of matter for
investigating the nature of the complex phenomena occuring in the matter. The study on
electron liquid is an example (Fetter & Walecka, 2003; Giuliani & Vignale, 2005; Kim, 1999;
Pines, 1962; 1999). Phonon-mediated superconductivity can be solvable under the method
after performing a suitable transformation for treating Cooper pairs (Schrieffer, 1988). A
relativistic version of the method has been applied to plasmas (Melrose, 2008).
However, the realistic materials has internal (micro-)structures and even pure elemental
materials are not fully homogeneous. Steels as representative structural materials have large
variety of microstructures, which influences on the properties, e.g., strength and elongations
(Bhadeshia & Honeycombe, 2006). In metals and alloys, the internal structures of materials are
governed by the equilibrium thermodynamics and the irreversible processes (Christian, 2002).
It is necessary to deal with the inhomogeneity when we are dealing with thermodynamics and
irreversible processes for materials sciences.

6.1 Density functional theory

The applications of the formal quantum theories, developed in a homogeneous model system,
to the realistic inhomogeneous systems have long time history (Fermi, 1927; Slater, 1951;
Thomas, 1938). An innovative formalism to treat the inhomogeneous electronic system was
suggested by Hohenberg & Kohn (1964). They firstly proved that the ground state energy is
a unique functional of density, E [n (x)]. Due to the uniqueness of the ground state energy, the
discussions in the previous sections can be reformulated with density. This is the reason why
the Hohenberg-Kohn theory is called the density functional theory (DFT). For a slowly vaying
density profile, the density functional theory is a generalization of the Thomas-Fermi theory.
They proved also that the essential density gradient in the inhomogeneous electron gas can
be used for describing the energy functional.
An immediate extension of the Hohenberg-Kohn theory to the finite temperature was done
by Mermin (1965). At a given temperature and chemical potential, no two local potential v (x)
lead to the same equilibrium density. In other words, one can define a density functional
F [n (x)] independent of v (x), such that the quantity

Ω ≡
∫

v (x) n (x) d3x + F [n (x)] , (170)

is at a minimum and equal to the grand potential when n (x) is the equilibrium density in the
grand canonical ensemble in the presence of v (x). Kohn & Sham (1965) themselves were able
to derive the forms for the grand potential, specific heat, and spin susceptibility.
Schneider (1971) provided a general theory of the liquid-solid phase transition by employing
the finite temperature density functional theory by virtue of the fluctuation-dissipation
theorem on the density response. During the construction of the functional F [n], the external
perturbation potential is assumed to be of form

vext (x) =
1
2 ∑

q �=0

(

vext (q) eiq·x + c.c.
)

. (171)
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The density of the system will contain a linear response to be

n (x) = n̄ +
1
2 ∑

q �=0

(

n (q) eiq·x + c.c.
)

, (172)

where n̄ is the mean density and n (q) is the density fluctuations. The Mermin condition
(Mermin, 1965) yields

n (q)

n̄
= χ (q, [n̄]) vext (q) , (173)

where the density response function is

− χ (q, [n̄]) =
1

β−1 + veff (q, [n̄])
, (174)

and veff is the corresponding effective potential. For free energy minimum, the density
response function should satisfy the condition

− 1
χ (q, [n̄])

> 0 (175)

for the system is in an equilibrium state either absolutely stable or metastable. Therfore,
−χ−1 (q, [n̄]) = 0 determines the stability limit of the fluid (qL, PL, TL). The static stability
condition can be written as

− 1
χ−1 (q, [n̄])

=
1

βS (q)
=

1
β
+ veff (q, [n̄]) = 0, (176)

where S (q) is the static mean density fluctuation. The condition Eq. (176) impiles that the
mean density fluctuation S (q) with the particular wave number qL increases as this limit is
approached. Near the stability limit only the region q ≃ qL is important. We may set the
effective potential dependence on T and q as

βveff (q) = −1 + A (T − TL) + B (q − qL)
2 . (177)

Then, the density fluctuation for constant n̄ is wrtten as

S (q) =
1

A (T − TL)

1/ξ2

1/ξ2 + (q − qL)
2 , (178)

where ξ2 = B/A (T − TL). As q approaches to qL, S (q) increases and the peak becomes
sharper. The same effect is also seen in the dynamic mean density fluctuation S (q, ω) at the
static case ω = 0.
This result is consistent with our everyday experiences. In a fluid state, there are random
density fluctuations, which can be seen if there is an interface; a random wave distribution on
a smooth lake surface is an example. Such density fluctuation is represented in the Fourier
terms, by a linear combination of the wave vectors and frequencies. When the temperature
is cooled down with a constant pressure, the fluid transforms to crystals, e.g., ice. A crystal
is by definition a regular arrangement of density, with a spatial period of a corresponding
wave vector. Eq. (178) tells us that the static mean density fluctuation at the critical wave
vector qL with the corresponding regularity will be sustained, even if there is no external
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density perturbation, at the given pressure and temperature. In the mean time, the remained
fluctuation modes will be suppressed. This state with the density distribution of a specific
spatial regularity, represented by qL, is the crystal. Hence, the denominator of Eq. (178)
explains the critical properties of the solidification.
Once the liquid transformed to a solid, the description of the system state should be
switched to a new language for solid states. Every crystalline solid is categorized by
its three dimensional translation and rotation symmetries to be the one of the 230 space
groups (Bravais, 1845). Bloch (1928) proved, by using the periodic boundary condition
(Born & von Kármán, 1912; 1913) and the group representation theory (Wigner, 1927), that
the electronic wave function in a crystalline solid should be in the form

ψnk (x) = eik·Runk (x) , (179)

where n is the band index and R is the Bravais lattice vector. The Bloch function has
three consequencies (Aschcroft & Mermin, 1976): (1) The momentum eigenvalue h̄k of the
momenum operator p = (h̄/i)∇ does not conserve, instead the crystal momentum h̄k +

eik·x h̄
i ∇ conserves. (2) The wave vector k is confined to the first Brillouin zone, so that

the index n appear in Eq. (179) represent the multiplicity of the k confinements. (3) The
nonvanishing velocity of a particle in a level specified by band index n and wave vector k is
given by

vn (k) =
1
h̄
∇kǫn (k) , (180)

where ∇k is a gradient operator with respect to the wave vector k. Further consequencies can
be found in many solid-state physics text books (Altmann, 1995; Aschcroft & Mermin, 1976;
Callaway, 1974; Jones & March, 1973a;b; Kittel, 2005; Madelung, 1978).
On the other hand, the numerator, 1/ξ2 in Eq. (178) explains another aspect of the
solidificaiton. The numerator describes the width in the wave vector space of the divergying
static mean density fluctuation S (q). As q → qL, the wave vectors in a narow range around
qL also contributes to S (q). When two waves of near wave vector (or frequency) superposes
in the same position, we observe a very well known phenomenon, beats (Landau & Lifshitz,
1978). The broadening in S (q) implies that there are many wave vectors around superposing
in the space to exhibits a complex pattern of spatial beats during the crystallization process.
In other words, the crystallization will not happen in whole the liquid simultaneously, but the
crystal nucleates.
Note that the numerator 1/ξ2 contains the details of the interaction of the liquid. As we seen
in Sec. 5.2, the dissipation of the external perturbation or the system response is determined
by the interal fluctuation of the system. The internal fluctuation is determined by the details
of the interaction of the system. Hence, we need to have the detailed interaction information
of the system also for understanding phase transition phenomena completely.

6.2 Kohn-Sham equations

Kohn & Sham (1965) suggested two approximation methods for treating an inhomogeneous
system of interacting electrons. Let us describe the first approximation first. The ground-state
energy of the system in a static potential v (x) can be written in the form, in Hartree atomic
unit h̄ = e2 = me = 1,

E = T0 [n] +
∫

v (x) n (x)d3x +
1
2

∫∫

n (x) n (x′)
|x − x′| d3xd3x′ + Exc [n] , (181)
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where T0 is the kinetic energy functional of a system of noninteracting electrons and Exc [n]
is the exchange and correlation energy functional of an interacting system with density n (x).
By assuming

Exc [n] =
∫

n (x) ǫxc (n (x)) d3x, (182)

the stationary condition of the energy functional Eq. (181) with respect to the density variation
δn leads us to have an equation

δT0 [n]

δn (x)
+ v (x) + µxc (n (x)) = 0, (183)

where v (x) is the result of the functional derivatives of the static integration terms of Eq. (181)
and µxc is the result of the functional derivatives of the exchange-correlation functional Exc [n].
By assuming µxc (n (x)) to be local, we can imagine a “ficticious” particle that moves by the
single-particle Schrödinger-like first Kohn-Sham equation

(

− 1
2
∇2 + ϕ (x) + µxc (n (x))

)

ψKS
i (x) = ǫKS

i ψKS
i (x) , (184)

and setting

n (x) =
N

∑
i=1

∣

∣

∣
ψKS

i (x)
∣

∣

∣

2
, (185)

where N is the number of electrons. Since we have no knowledge on the density n (x), it
should be obtained self-consistently starting from a guessed density profile n (x). We compute
the Kohn-Sham orbitals ψKS under the static potential ϕ (x) as well as the exchange-correlation
potential µxc (n (x)) and then evaluate the density from Eq. (185). Once we obtain the
self-consistent density profile n (x), the energy of the system is obtained by Eq. (181), if we
have an explicit functional form of Exc [n]. Indeed the knowledge of the exchange-correlation
functional form is important to obtain the exchange-correlation potential during solving Eq.
(184). The cost of computation Eq. (184) is only that of the Hartree equation times the number
of self-consistent iterations. The cheap Kohn-Sham equation have get superiority in solving
many-body problems as developing computer technology (Argaman & Makov, 2000).
The second approximation by Kohn & Sham (1965) is based on the assumption that

Exc [n] = Ex [n] +
∫

n (x) ǫc (n (x))d3x. (186)

This assumption yields the Hartree-Fock-like second Kohn-Sham equation
(

− 1
2
∇2 + ϕ (x) + µc (n (x))

)

ψKS
i (x)−

∫

n1 (x, x′)
|x − x′| ψKS

i

(

x′
)

d3x′ = ǫKS
i ψKS

i (x) , (187)

where µc (x) is the correlation potential and

n1
(

x, x′
)

=
N

∑
j=1

ψKS
j (x) ψ∗KS

j

(

x′
)

. (188)

This procedure is similar to the Hartree-Fock method with the local correlation effect, and its
cost of computation is comparable to the computational labor intensive Hartree-Fock method
due to its nonlocal density matrix operation on the Kohn-Sham orbitals ψi (x) appeared in
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Eq. (187). Hence, the application of the Kohn-Sham equation of the type in Eq. (187)
has been hesitated. Although the practical success of the first Kohn-Sham equation in
Eq. (184), the approximations are remained uncontrollable, because there is no known
explicit exchange-correlation functional. Recent developments of computer technology, many
approaches has been tried to utilize the second type Kohn-Sham equation (Kümmel & Kronik,
2008). This kind of approaches has solved many problems in the first-type Kohn-Sham
equation.
However, there is a critical issue on the solutions of the Kohn-Sham equations. Koopmans
(1934) proved that the ith occupied eigenvalues of the Hartree-Fock equation is identified as
the energy required to remove an electron from that orbital without perturbing the rest of the
system. This theorem is not valid in the density functional theory, in general. Only the highest
occupied eigenvalue of the Kohn-Sham equations has a rigorous physical meaning that the
partial derivative is exactly the chemical potential of the system (Almbladh & von Barth,
1985; Levy et al., 1984). In other words, the Kohn-Sham orbitals ψKS

i (x) except the highest
occupied orbital are physically meaningless, but they are useful only for building the density
in Eq. (185). Indeed, the Kohn-Sham charge density generated by Eq. (185) differs hardly to
that of the Hartree-Fock charge density (Stowasser & Hoffmann, 1999). A quantitative linear
scailing interpretation of Kohn-Sham eigenvalues with respect to corresponding Hartree-Fock
eigenvalues was suggested (Stowasser & Hoffmann, 1999).

6.3 Spectral weight function and quasiparticle spectra

As seen in Sec. 6.1, the detailed interaction information of the system is equally important
to understand the phase transition as well as the equilibrium properties of the system.
In the density functional theoretical framework, the Kohn-Sham equations have a critial
problem of the unknown physical meanings of their eigenvalues. The resultant Kohn-Sham
orbitals ensure the ground state energy, the density n (x), and the chemical potential. The
other information obtained by using the Kohn-Sham orbitals are fictitious. It is fortunate or
unfortunate that the Kohn-Sham orbitals are close to the quasiparticle orbitals, which have the
concrete physical meaning through the Koopmans’ theorem (Koopmans, 1934). Since there is
no further proof on the physical meaning of the Kohn-Sham orbitals, a promising way to
build the physically seamless theoretical framework for phase diagrams is starting from the
quantum field theory described in Sec. 4, armed with the Kubo’s framework in Sec. 5.1–5.2.
The Hamiltonian operator Ĥ, the momentum operator P̂, and the number opertator N̂
commute each other. By symmetry, those operators have a set of eigenstates {|m〉}
simultaneously (Tinkam, 1964), such that

P̂ |m〉 = Pm |m〉 , (189)
(

Ĥ − µN̂
)

|m〉 = (Em − µNm) |m〉 . (190)

Note that Eq. (190) is understood as

K̂ |m〉 = Km |m〉 . (191)

With the aid of the Sokhotsky-Weierstrass theorem (Byron & Fuller, 1992),

1
ω ± iη

= ℘
1
ω

∓ iπδ (ω) , (192)
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we will have a Lehmann representation of the real-time Green’s function for real ω such as

Ḡ (k, ω) =
eβΩ

2s + 1 ∑
m,n

e−βKm (2π)3 δ
[

k − h̄−1 (Pn − Pm)
]

∣

∣〈m| ψ̂α |n〉
∣

∣

2

×
{

℘
1

ω − h̄−1 (Kn − Km)

(

1 ∓ e−β(Kn−Km)
)

−iπδ
[

ω − h̄−1 (Kn − Km)
] (

1 ± e−β(Kn−Km)
)}

, (193)

where s is the spin degeneracy and ℘ denotes a principal value. The imaginary part of Eq.
(193) is written as

ℑḠ (k, ω) = − πeβΩ

2s + 1 ∑
m,n

e−βKm (2π)3 δ
[

k − h̄−1 (Pn − Pm)
]

∣

∣〈m| ψ̂α |n〉
∣

∣

2

×δ
[

ω − h̄−1 (Kn − Km)
] (

1 ± e−β(Kn−Km)
)

. (194)

Landau (1958) proved a relation

ℜḠ (k, ω) = −℘

∫ ∞

−∞

dω′

π

ℑḠ (k, ω′)
ω − ω′

1 ∓ e−βω′

1 ± e−βω′ . (195)

Considering the spectral representation form in Eq. (135) we have the detailed spectral weight
function of form

A (k, ω) =
eβΩ

2s + 1 ∑
m,n

e−βKm (2π)3 δ
[

k − h̄−1 (Pn − Pm)
]

×2πδ
[

ω − h̄−1 (Kn − Km)
] (

1 ∓ e−β(Kn−Km)
)

∣

∣〈m| ψ̂α |n〉
∣

∣

2 . (196)

Since the spectral weight function A (k, ω) relates the real-time Green’s function and the
temperature Green’s function, we can, in principle, solve all the thermodynamic problems
with detailed interaction information of the system: The thermal Green’s function describes
the equation of states, while the imaginary part of the retarded Green’s function from the
real-time Green’s funciton yields the fluctuations to describe the phase transtion, including
the transport properties. The remained difficulty is to calculate the eigenvalues Km and Pm in
Eqs. (189)–(190) in the case of interacting systems.
Is it able to calculate the eigenvalues of the interacting system at a finite temperature?
Let us come back to the idea of Born & Oppenheimer (1927) adiabatic separation of the
motions of electrons and ions. In the Born-Oppenheimer scheme, we first calculate the
motions of electrons in a given ionic background and then calculate the motions of ions at
the given electronic one. It is well konw that the given symmetry and many-body effects will
emerges as elementary excitations (Pines, 1999), which can be extended even to a macroscopic
levels (Anderson, 1997). Some of the elementary excitations may originated from either
electrons or ions. For example, plasoms are the elementary excitations of collective motions of
electrons, while phonons are the elementary excitation of the collective motions of ions. One
can also interesting to more complex excitations, which are composites of those elementary
excitations. Anyhow, all such properties are computed from the electronic structures of the
system.
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It is instructive to consider the formal form in Eq. (129) of the Dyson’s equation. Since
the Dyson’s equation expresses the difference between the noninteracting and interacting
temperature Green’s functions in terms of the self-energy, Σ (k, ωn); all the many-body effects
are contained in the self-energy. Considering the real space Dyson’s equation form in Eq.
(107), we may have a Hartree-Fock-like self-consistent equation (Fetter & Walecka, 2003)

[

− h̄

2m
∇2

1 + v (x1)

]

ψj (x1) + h̄
∫

d3x2Σ (x1, x2) ψj (x2) = ǫjψj (x1) , (197)

where v (x1) is the static one-body potential to describe the inhomogeneity as in the density
functional theory, ∇2

1 is the Laplacian operator with respect to the coordinate x1, and µ is the
chemical potential obtained by

N (T, V, µ) = (2s + 1)∑
j

nj, (198)

with the number distribution function

nj =
1

eβ(ǫj−µ) ∓ 1
. (199)

The chemical potential µ (T, V, N) is, in principle, able to be inverted from Eq. (198) if N is
fixed. In this derivation, we assumed that all the necessary frequency summed are already
done for making Σ being depending explicitly on T and µ, but being independent to the
frequency ωn of the Hartree-Fock form and the temperature Green’s function

G (x1, x2, ωn) = ∑
j

ψj (x1) ψ∗
j (x2)

iωn − h̄−1
(

ǫj − µ
) , (200)

where ψj is a single-particle wave function with energy ǫj for forming a complete orthonormal
set, forms the same form of the noninteracting temperature Green’s function G0 (x1, x2, ωn)
with ψ0

j , the solution of a differential equation

[

ih̄ωn +
h̄

2m
∇2

1 + µ − v (x1)

]

ψ0
j (x1) = ǫ0

i ψ0
j (x1) . (201)

In this self-consistent formalism, the quasiparticle energy spectrum becomes

ǫk = ǫ0
k + h̄Σ (k) , (202)

where we recover the momentum space representation.
This equation tells us that the noninteracting quasiparticle moving with the energy spectrum
ǫ0

k is dressed by the self-energy Σ (k) by the sophisticated many-body interactions. The energy
dispersion of a free particle of mass m∗ will have a dispersion

∇kǫk =
k

m∗ .
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Equating this relation to result of the operation of the gradient operator on Eq. (202) yields

m

m∗ = 1 +
h̄∇kΣ (k)

ǫ0
k

. (203)

This means that the motion of the quasiparticle of mass m may be thought as that of a free
particle of mass m∗, of which all the many-body effects are corrected. Now we can call m∗ as
the effective mass of the quasiparticle. The noninteracting quasiparticle Green’s function may
be in the form

Ḡ (k, ω) =
Z

ω − h̄−1 (ǫk − µ)
, (204)

where Z is called the renormalization factor, which contains the effective mass effect in Eq. (203).
Considering the spectral function relation with the Green’s function, we have

A (k, ω) = Zδ (ω + µ − h̄k) . (205)

In other words, the results of a photoemission spectroscopy are just the renormalization factor
of the system. The photoemission experiments gives the quasiparticle spectra.
The idea of renormalization was utilized by Landau (1957a;b; 1959), known as the
phenomenological Landau Fermi-liquid theory. Landau classified the quasiparticles as the
levels of a Fermi liquid corresponding to the classification of the levels of noninteracting
particles. The interaction is slowly turned on to the particles gradually become quasiparticles.
The methods described above can be directly applied for the quasiparticles. Using this
concept, Landau (1957a;b; 1959) was able to calculate the macroscopic quantities, such as
specific heat, entroy, magnetic susceptibility, kinetic motions, thermal conductivity, viscocity,
dispersion and absorption of sound, and fluctuations in the distribution function. The
relation with the quantum field theory of the Landau Fermi liquid theory was investigated
by Nozières & Luttinger (1962) and Luttinger & Nozières (1962), but it is not clear yet. Good
introductory reviews on the Ladau Fermi-liquid theory are given by Abrikosov & Khalatnikov
(1959); Giuliani & Vignale (2005); v. Löhneysen et al. (2006).
Bohm & Pines (1952) suggested a different point of view with a canonical transformation to
treat a particle and its consequent collective excitations simultaneously. In this formalism,
the canonical transformation stresses the elementary ingredients of the Hamiltonian are the
particle-hole pairs, instead of individual particles. Bohm & Pines (1952) approximated the
coupling between the excitations corresponding to different momentum transfers q and q′.
This ignorance is originated from an intuition that the momentum transfer phase q − q′ will
be random to be enough for cancelling themselves. Hence, the method is known as the random
phase approximation (RPA). The RPA was applied to the electronic system with plasmons and
refined (Sawada, 1957; Sawada et al., 1957). The RPA picture as the similarity with that of
(Goldstone, 1957) and it deals with the correlation function corresponding to the collective
excitations.
These features of the RPA have been utilized in susceptibility investigations. For
instance, Kim et al. (1973) calculated a spin polarized susceptibility9 based on the
fluctuation-dissipation theorem and the free energy by considering higher order self-energy
correction (Kim, 1974) withn the RPA. Kim (1982; 1989; 1999) used the RPA technique to
demonstrate, within the homogeneous jeullium model, that all the thermodynamic properties,
including the ferromagnetic phase transition, of the metallic ferromagnetism can be obtained
by considering the spin-polarized electrons with the collective excitations of phonons and

9 A practical self-consistent version was given by Lee et al. (1989).
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magnons. All those quasiparticles should interact each other, in contrast to the typical
considerations that quasiparticles hardly interacts each other. Lee et al. (2006) confirmed
that there are interactions between phonon and magnetism, and Bodraykov (2007) in his
phenomenological model reproduced the invar effect of the temperature dependent thermal
expansion coeffient by considering the results of the interacting phonon-magnon (Kim, 1982).

7. Defects

Although there is criticism on the validaties of the Landau Fermi-liquid concept
(v. Löhneysen et al., 2006), a new insight for dealing macroscopic physical observables, e.g.,
even domain (grain) boundaries and dislocations, combined with the concept of symmetry
breaking (Anderson, 1997). Since the semi-phenomenological construction of the Ladau
Fermi-liquid theory, it is possible to switch our intersts from the quasiparticle space to the
order parameter space. This transformation to the order parameter space is familiar with
that of Landau theory of phase transition. Toulouse & Kléman (1976) suggested an innovative
idea that the defects in ordered media can be classified in terms of the topological defects of
the corresponding order parameter. This topological concept was immediately applied to the
vortex textures in superfluid 3He for showing that the textures with vorticity without vortex
core can be constructed (Anderson & Toulouse, 1977). One of the most striking application
of the topological defects theory may be the explanation of the entanglement free dislocation
crossings (Poénaru & Toulouse, 1977); dislocations can be entangled if and only if they are
members of separate class of π1 (R). We will see the meaning of π1 (R) later. A pedagogical
review on the topological defects was given by Mermin (1979). Recenlty, Kleman & Friedel
(2008) reviewed the practical interpretations of the homotopy group theory of the topological
disclination, dislocations, and continuous defects.

7.1 Topological defects

In a periodic solid, the elastic variable is the vector displacement field u (x). Changes of u by
a Bravais lattice vector R leave the lattice unchanged. Thus the order parameter space for the
solid is the three-dimensional space of displacements u with lattice points. A dislocation with
a core along l is characterized by10

∮

du =
∮

C

du

ds
ds = R ≡ b, (206)

where C is a curve enclosing the core and b is called the Burgers vector. The construction of
the Burgers vector is fully topological, but there are two nontopological descriptions; screw
dislocations if b ‖ l and edge dislocations if b ⊥ l. Since the Bravais lattice vector, which
leaves after a single winding curve C passed to enclose the core, is discrete, the dislocation is,
from homotopy group theory, line.
Let us look at the characters of dislocations with little rigor (Mermin, 1979). Suppose that R
is an order-parameter space. There is a map f (z) of interval 0 ≤ z ≤ 1 into R defining the
real-space loop or circles into order-parameter space to give closed curves in order-parameter
space itself. A continuous directed curve described by maps f passing through a base point x
in R. The close curve is decribed by f (0) = f (1) = x. Two loops f and g are homotopic at x, if
there is a continous family of loops, all passing through x. The classes of homotopic loops at x
form a group, called π1 (R, x), and is known as the fundamental group of R at x. There are other
groups associated with the mappings of the surface of an n sphere Sn in Euclidean n + 1 space

10 Here, we follow the definition by Chaikin & Lubensky (1995).
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called πn (R, x). The fundamental group is called the first homotopy group and πn is then called
the nth homotopy group. For example, π2 (S2, x) is called when the maps f at the base point
x is on the sphere S, i.e., say, u and v into R, of three dimensional order-parameter space. For
an integer Z, if π1 (S1) = Z, the group structure does not depend on the choice of base point
x and the map is topologically the same as the circle. Any mapping of a loop into a sphere can
be shrunk to a point, so that the fundamental group of the surface of a sphere consists only
of the identity, π1 (S1) = 0. Trivial point defects are associated with mappings that can be
deformed to the constant map.
Let us say the group G containing translations as well as proper rotations, i.e. the proper
part of the full Euclidean group. Let H be the subgroup of G containing those rigid body
rotations that leave the reference system invariant. Naively the order-parameter space R is
the coset space G/H. If we ignore of the rotational symmetries of crystals, the full proper
Euclidean group can be replaced by the subgroup T (3) of translations. On the other hand
the isotropy subgroup H becomes the subgroup of T (3) consisting of translations through
Bravais lattice vectors. Since T (3) is parameterized by all of Euclidean three-space, it is
connected and simply connected. Since H is discrete, we identifies π1 (G/H) with H itself.
Thus the line defects, in our case dislocations, are characterized by Bravais lattice vectors.
The vector is usually known as the Burgers vectors. Because H is discrete π2 (G/H) = 0.
In this case, the homotopy theory says notopologically stable point defects. However, we
know thermodynamically stable point defects, e.g., vacancies or voids. The physical means
of removing a void are reminiscent of the nonlocal means available for the elimination of
topologically stable defects.
Now let us recover the operations of the rigid body rotations. The fundamental group
is identified with the double group. The three dimensional rotational parts of the group
operations are lifted from SO(3) rotation to SU(2). Discrete operations in the space group
with no translational part correspond to line defects, in which the local crystal structure rotates
through an angle associated with a point group operation as the line is encircled. Such defects
are known as disclinations. Although the π3 (R) has the classification problem (Mermin,
1979), the domain walls (grain boundaries) are thought as the string bounded topological
defects by the broken discrete symmetry (Vilenkin, 1985), hence so that textures evolve.

7.2 Renormalization group and gauge theory

Once the order parameter class is identified, the partition functions are divided by the
corresponding topologically invariant number. Indeed, Burakovski et al. (2000) rederived
the free energy density as a function of dislocation density depending on temperature,
starting from the partition function computation for the indistinguishable dislocation loops.
The resultant free energy density function is very similar to that out of the constitutional
approach (Cotterill, 1980). The free-energy is in the form of the two-dimensional xy
model, which should undergoes a two-dimensional Kosterlitz-Thouless phase transtion
(Kosterlitz & Thouless, 1973). The theory break down point, i.e., the melting temperature is
also derived. They also showed that the dislocation density ρ cannot be a continuous function
of temperature, but it is a gap function

ρ (T) =

{

0, T < Tm,
ρ (Tm) ∼ b−2, T = Tm,

(207)

where Tm is the melting temperature. The dislocation-mediated melting mechanism was
observed in a bulk colloidal crystals (Alsayed et al., 2005). A good review on two-dimensional
melting phenomena is given by Strandburg (1986; 1989).
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Since the inclusion of the symmetry classfication, the renormalization group approach is
appropriate to order parameters, or phase fields. The renormalization group theory has
been served as the most appropriate tool for investigating phase transitions and critical
phenomena (Anderson, 1997; Fradkin, 1991; Goldenfeld, 1992; Zinn-Justin, 1997). The idea
of the renormalization group approach is a sucessive scaling transformation of the system
interaction in real space, known as coarse-graining, or cutoff the high momentum fluctuations
larger than arbitrary value Λ to eliminate the ultraviolet catastrophe of the perturbation
expansion (Wilson, 1975; 1983). During the successive scaling, the interaction Hamiltonian
of the phase field should keep its symmetry. The resultant Hamiltonian is arrived at a fixed
point independent on the scale of the system, so it gives the universal behavior of the critical
phenomena. The singlularity in the order parameter equation gives the dissipation of the
order parameter. The good examples of the RG procedure with the topological defects were
given by Fradkin (1991).
Elegance is in the renormalization group theory, because it does not depend on the system
scale but on the symmetry. For example, the dislocation-mediated melting transition is
categorized as the problems of the vortex formation in superfluid 3He (Anderson & Toulouse,
1977). In this sense, transition phenomena in the world can be categorized by universality class
defined by the critical exponents.
However, is it enough?
Teichler (1981) criticised the above approach, because it is unsolved how we see the deviation
of the equations of motion of elementary excitations in an ordinary medium with topological
defects to the corresponding equations in the ideal configuration. He also showed that the
transformed single electron Hamiltonian for describing the distorted crystal by dislocation
(Brown, 1845) is described in terms of gauge fields in addition to the well-known deformation
potentials. Gauge means the redundant degrees of freedom in Hamiltonian or Lagrangian,
but its transformation behavior characterizes the interaction. The quantization of gauge field
is gauge boson; e.g., photons are a kind of gauge bosons out of the gauge degree of freedom
of electromagnetic fields.
The quantum motions of electrons in a gauge field due to the topological dislocation defects
have been investigated (Bausch, Schmitz & Truski, 1999; Bausch, Schmitz & Turski, 1999;
Turski & Mińkowski, 2009). The main conclusions of the gauge field theory (Bausch et al.,
1998) are that the motion of a quantum particle is described in a curved-twisted space, as
in gravitational field, called Rieman-Cartan manifold and that the Hamiltonian is separated
in two parts that the covariant part and noncovariant parts (Larzar, 2010). The gauge
field method has been applied to the elastic properties of solids (Dietel & Kleinert, 2006;
Kleinert & Jiang, 2003; Turski et al., 2007) by modelling the elastic energy of the lattices by
harmonic displacement fields. The computed melting temperatures of selected bcc and fcc
elemental crystals agrees acceptably with the experimental values (Kleinert & Jiang, 2003).
The most striking result of the defect gauge theory is the Aharonov & Bohm (1949) type
interferences near the dislocation. This fact indicates that the dislocations are not be classical
objects anymore, but are qunatum mechanical ones.

8. Outlook and proposal

We have arrived at the stage to consider the applications of the theoretical framework in
materials science.
Given a problem, we have to identify the order paramers governed by a certain set of
symmetries. Based on the symmetry we need to classify the possible topological defects.
The problem is separated into two parts: the scale independent universal properties and the
elementary excitations. The tools for the universal properties are the homotopy theory and the
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renormalization group, while those for elementary excitations are conventional perturbative
renormalization technique with the finite temperature Green’s function. The effects of the
identified topological defects on the elementary excitations can be dealt with the gauge field
theory. The phase transition mechanism of each object can be understood by utilizing the
fluctuation-dissipation theorem. Note that all the methods are based on the computation of
partition functions by quantum field theoretic manner.
A reversed approach, seems more practical, is also possible. One can firstly identify the
ideal structure and compute the equilibrium thermodynamics using the Green’s function
technique. The fundamental irreversible processes are also available from this technique.
When one is faced a problem related with (topological) defects, the renormalization group
and the defect gauge theory should be considered.
They usually raise a question on the practicality of the quantum field theoretic approach.
Theories introduced here are nothing new, but tried to describe them in a unified way. Those
theories have been developed and published from individual schools. This fact implies that
the methods can be applied to materials engineering with a suitable software package and
computers. There are the other approach for materials design. For example, Olson (2000)
viewed a material as a system rather than a set of matters. Once an engineering target is
given, one has to identifies the required properties in terms of materials properties and the
corresponding structure with a suitable set of processes. The basic assumption is that the
necessary theoretical and experimental tools are already prepared in a database and identified
for the purpose. The length and time scales are covered from electronic scale to devices. A
well organized spin-off company indeed does this business. The practicality awareness can
be solved if we have a unified theoretical tool. This approach is an ad hoc combination of the
current methods. The quantum field theoretic approach proposed in this article removes such
ad hoc awareness.
In view point of computer resources, the required computer performance of Olson’s
multiscase approach may be of order from peta-floating point operations per second
(peta-FLOPS) to exa-FLOPS. The individual sectors of the theories introduced here utilize
from a desktop personal computer to one of order tera-FLOPS. If there is a computer software
package in a unified theoretical framework, the required computer performance may sit on
the performance of order peta-FLOPS. Hence, the practicality will not be a major problem.
In order to utilize a theoretical framework in engineering, a unified software package
development is necessary. Unfortunately, such unified theoretical scheme has not been
established yet. The reason can be thought in two-folds. Firstly, the theoretical maturity
may not been achieved satisfactory by means of both theory itself and its implementation
into a computer software package. When the author (hereafter referred as I) experienced
first density functional calculation in 1994, I could remember the names of most researchers
working in the density functional world. Now the number of citation of Kohn & Sham (1965)
paper is approaching to 20,000 at the time of writing this manuscript. Most of them are using
the software package as a black-box, due to the maturity of the software packages and the
developments of computer technology. This example demonstrates the power of the matured
theory and the corresponding computer softwares.
Secondly, the quantum field theory itself is too difficult to understand for beginners. Cardy
(2000) explained, at the preface of his book, this situation as

. . . and the the student, if he or she is lucky, has just about time to learn how to calculate
the critical exponents of the Ising model in 4− ǫ dimensions before the course comes to
an end.

The Ising model is considered as one of the simplest solvable “toy” model. In addition, many
researchers in quantum field theory are working with their own “toys.” The maturity of such
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toys seems enough to evolve to as tools. Covering many topics in the renormalization group
and quantum field theory is not so practical to learn in depth for typical material scientists.
Such study will be done by the experts. The pedagogy for understanding the quantum field
theory is also equally important.
To date there is no further fundamental theoretical tool in describing our physical world rather
than the quantum field theory. It is hardly necessary to go beyond the quantum field theory
for materials scientists. I would like to emphasize that we are standing at the starting point
for a long journey to utilize the unified method with the reinterpreted terminology, ab initio
thermodynamics authentically.
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List of Symbols

• A: spectral weight function

• C (R): correlation function of interaction range R

• CV : volume constant heat capacity

• D: long time interval

• D: density of states

• E: internal energy

• Exc [n]: exchange-correlation energy functional of density n

• F: Helmholtz free energy

• F (t): time dependent driving force

• F [n (x)]: energy functional of density n (x)

• G: Gibbs free energy; full group in the order-parameter space R (depending on context)

• G/H: coset space

• Ḡ: real-time Green’s function

• ḠA: advanced Green’s function

• ḠR: retarded Green’s function

• G : temperature Green’s function

• H: subgroup of G

• Ĥ: Hamiltonian operator

• Ĥ′: external perturbation Hamiltonian operator

584 Thermodynamics – Interaction Studies – Solids, Liquids and Gases

www.intechopen.com



Towards the Authentic Ab Intio Thermodynamics 43

• H: external magnetic field

• ℑ: imaginary part extraction operator

• Jij: interaction of spins between ith and jth sites

• K: propagtor, Green’s function

• K̂: grand canonical Hamiltonian operator

• L: Landau function

• M: total magnetization

• M̂µ: magnetization in µ-direction

• N: number of particles of the system

• Ni: number of particles of ith component

• P: pressure

• ℘: Cauchy principal value

• P̂: momentum operator

• Pm: eigenvalue of the momentum operator

• R: interaction range; order-parameter space (depending on context)

• R: Bravais lattice vector

• ℜ: real part extraction operator

• S: entropy

• S (q): mean density fluctuation as function of wavevector q

• Si: localized atomic spin at the site i

• SO (3): special orthogonal rotation group at three dimension

• SU (2): special unitary rotation group at two dimension

• T: temperature

• T0: Bose-Einstein condensation temperature

• T0 [n]: kinetic energy functional of the noninteracting system of density n

• TC: Curie temperature

• TL: liquifying temperature

• Tm: melting temperature

• T (3): Euler translational subgroup

• Û: unary external potential operator

• V: volume of the system

• Z: partition function; renormalization factor; an integer (depending on context)

• a: lattice constant

• an (H, T): expansion coefficient of the Landau function as function of H and T

• b: norm of Burgers vector

• b: Burgers vector

• bn, cn, dn: expansion coefficients of the Landau function
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• c.c.: complex conjutate

• d: dimensionality of the interaction

• d1: differential operator for x1, t1

• dw: propability of states represented in the phase volume

• fAB: generalized response function

• f (p, q): any physical quantity as a function of p and q

• f̄ : average of f (p, q)

• f (z): order parameter map

• g: spin degeneracy factor

• h: reduced external magnetic field (H − Hc)

• h̄: Planck’s constant

• i: index for the microstates

• k: wavevector

• kB: Boltzmann’s constant

• kF: norm of the Fermi wavevector

• k (t): solution of the equation of motion

• l: dislocation core axis vector

• m: mass of the particle

• m∗: effective mass

• ms: magnetization of the Landau function at the global minimum

• m: magnetization per spin

• n: band index

• n (x): number density as function of x

• n0
i : occupation number of the state i of the noninteracting system

• p: norm of the momentum p

• p: single-particle momentum

• pi: generalized momentum of the ith degree of freedom

• q: norm of wavevector q

• qL: liquifying wavevector

• q: wavevector

• qi: generalized coordinate of the ith degree of freedom

• s: degree of freedom of the system; number of spins (depending on context)

• t: time; reduced temperature T − TC (depending on context)

• t∗: critical temperature

• u (x): vector displacement field at position x

• unk (k): Bloch function of band n and wavevector k at position x

• v: static potential
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• vext: static external potential

• vn (k): nonvanishing velocity of a Bloch wavefunction of the band n and the wavevector
k

• x: base point of order parameter space R

• x: position

• ∆p∆q: small phase interval

• z: coordinate of the order parameter space R

• Γ: gamma function

• Γ̄: generic real-time Green’s function in Lehmann representation

• Π: generalized polarization

• Σ: self-energy

• Σλ: self-energy for the interaction strength of λ

• ΘD: Debye temperature

• |Φ0〉: ground state of the system

• Ξ: grand partition function

• Ω: grand (thermodynamic) potential

• Ω0: grand potential of the noninteracting system

• β: inverse temperature 1/kBT

• γk: damping of the quasiparticle of wavevector k

• δ: Dirac delta function

• ǫ: single-particle energy

• ǫF: Fermi energy

• ǫk: energy spectrum of the particle at the wavevector k

• ǫp: energy spectrum of the particle at the momentum p

• ǫ0
k: energy spectrum of the noninteracting single-particle at wavevector k

• ǫc: correlation energy density

• ǫxc: exchange-correlation energy density

• ε ij: fractional error of the Landau theory as function of the ith and jth sites

• εR: fractional error of the Landau theory as function of R

• η: infinitesimal real positive convergence factor

• κ: generalized dielectric function

• λ: interaction control parameter

• µ: chemical potential

• µi: chemical potential of ith component

• µc: correlation energy potential

• µxc: exchange-correlation potential

• ψ: wavefunction
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• ψ̂α: field annihilation operator at the state α

• ψ̂†
α: field creation operator at the state α

• ψKS
i : ith Kohn-Sham orbital

• φn: nth eigenfunction of Ĥ

• ρ: statistical distribution function

• ρ̂: statistical distribution function operator of unperturbed system

• ρ̂′: statistical distribution function operator by perturbation

• θ: step function

• χT (H): isothermal magnetic susceptibility as function of H

• χµν: µ-direction magnetic susceptibility with respect to ν-direction external field

• χ∗: final state wavefunction

• σ: Stefan-Boltzmann constant

• τ: imaginary time; time difference (depending on context)

• πn (R, x): nth homotopy group of R at base point x

• ξ: correlation length

• ζ: index for microstates of the system; zeta function (depending on context)

• ω: frequency of a single-particle

• ωn: Matsubara frequency

•
[

Â, B̂
]

: Poisson bracket of operators Â and B̂

• 4 − ǫ: near four dimension
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