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1. Introduction 

To date, both viral and nonviral vectors have been exploited for delivery of gene-based 
therapies to target cells/tissues. Despite high efficiency of the viral vectors (e.g., 
retroviruses and adenoviruses), these vectors appear to be immunogenic and potentially 
harmful when used in clinical gene therapy protocols (Ferber, 2001b). Besides, the 
preparation and purification of the viral vectors appear to be laborious, cost-prohibitive 
and not amenable to industrial-scale manufacture. Nonviral vectors such as cationic lipids 
(CLs) and cationic polymers (CPs) have been categorized as advanced materials and their 
low immunogenicity, lack of pathogenicity, and ease of pharmacologic production 
continue to make them attractive alternatives to viral vectors (Medina-Kauwe et al., 2005). 
However, these vectors may also suffer from relatively low levels of gene transfer 
compared to viruses. Thus, the drive to advance these vectors continues resulting in 
considerable progresses in improved transfection efficiency. Nonviral vectors (in 
particular cationic gene delivery systems) are able to bind and enter the target cells, 
however they yield low gene expression. No substantial information is available on 
interactions of these vectors with cellular biomolecules. Since these medicaments tend to 
act at genomic levels, thus understanding the genomic impacts of the nonviral vectors 
may help develop more efficient gene delivery systems. Nonetheless, this needs 
recruitment of high throughput screening methodologies.   

To date, exploitation of the “omics” concepts (e.g., genomics, proteomics and 
metabolomics) is going to change the face of pharmacotherapy towards significantly more 
advanced and efficient pharmaceuticals (e.g., gene based nanomedicines) with minimal 
adverse consequences (Aardema & MacGregor, 2002). Enormous efforts have also been 
devoted for application of the global gene expression profiling in pharmacologic  
and toxicological investigations. The gene expression profiling technology has been 
primarily exploited for identification of underlying mechanisms for toxicity of 
pharmaceuticals and their genomic signatures, by which the safety liabilities can be 
determined and manifestations of undesired genotoxicity can be prohibited (Suter et al., 
2004; Yang et al., 2004).  
This methodology can be successfully used for the discovery and development of any 
chemicals and pharmaceuticals including gene delivery nanosystems. The main focus of the 
current book chapter is to provide some useful information about “genocompatibility” and 

www.intechopen.com



 
 Non-Viral Gene Therapy 548 

“toxicogenomics” of the nonviral vectors using global gene expression profiling techniques 
i.e. DNA microarray.  

2. Gene therapy challenges and dilemmas 

The principle of gene therapy possesses undeniable therapeutic advantages over the 
conventional therapeutic modalities that are basically dependent upon exploitation of small 
molecules or biological pharmaceuticals. These advantages are: 1) specific or selective 
treatment of diseased cells/tissue, 2) minimal adverse consequences, 3) correction of the 
genetic cause of a disease, and 4) long-term treatment after single application (Rubanyi, 2001). 
Basically, to silence/suppress a target gene or to correct a genetic defect, the gene-based 
therapeutics such as oligodeoxynuleutides (ODNs), plasmid DNA, ribozymes, DNAzymes or 
short interfering RNA (siRNA) need to be shuttled to the target site. Delivery of gene-based 
therapeutics has been also advanced by development and implementation of various 
strategies, including: biological (e.g., viral vectors), physical (e.g., microinjection and 
electroporation, gene gun, ultrasound, and hydrodynamic delivery), and chemical (e.g., non-
viral vectors) approaches. However, gene transfer into various target cells still faces major 
obstacles including poor delivery efficiency, cellular toxicity, immunogenicity and 
oncogenicity, as well as short-term transgenic expression and poor expression levels. 
The first clinical test of gene therapy was accomplished a decade ago with the transfer of the 
missing “adenosine deaminase” gene into lymphocytes isolated from patients with severe 
combined immune-deficiency syndrome (i.e., as ex-vivo gene therapy approach). However, 
despite the early promising prophecy on the high effectiveness of gene therapy, the existing 
clinical experience indicate insufficient therapeutic efficacy coupled with increasing safety 
concerns and ethical issues (Verma & Somia, 1997). In some cases, aptamer-based 
genomedicines (e.g., Pegaptanib sodium, Macugen™) have been successfully utilized for 
treatment of the age related macular degeneration (Barar et al., 2008). Gendicine™ is an 
adenoviral p53-based gene medicine that was approved by the Chinese FDA in 2003 for 
treatment of head and neck cancer, while Advexin™ (a similar gene therapy approach from 
Introgen) was turned down by the US FDA in 2008. In fact, the death of Jesse Gelsinger in a 
gene therapy experiment in 1999 imposed a significant setback to gene therapy research in 
the United States, however many scientists aimed to resolve problems associated with the 
gene therapy strategies. In 2006, an international group of scientists announced the 
successful use of gene therapy to treat two adult patients for a disease affecting myeloid 
cells (Ott et al., 2006). Also in 2007, the world's first gene therapy trial for inherited retinal 
disease was announced for treatment of Leber's congenital amaurosis which is a inherited 
blinding disease caused by mutations in the RPE65 gene (Maguire et al., 2008).  It should be 
evoked that the performance and pathogenicity of viral vectors (e.g., retroviruses, 
lentiviruses, adenoviruses, and adeno-associated viruses) and nonviral vectors have been 
evaluated in animal models. Promising results form the basis for clinical trials to treat 
genetic disorders and acquired diseases, however vector development/advancement 
remains a seminal concern for improved gene therapy technologies (Verma & Weitzman, 
2005). Fundamentally, an ideal gene delivery method should protect the transgene against 
degradation, transport the transgene into the cytoplasm and then nucleus of target cells with 
little undesired detrimental effects (Gao et al., 2007).  
Results obtained from in vitro studies have revealed that treatment of cells with antisense 

oligonucleotides (As-ODNs) for a period of only a few hours can bestow the desired effects 
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of As-ODNs, while animal experiments demand repeated administration through multiple 

injections for prolonged exposure to As-ODNs. Despite promising results of some in vivo 

studies with free As-ODNs, improved delivery systems are essential to increase the efficacy 

of As-ODNs and to reduce its amount and frequency of administration (Hughes et al., 2001). 

Successful delivery of desired genes are important for both ex vivo, where cells undergo 

gene therapy in culture prior to implantation into the patient, or in vivo gene therapy  

where nucleic acids are administered directly to the patient to attain the desired gene 

change. Preferably, in either approach, only the therapy-intended gene expression changes 

should occur. However, this is not always the case, for example viral vectors are known  

to be efficient delivery systems for nucleic acids but can also induce immunogenic responses 

(Audouy et al., 2002; Ferber, 2001a; Ferber, 2001b).  Hence, several nonviral gene  

delivery nanosystems such as cationic polymer- or lipid-based formulations have been 

developed for nucleic acid delivery. These cationic nanostructures can readily condense 

DNA into complexes and form polyplexes/lipoplexes to be used for ex vivo and in vivo gene 

therapy. 

Although the CPs/CLs can principally enhance the delivery and improve the biological 

end-point of genomic-therapeutics, they often exert cytotoxicity depending on delivery 

system and target cell/tissue (Pedroso de Lima et al., 2001). Thus, both transfection 

efficiency evaluation and safety assessment are essential for gene transfer with these gene 

therapy vectors. A number of factors may affect the efficacy and safety of nonviral vector-

mediated gene transfer; in particular their structural properties and type of target cells 

and tissue. It should be noticed that as various target cells may display different 

responses, the transfection efficacy and safety of vectors should be carefully optimized 

upon types of target cells and target organs. Once transfection accomplished, specific 

attention should be given to the genotoxicity potentials of gene-based medicines. 

Surprisingly, no substantial information is available about the genomic signature of the 

cationic delivery systems. We have previously investigated the potential of the 

commercially available nonviral vectors (e.g., Polyamidoamine (PAMAM) dendrimers 

such as Polyfect™ (PF) and Superfect™ (SF)) and lipids (e.g., Lipofectin™ (LF) and 

Oligofectamine™ (OF)) on global gene expression within human epithelial A431 and A549 

cells by exploiting the cDNA microarray technology (Barar et al., 2009; Omidi et al., 2003; 

Omidi et al., 2005a; Omidi et al., 2005b; Omidi et al., 2008). These investigations revealed 

occurrence of inadvertent nonspecific gene expression changes within target cells upon 

treatments with these cationic gene delivery nanosystems. These findings led us to screen 

series of lipid- or polymer-based non-viral vectors for their toxicogenomic and genomic 

toxicity potentials in target cells.  

Fig. 1 represents schematic illustrations of polymer/lipid based micro/nano systems used 
for delivery of genes/drugs. 

3. Cellular trafficking and toxicity of polycationic nanostructures 

For achievement of an efficient systemic delivery of gene-based nanomedicines, various 

factors appear to play crucial role, including: 1) the physicochemical characteristics of the 

gene-based therapies, 2) the effects of biological environment, 3) the functionality of 

membranes and barriers, and 4) the biological impacts of cellular microenvironment.  
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Fig. 1. Schematic representation of various polymer based gene delivery nanosystems. To 
prepare gene medicine nanosystems (NS) nucleic acids (e.g., antisense, siRNA, and aptamer) 
are generally entrapped, encapsulated or conjugated with polymers. Genes can be 
conjugated to magnetic nanoparticles (MNP) and quantum dots for concurrent detection 
and therapy.   

Within the circulation system, blood cells, proteins, enzymes and serum components may 
bind to the genomedicines and cause instability and lowered transfection efficiency 
(Konopka et al., 2005). In addition, the circulating gene therapies must circumvent the 
immune system clearance and cross the capillary endothelial cells to reach the target 
cells/tissue. Once inside the target cells (normally via receptor-mediated endocytosis 
pathway), the genomedicine must overcome the subcellular and/or biomolecular impacts. 
In fact, the amphipathic sheet like lipid bilayer architecture of the biological membranes 
along with the integrated proteins separate cells from their environment and form the 
boundaries of different organelles inside the cells, at which exchange of materials among the 
different parts of a cell is controlled (Omidi & Gumbleton, 2005). Nonviral vectors may bind 
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to cells by means of one or both of two types of cell binding interaction machineries, i.e. 
receptor and non-receptor mediated bindings (Medina-Kauwe et al., 2005). At cellular level, 
trafficking of the gene-based nanomedicines is basically performed through vesicular 
transportation pathways, in which they may engineer their own escape from demise in the 
lysosome. Endocytosis of macromolecular nanomedicines occurs through various cellular 
pathways, including clathrin coated pits, caveolae membranes and lipid rafts (Conner & 
Schmid, 2003; Spang, 2008). More likely, these complexes enter cells through nonspecific  
exploitation of these endocytic machineries, presumably mainly involving clathrin-mediated 
endocytic pathway. This route initiates and stabilizes membrane curvature formation, in 
which the adaptor proteins bind to clathrin pits and augment the inward pull of the 
membrane towards the cytoplasm leading to vesicle formation (Young, 2007).  
It has been evidenced that the N-1(-(2,3-dioleoyloxy)propyl)-N,N,N-
trimethylammoniummethylsulphate (DOTAP) lipoplexes are internalized by cells solely via 
clathrin-mediated endocytosis, however PEI polyplexes were shown to be internalized both 
by clathrin-mediated and caveolae-mediated endocytosis (Rejman et al., 2005). Once inside 
the cytoplasm, DNA is released from vesicular compartment upon physicochemical 
properties of the genomedicine. The endosomal escape of DNA at an early stage of 
endocytosis is deemed to be critical for cytosolic DNA delivery and determination of overall 
transfection efficiency. Among CPs and CLs, fusogenic lipid 
dioleoylphosphatidylethanolamine (DOPE) as a helper lipid for liposome-based DNA 
delivery were reported to induce membrane fusion between the endosome and the liposome 
and result in membrane destabilization and release of DNA into the cytoplasm (Farhood et 
al., 1995). Such destabilization of the vesicular membrane further highlights the interaction 
of cationic lipids with cellular compartments. This inadvertent nonspecific interaction may 
be exacerbated for in vivo systemic gene, which requires high and potentially toxic doses of 
nonviral vectors.  Utilization of the cell-specific ligands or antibodies were reported to lower 
the cytotoxicity, while facilitating tissue targeting (Rawat et al., 2007), in which the ligand 
choice is largely dictated by whether or not the target receptor undergoes vesicular 
trafficking and the endocytic pathway used by the vector is dependent upon the targeting 
ligand as well as cell type. The structural architecture of the gene delivery nanosystems was 
shown to be important from gene expression changes viewpoints (Omidi et al., 2005b), 
which is also largely dependent upon cell type, in particular the membrane lipid 
composition and membrane phase state (Kabanov, 2006). Adsorption of polycations such as 
poly(N -ethyl-4-vinylpyridinium) salts (PEVP) in liposomic biomembranes was shown to 
induce flip-flop of negatively charged lipids (e.g., cardiolipin, phosphatidylserine, and 
phosphatidic acid) from the inner to the outer leaflet of the liquid liposomal membrane, but 
not in solid membranes (Yaroslavov et al., 1994; Yaroslavov et al., 2006). Among 
polycations, starburst PAMAM dendrimers and PEI appeared to elicit the most dramatic 
increase in membrane permeability by interacting the membranous biomolecules and 
forming holes in lipid membranes (Hong et al., 2006; Leroueil et al., 2007). Such structures 
could function as gates, through which the lipid molecules can be transported across the 
biomembranes (Kabanov, 2006). Fig. 2 represents cytotoxicity of linear and branched PEI in 
A431 cells (Kafil & Omidi, 2011). 
Upon differences in cell types, the polyions can bind to the cellular compartments and 
accordingly induce compartmentalization within certain areas of the membranes and 
inadvertently trigger various signaling paths. Furthermore, nanoscaled defects were shown 
to be induced by PAMAM dendrimers through removing lipid from the fluid domains at a 
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significantly greater rate than for the gel domains (Erickson et al., 2008). This reinforces a 
possibility of compartmentalization of synthetic polymers within different membrane 
domains as well as a differential effect of polymers on functional systems in the membranes 
that consecutively provoke inadvertent cytoplasmic/nucleic consequences directly and 
indirectly via secondary messengers such as G proteins.  
 

 

Fig. 2. Cytotoxicity of polyethylenimine (25 kDa) polymers in A431 cells evaluated by MTT 

assay. A) Cytotoxicity of B PEI with IC50=37 µg. B) Cytotoxicity of LPEI with IC50=74 µg. 
BPEI: Branched polyethylenimine; LPEI: linear polyethylenimine; adapted with permission 
from (Kafil & Omidi, 2011).  

Fischer et al. (2003) monitored cytotoxicity of various polycationic gene delivery systems in 
L929 mouse fibroblasts using MTT assay and the release of the cytosolic enzyme lactate 
dehydrogenase (LDH). They showed a pattern for cellular toxicity as follow, 
poly(ethylenimine)=poly(L-lysine)>poly(diallyl-dimethyl-ammonium 
chloride)>diethylaminoethyl-dextran>poly(vinyl pyridinium bromide)>Starburst 
dendrimer>cationized albumin>native albumin. These researchers, interestingly, confirmed 
the molecular weight and the cationic charge density of the polycations as key parameters 
for the interaction with the cell membranes and accordingly the cell damage (Fischer et al., 
2003). Besides, interaction of dendrimers with erythrocyte membrane proteins was shown to 
trigger echinocytosis (Domanski et al., 2004), while the cationic liposomes are less cytotoxic 
than dendrimers. The toxicity by CLs appeared to be dependent upon the type of cationic 
lipid macromolecule, concentration, molecular weight and the presence of DNA, where 
complexation of the polycations with DNA resulted in reduced tissue damage. However, 
Gebhart et al. (2001) showed increased cytotoxicity in the cos-7 cells upon complexation of 
various polymers with DNA (Gebhart & Kabanov, 2001).  
Filion et al. (1997) have performed an important body of work by evaluating the toxicity 
of liposomes, formulated with various cationic lipids, towards murine macrophages and T 
lymphocytes and the human monocyte-like U937 cell line. They reported occurrence of 
pronounced toxicity by cationic liposomes formulated from DOPE and cationic lipids 
based on diacyltrimethylammonium propane (dioleoyl-, dimyristoyl-, dipalmitoyl-, 
disteroyl-: DOTAP, DMTAP, DPTAP, DSTAP) or dimethyldioctadecylammonium 
bromide (DDAB) in the phagocytic cells (macrophages and U937 cells), but not within 
non-phagocytic T lymphocytes. They also showed the rank order of toxicity as follows: 
DOPE/DDAB > DOPE/DOTAP > DOPE/DMTAP > DOPE/DPTAP > DOPE/DSTAP. 
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Once complexed with nucleic acid (e.g., antisense oligonucleotide or plasmid vector), 
lipoplexes revealed marginally reduced toxicity towards macrophages (Filion & Phillips, 
1997b). Furthermore, since cationic lipids display intrinsic anti-inflammatory activity, 
they should be cautiously utilized as a gene delivery system to transfer nucleic acids for 
gene therapy in vivo.  
DNA microarray technology has advanced and accelerated the identification process  for 

mechanistic toxicology to illuminate genomic aspects of toxicology that could 

consequently postulate early effect within targets cells/tissues upon exposure to the 

toxicants (de et al., 2004). Recently, an interesting study was performed to compare 

different commercially available cationic liposome–DNA lipoplexes (Masotti et al., 2009), 

and it was reported that the lipoplex size and cationic lipid to DNA ratio are the two main 

parameters affecting the transfection efficiency of lipoplexes. The lipofection efficiency 

was determined mainly by lipoplex size, but not by the extent of lipoplex–cell interactions 

including binding, uptake or fusion. In the presence or absence of serum, lipoplex size 

was found to be a major factor determining lipofection efficiency. These researchers 

concluded that, by controlling lipoplex size, an efficient lipid delivery system may be 

achieved for in vitro and in vivo gene therapy. 

Florea et al. (2002) evaluated PEIs with different molecular weights for their efficiency in 

transfecting undifferentiated COS-1 and well-differentiated human submucosal airway 

epithelial Calu-3 cells and showed that transfection efficiency was dependent upon the cell 

types, but not molecular weights. These researchers reported that gene transfer by PEI was 3 

orders of magnitude more effective in COS-1 than in Calu-3 cells, perhaps because of 

secretion of mucins by Calu-3 cells (Florea et al., 2002). However, the larger molecular 

weights of PEI were also shown to yield the highest transfection efficiency in EA.hy 926 cell 

line derived from a fusion of the human A549 cell line with human umbilical vein 

endothelial cells, HUVEC (Godbey et al., 2001). Two types of cytotoxicities in process of PEI 

-mediated cell transfection have been reported: 1) an immediate toxicity associated with free 

PEI, 2) a delayed toxicity associated with cellular processing of PEI/DNA complexes 

(Godbey et al., 1999; Godbey et al., 2001). The immediate toxicity seems to occur upon 

interaction of the free PEIs with negatively charged serum proteins (e.g., albumin) and red 

blood cells (cytotoxic effects), while the delayed toxicity by PEI/DNA complex appeared to 

be closely related to the release of DNA (genomic effects). In cell culture, free PEI interacts 

with cellular components and inhibits normal cellular process. It causes several changes to 

cells, which include cell shrinking, reduced number of mitoses and vacuolization of the 

cytoplasm. We have observed significant genotoxicity impacts induced by PEI in A431 cells 

(Kafil & Omidi, 2011) and xenografted mice (our unpublished data).   

Toxicity impacts of nanostructured materials have been recently reviewed (Nel et al., 2006), 

while many aspects of this issue (in particular at genomics/protemics levels) still remains 

unresolved.  As a result, necessity of analysis of toxicogenomics of the nanoscaled advanced 

biomaterials is very clear. It will direct us towards development of safe pharmaceutical 

formulations with maximal efficiency and wide therapeutic index yet displaying minimal 

toxicity profiles since the conventional assessment of toxicity solely provide preliminary 

information with little devotion to the global genomic/proteomic impacts (Hollins et al., 

2007; Kabanov et al., 2005; Kabanov, 2006; Omidi et al., 2005a). If this is the case, then the 

gene and drug delivery paradigms are going to stumble upon new era to deal with 

“functionalized excipients”.  
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4. Genocompatibility and toxicogenomics of polycationic nanostructures 

To pursue the genomic impacts of any gene based medicine, it is necessary to exploit high 
throughput screening methodologies (e.g., DNA microarray) for evaluation of global gene 
changes induced by the gene medicine or any other chemicals/compounds. Such genome 
based impact could be termed as "genotoxicity" or "toxicogenomics".  
The DNA microarray technology combines standard molecular techniques with high-
throughput screening to monitor the expression of up to ~40000 genes, which may 
provide a means for toxicity prediction prior to classical toxicological endpoints such  
as histopathology or clinical chemistry (Goldsmith & Dhanasekaran, 2004). In gene 
silencing experiments, such approach may allow a genomic characterization of delivery 
systems leading to identification of possible incompatibilities with intended target  
genes or biological effects of the gene based medicine. This may allow screening  
of compatible or useful delivery systems early in drug development that could 
subsequently save time and money in pre-clinical and clinical studies (Fielden & Kolaja, 
2006; Lettieri, 2006). 
Cytotoxicity and genotoxicity potentials of CPs and CLs are going to be well acknowledged, 
and accordingly these cationic nanosystems should undergo a rigorous genocompatibility 
evaluation prior to in vitro and in vivo exploitation (Kabanov, 2006; Omidi et al., 2005a). 
These systems alone or in combination with biologically active molecules (e.g., siRNA, 
antisense, aptamer) are able to alter cell signaling and biological responses in cells and 
organisms, emerging a cluster of genomic and post genomic consequences. In general, toxic 
responses to these kinds of nanomaterials are deemed to be very profound, in which various 
signaling pathways such as oxidative stress, immune responses and apoptosis pathways 
may be involved in response to generation of reactive oxygen species in the membranes 
(Kabanov, 2006). Cationic liposomes, irrespective of complexation with DNA, can 
downregulate the synthesis of pro-inflammatory mediators such as nitric oxide (NO) and 
tumor necrosis factor-alpha (TNF-alpha) in lipopolysaccharide (LPS)/interferon-gamma 
(IFN-gamma)-activated macrophages (Filion & Phillips, 1997a; Filion & Phillips, 1997b). 
Under the oxidative stress, cells may undergo the Nrf-2 signaling or the pro- 
inflammatory signaling cascades such as mitogen-activated protein kinase (MAPK) and 
nuclear factor kB (NFkB) cascades and eventually a programmed cell death may occur 
(Kabanov, 2006). Certain proteins such as protein kinase C (PKC) may also be affected 
detrimentally by cationic amphiphiles (Aberle et al., 1998), which function as PKC 
inhibitors and may inevitably result in inadvertent toxicity. It seems that the cationic 
amphiphiles with steroid backbones can exert more potent inhibitors of PKC than their 
straight-chain analogues, resulting in greater toxic impacts (Bottega & Epand, 1992). 
Polycations such as PEI formulated with plasmid DNA and administered to mouse lungs 
was reported to activate the p38 pathway involved in endocytosis, phagocytosis and 
hydrogen peroxide production. The observed in vitro and in vivo toxicity of such PEI 
polyplex formulations appeared to link to a general stress reaction, inflammatory 
responses, cell cycle regulation and DNA damage repair (Regnstrom et al., 2006). To 
obtain a complete image, it is essential to recruit high throughput screening methods such 
as DNA microarray.   

5. DNA microarray technology 

Practically, in the exploring stage, the expression of ~40,000 gene spots and replicates can be 
simultaneously analyzed on a couple of glass array in a single experiment by means of 
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microarray technology. However, for accomplishment of a significant correlation between 
the gene expression profiles and their functionality expression, it is important to implement 
substantial complementary investigations to verify the results at the molecular level and as a 
result extend our understanding of gene expression patterns and molecular pathways. 
Microarray technology can be exploited to attain a wealth of data that can be used to 
develop a more complete understanding of gene expression, which can be used for 
transcriptional regulation and interactions as well as functional genomics. Despite its 
successful in vitro cell-based implementation, application of this technology for in vivo 
investigations is deemed to be more sophisticated because of complexity of cytotoxicity and 
genotoxicity studies, which can be confounded by a number of variables such as type of 
target organ, effect of pharmacokinetics and/or pharmacodynamics parameters (Lobenhofer 
et al., 2001). Since its advent and application in life sciences, microarray has been widely 
applied for molecular/biological studies. In fact, a large number of indexed articles in 
various data banks (e.g., MEDLINE/PubMed) highlight the importance of microarray 
technology in post-genomics era.  
Fig. 3 shows a schematic illustration of step-wise processes of the DNA microarray 
technology.  
Technically, DNA microarray can be generated in two different types including printing 
pre-synthesized cDNAs (500–2000 bp) or synthesizing short oligonucleotides (20–50 bases) 
onto glass microscope slides, in which gene spots include either fully sequenced genes of 
known function or collections of partially sequenced cDNA derived from expressed 
sequence tags (ESTs) corresponding to the messenger RNAs of unknown genes. For 
example in practice, one may compare two different cells/tissues from untreated (UT) 
versus treated (T). For gene expression profiling, normally total RNA is extracted from the 
untreated and treated samples. Using an indirect labeling methodology, they are converted 
to labeled cDNA (e.g., with aminoallyle-dUTP). The aminoallyle-dUTP-cDNA is then 
labeled with cyanine dye (e.g., Cy3 or Cy5). The Cy3 and Cy5 labeled aminoallyle-dUTP-
cDNA from UT and T samples are hybridized on a single glass array, which is subjected to 
several washing steps, scanning with an appropriate scanner (e.g., using RS Reloaded™,  
TECAN, Switzerland) and data mining (e.g., using GeneMath™ software; Applied Maths, 
Sint-Martens-Lathem, Belgium); for detailed information reader is directed to see (Hegde et 
al., 2000; Omidi et al., 2005b; Omidi et al., 2008).  
For microarray analysis, significantly upregulated and/or downregulated genes can be 
identified using traditional method (gene expression changes with a fixed cutoff threshold 
usually in 2 fold) to infer significance differences (i.e., the so called “fold change method”). 
The resultant data are normally presented as scatter plots of treated (T) versus untreated 
(UT) control. To reach this stage, data need to undergo a number of processes called as 
“transformation” and “normalization” to minimize the experimental erroneousness (i.e., the 
so called “data mining”). Since a scatter plot of T versus UT genes would cluster along a 
straight line, normalization of this type of data is equivalent to calculating the best-fit slope 
using regression techniques and adjusting the intensities so that the calculated slope is one. 
In many experiments, the intensities are nonlinear, and local regression techniques are more 
suitable, such as Locally WEighted Scatterplot Smoothing (LOWESS) regression (Berger et 
al., 2004; Chen et al., 2003).  
In our studies, we have successfully exploited both approaches to study the impacts of the 
nonviral vectors (CPs and CLs based formulation) on global gene expression experiments. 
To get the significant alterations in gene expression, we rejected the arrays showing non- 
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Fig. 3. Schematic illustration of step-wise process of DNA microarray methodology. 
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equal intensity or variable intensity of control gene spots in replicates on the same slide or 
between slides in dye-flipping experiments (Hollins et al., 2007; Omidi et al., 2003; Omidi et 
al., 2005b; Omidi et al., 2008). Data for each gene were typically reported as an “expression 
ratio” or as the base 2 logarithm (log2) of the expression ratio of T to UT control.  Genes were 
assumed to be up regulated or downregulated if they revealed an expression ratio of >2 and 
<0.5 (or >1 and <-1 for log2 transformed data), respectively.  
Based on our findings, the starburst PAMAM dendrimer alone or as complexed with DNA 
can elicit inadvertent gene expression changes. We also found that the linear and branched 
PEI (25 kDa) are able to induce gene expression changes in A431 cells, as shown in Fig. 4 
(our unpublished data).  
 

 

Fig. 4. Scatter plots of gene expression changes induced by cationic linear (A) and branched 
(B) PEI (25 kDa) in A431 cells. Data represent Log2 transformed gene expression values for 
large arrays housing 20000 genes. Above 2-fold change in expression of treated to untreated 
is indicated by bold circles and unchanged genes by unfilled circles. Panel C represents gene 
expression changes ratio between untreated A431 cells from different experiment. BPEI: 
branched polyethylenimine; LPEI: linear polyethylenimine (our unpublished data produced 
by Omidi et al.). 

In the case of arrays with thousands of spots, one needs to employ the “feature reduction” 
or “dimension reduction” to find the minimum number of the features (i.e., genes or maybe 
even the conditions) that can best describe the data and the classification using statistical 
methods such as principal component analysis (PCA), correspondence analysis (CA), multi-
dimensional scaling (MDS), and cluster analysis, reader is directed to see the following 
citation (Hegde et al., 2000; Quackenbush, 2001; Quackenbush, 2002). Of the dimension 
reduction methods, PCA is the most widely used method as a tool in exploratory data 
analysis, which involves a mathematical procedure that transforms a number of possibly 
correlated variables into a smaller number of uncorrelated variables called principal 
components. PCA ignores the dimensions in which data do not vary significantly and it is 
closely related to factor analysis.   
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6. Pathway analysis for functional genomics and gene ontology 

To understand the functions of the genomic changes, one needs to implement appropriate 
methods on knowledge extraction from DNA microarray data. Such aim can be performed 
by means of “pathway analysis” (PA), which should be towards functional enrichment for 
establishing networks between genes. In fact, understanding the expression dynamics of 
gene networks helps us infer innate complexities and phenomenological networks among 
genes. Likewise, studying the regulation patterns of genes in groups, using clustering and 
classification methods may help us understand different pathways in the cell, their 
functions, regulations and the way one component in the system affects the other one. For 
pathway analysis, one of the most widely used methods is comparing the gene list to a 
pathway which gives a p value as a result. Basically, such scoring enrichment methods 
compare a list of the genes to that of a pathway and count the hits, so that the greater the 
number of the hits, the greater the score and the enrichment (Curtis et al., 2005).  GenMAPP 
is an open source package that allows users to visualize microarray and proteomics data in 
the context of biological pathways (freely available at http://www.genmapp.org/). It 
represents biological pathways in a special file format called ‘MAPPs’ which are 
independent of the gene expression data. It is used to group genes by any organizing 
principle (e.g., apoptosis pathways). In addition, the gene set enrichment analysis (GSEA) is 
a novel method that uses all the data on the microarray in the order of expression, 
determining whether a priori defined set of genes shows statistically significant, concordant 
differences between two biological states such as phenotypes (Subramanian et al., 2005). In 
2003, Hosack et al. developed a powerful software named, “the Expression Analysis 
Systematic Explorer” (EASE), which is customizable software for rapid biological 
interpretation of gene lists resulted by “omics” technology such as toxicogenomics, 
proteomics, or other high-throughput genomic data, in particular DNA microarray gene 
expression profiles. In fact, the biological themes returned by EASE recapitulate manually 
determined themes in previously published gene lists and are robust to varying methods of 
normalization, intensity calculation and statistical selection of genes (Hosack et al., 2003). 
We have largely exploited EASE to rapidly searching the Genbank in order to find the 
functional 'themes' in our microarray experiments. We have found various functional 
themes for the upregulated or downregulated genes induced by CLs in human epithelial 
cells, mainly: signal transducer activity, catalytic activity, response to external stimulus, cell 
growth and/or maintenance, cell cycle, response to biotic stimulus, regulation of 
programmed cell death, humoral immune response, cellular defense response,  positive 
regulation of biosynthesis, negative regulation of cell proliferation, regulation of interferon-
gamma biosynthesis, transcription factor binding, DNA repair, regulation of 
nucleocytoplasmic transport, apoptosis, apoptosis inhibitor activity, positive regulation of 
apoptosis, nuclease activity, transcriptional elongation regulator activity, regulation of 
caspase activation, response to oxidative stress, DNA damage response, and cell-mediated 
immune response (Omidi et al., 2005a). 
As a secondary goal of array experiments it necessitates to look for groups of genes that 
behave similarly across a series of treatments (i.e. clustering analysis). There are a number of 
methodologies for clustering that can be employed upon experimental and statistical 
objectives; for clustering methods see citations (Azuaje, 2003; Sturn et al., 2002; Yang et al., 
2001). In our studies on toxicogenomics of gene delivery systems, we have used softwares 
such as GeneSight™ or GeneMath™gene expression to present data as a single linkage 
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Hierarchical clustering plot. The algorithm used subjects the expression intensity ratio of 
treated versus untreated samples to single-linkage Hierarchical clustering (by means of 
Euclidean distance metric) analyses in order to arrange each gene with its related group 
members exhibiting a similar ratio of change in expression. We have shown that some 
overexpressed - or underexpressed genes display not only a similar pattern of expression 
but also a related cellular functionality and themes (e.g. apoptotic related genes) (Omidi et 
al., 2003; Omidi et al., 2005a). Such Hierarchical clustering maybe considered as a "genomic 
signature" of any chemical.  
Taken all these facts together, surprisingly, still little information is available upon specific 
genomic effects elicited by chemicals within various cells/tissues despite implementing the 
“omics” technology for discovery of intrinsic genomic signature of chemicals/compounds 
in various targets. As a result, extensive investigations are yet to be performed to get 
sufficient information on genetic-signature of chemical and pharmaceuticals in target 
cells/tissues. Accordingly, many individuals and some organizations have attempted to 
accomplish such aim. For example, the Comparative Toxicogenomics Database (CTD) is a 
useful platform providing insights into complex chemical–gene and protein interaction 
networks (http://ctd.mdibl.org/about) that can be used for successfully advancement of 
novel pharmaceuticals. 

7. Genomic impacts of cationic lipids 

To date, cationic lipids have been the most widely used delivery system for delivery of 
nucleic acids both in vitro and in vivo. For example, Lipofectin™ is the 1:1 mixture of 
DOTMA and DOPE. It is the first cationic lipid formulation that was received widespread 
attention. We found that cationic liposomes such as LF and OF, at concentrations routinely 
used to obtain efficient delivery of gene based medicines, were able to induce gene 
expression changes in human epithelial A431 cells (Table 1). Such alterations in gene 
expressions appeared to be largely dependent upon the physicochemical characteristics of 
the lipid, wherein OF elicited greater gene expression than LF, i.e., up to 16% of the genes 
studied (Omidi et al., 2003). We speculate that the surface charge may play a key role in 
terms of such genotoxicity. In these cells, we witnessed that the affected genes were 
functionally involved in various cellular processes such as cell proliferation, differentiation 
and apoptosis. The upregulated or downregulated genes include some important genes 
such as bcl-2-related protein a1 (BCL2A1), caspase 8 isoform c (CASP8), heat shock protein 
70 (HSP70) and 60 (HSP60), annexin a2 (ANXA2), and tubulin beta 5 (TUBB5) (Omidi et al., 
2003). Up regulation of caspase-8 clearly impart activation of procaspases and caspases that 
may provoke activity of a series of apoptotic signaling cascades such as electron carrier 
protein cytochrome C, adaptor protein Apaf-1, Bcl-2 family, p53 and various transcription 
factors (Kanduc et al., 2002). Given that the heat shock protein 70 acts as an inhibitor of 
apoptosis (Li et al., 2000), it’s upregulation by OF in A431 cells is deemed to be a cellular 
compensatory or defense response. We assume that cells recognize the xenobiotics upon 
their biological properties. To examine such concept, we compared OF genotoxicities within 
two epithelial cell lines (i.e., A431 and A549 cells).  
In A549 cells, the genomic impacts were intriguingly dissimilar compared to that of A431 
cells (Table 1). Further, we observed some commonalities in gene expression modulation 
between two different cell lines (Omidi et al., 2008). Upon EASE analyses, the changes in 
gene expression fell into a number of various functional genomic ontologies. For example, 
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the upregulated genes by OF nanoliposomes included the genes involved in apoptosis, 
oxidative stress and external/biotic stimulus (e.g., IL9R, DUSP1, CSK, CSE1L); while the 
downregulated genes were related to the cell growth and/or cell maintenance, cell 
proliferation and apoptosis (e.g., SEP6, PSMA4).  
 

Gene ID 
(Accession 
No.) 

Gene description 
LF-

A431 
OF-

A431 
OF-

A549 

NM_004417 Dual specificity phosphatase 1; DUSP1 ─ + + 

NM_033356 Caspase 8, isoform c; CASP8 NC + NC 

NM_002467 
V-mycmyelocytomatosis viral oncogene homolog 

(avian); MYC
NC + NC 

NM_004049 Bcl2-related protein a1; BCL2A1 NC + NC 

NM_003195 Transcription elongation factor a (sii), 2; TCEA2 NC + NC 

NM_001983 
Excision repair cross-complementing rodent repair 

deficiency, complementation group 1 (includes 
overlapping antisense sequence); ERCC1

NC + NC 

NM_004094 
Eukaryotic translation initiation factor 2, subunit 1 

(alpha, 35kd ); EIF2S1
NC + NC 

NM_000994 Rbosomal protein l32; RPL32 NC + NC 

NM_001274 Chk1 checkpoint homolog (s. pombe); CHEK1 NC + NC 

NM_002849 Protein tyrosine phosphatase, receptor type, r; PTPRR NC + NC 

NM_002156 Heat shock 60kd protein 1 (chaperonin); HSPD1 NC + + 

NM_002957 Retinoid x receptor, alpha; RXRA NC + NC 

NM_001242 Cd27 antigen; TNFRSF7 NC + NC 

NM_006083 Red protein; IK NC + NC 

L12723 Heat shock protein 70; HSP70 NC + + 

NM_004383 C-src tyrosine kinase; CSK NC + + 

NM_004635 
Mitogen-activated protein kinase-activated protein 

kinase 3; MAPKAPK3
NC + NC 

NM_005546 Il2-inducible t-cell kinase; ITK NC + NC 

NM_006235 Pou domain, class 2, associating factor 1; POU2AF1 NC + NC 

NM_002623 Prefoldin 4; PFDN4 NC NC NC 

NM_001316 Cse1 chromosome segregation 1-like (yeast); CSE1L NC NC + 

NM_002953 
Ribosomal protein s6 kinase, 90kd, polypeptide 1; 

RPS6KA1
NC NC NC 

NM_000660 Transforming growth factor, beta 1; TGFB1 NC NC NC 

NM_000043 Apoptosis (apo-1) antigen 1; TNFRSF6 NC NC NC 

NM_001961 Eukaryotic translation elongation factor 2; EEF2 NC NC NC 

NM_001786 Cell division cycle 2 protein, isoform 1; CDC2 NC NC NC 

NM_021103 Thymosin beta, TMSB10 NC NC NC 

NM_004315 N-acylsphingosineamidohydrolase (acidceramidase); ─ NC NC 
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Gene ID 
(Accession 
No.) 

Gene description 
LF-

A431 
OF-

A431 
OF-

A549 

ASAH

NM_002026 Fibronectin 1, isoform 1 preproprotein; FN1 ─ NC NC 

NM_001238 Cyclin e1, isoform 1; CCNE1 NC NC NC 

NM_002186 Interleukin 9 receptor; IL9R NC NC + 

NM_002945 Replicationprotein a1 (70kd); RPA1 NC NC NC 

NM_003875 Guanine monophosphate synthetase; GMPS ─ NC NC 

NM_000887 Integrinalpha x precursor; ITGAX NC NC + 

NM_000075 Cyclin-dependent kinase 4, isoform 1; CDK4 NC NC ─ 

NM_032959 
Dna directed rna polymerase ii polypeptide j, isoform 

b; POLR2J
NC NC + 

NM_000970 Ribosomal protein l6; RPL6 ─ NC NC 

NM_005319 H1 histone family, member 2; H1F2 NC NC NC 

NM_002592 Proliferating cell nuclear antigen; PCNA ─ NC NC 

NM_020300 Microsomal glutathione s-transferase 1; MGST1 NC NC NC 

NM_021065 H2a histone family, member g; H2AFG NC ─ NC 

NM_004832 Glutathione-s-transferase like; GSTTLP28 NC ─ NC 

NM_006087 Tubulin, beta, 5; TUBB5 NC ─ NC 

NM_002789 
Proteasome (prosome, macropain) subunit, alpha 

type, 4; PSMA4
NC ─ ─ 

NM_005566 Ldha NC ─ NC 

NM_015129 Septin 6; SEP6 NC ─ ─ 

NM_004039 Annexin a2; ANXA2 NC ─ NC 

Table 1. Gene expression changes induced by cationic liposomes in A431 and A549 cells. LF: 
Lipofectin™ ; OF: Oligofectamine™; NC: no changes; +: upregulation; ─: downregulation; 
adapted with permission (Barar et al., 2009). 

For example, among the genes upregulated by OF in A549 cells (but not A431 cells), the 
IL9R gene encodes IL9 receptor protein which is a cytokine receptor that specifically 
mediates the biological effects of IL9. The ligand binding of this receptor leads to the 
activation of various JAK kinases and STAT proteins, which connect to different biologic 
responses, in particular some genetic studies, suggested an association of this gene with the 
development of asthma (Gaga et al., 2007).  
The heat shock proteins 60 and 70 as well as c-src tyrosine kinase (CSK) were observed to be 
upregulated in both cell lines (Table 1). Of these, the heat shock proteins family of molecular 
chaperones appears to act in protein folding, translocation, and assembly into complexes; 
while CSK is mainly involved in protein-tyrosine kinase activity as well as protein 
metabolism and modifications. Once looked at the overlapped activities of these genes, we 
found that they are cooperating mostly to activate the binding activity - we speculate that 
these genes somehow are collaborating perhaps in terms of protein folding and binding.      
Since liposomal formulations are being explored for pulmonary drug/gene delivery, and 
thus their ability to activate IL9R should be assessed when used clinically for lung gene 

www.intechopen.com



 
 Non-Viral Gene Therapy 562 

therapy. The CSK along with some other genes were upregulated in A549 cells treated with 
cationic lipids similar to what we observed previously in A431 cells (Omidi et al., 2003) and 
is mainly involved in cell growth and/or cell maintenance. The SEP6 and PSMA4 were 
downregulated genes by OF in both cell lines.  The SEP6 gene is a member of the septin 
family of GTPases. Members of this family are required for cytokinesis. One version of 
pediatric acute myeloid leukemia is the result of a reciprocal translocation between 
chromosomes 11 and X, with the breakpoint associated with the genes encoding the mixed-
lineage leukemia and septin 2 proteins. This gene encodes four transcript variants encoding 
three distinct isoforms. An additional transcript variant has been identified, but its 
biological validity has not been determined. The PSMA4 is a multicatalytic proteinase 
complex with a highly ordered ring-shaped 20S core structure. They are distributed 
throughout eukaryotic cells at a high concentration and cleave peptides in an 
ATP/ubiquitin-dependent process in a non-lysosomal pathway.  
Because of the gene expression commonalities and distinctions between the two cell lines, 
we conceptualized that these cells may respond to the cationic lipid “OF” differently upon 
their cellular characteristics. These cells appeared to undergo somewhat adaptation upon 
exposure to xenobiotics, as a result of which they could dynamically respond as 
expressing/activating related cellular elements for recognition and internalization of the 
cationic lipid. Of interest, we found that the genotoxicity elicited by the cationic lipid 
nanosystems were largely dependent upon the structural architecture and/or 
physicochemical properties of the cationic lipid since no extensive overlap was observed in 
the gene expression profile induced by either LF or OF in A431 cells. Besides, the 
responsiveness of the target cells to the lipids could be different since the transfection 
efficiency is significantly depended upon the target cells and lipids used. Likewise, Filion 
and Phillips (1997) reported high toxicity rate elicited by some cationic lipids in phagocytic 
cells such as macrophages and U937 cells, but not in non-phagocytic T lymphocytes.  
Taken all these findings together, it seems that for attaining detailed characterization of the 
toxicogenomics of these lipid delivery systems (based on their molecular structure), the gene 
expression patterns/profiles need to be determined in different cell types perhaps with 
known cell surface architecture.   

8. Genomic impacts of cationic polymers 

Despite plethora of investigations on application of polymers in drug/gene delivery, 
surprisingly, little attention has been devoted about possible biofunction of polymer per se in 
particular genomic effects. Many researchers have now consensus upon functionalities of 
polymers, and accordingly new domains of polymer science such as “polymer genomics”, 
“polymer genocompatibly” and “polymer genotoxicity” have been arisen. To examine the 
polymer genocompatibly concept, we have previously reported that starburst PAMAM 
dendrimers (i.e., PF and SF) as well as polypropylene imine (PPI) dendrimers (e.g., DAB8 
and DAB16) can inadvertently induce alterations in gene expression (Hollins et al., 2007; 
Omidi et al., 2005b). These dendrimers have been successfully exploited for delivery of gene 
based medicines. Of these dendrimers, we have previously shown dramatic alteration in 
gene expression induced by DAB16 dendrimer in A431 and A549 cells (Omidi et al., 2005b).  
Table 2 represents the gene expression changes by DAB polymers in A431 and A549 cells. Of 
the altered genes in A431 cells, some are related to cell defense and response to stress (e.g., 
ALOX5, TNFRSF7) and apoptosis (e.g., TNFRSF7). In A549 cells, some of the altered genes  
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Gene ID 
(Accession 
No.) 

Description 

A431 cells A549 cells 

DAB8 DAB16 DAB16 
DAB1
6:DN

A 

NM_006716 Activator of s phase kinase; ASK NC ─ NC NC 

NM_000034 Aldolase a; ALDOα NC NC NC NC 

NM_004039 Annexin a2; ANXα2 NC + NC NC 

NM_000698 Arachidonate 5-lipoxygenase; ALOX5 NC ─ NC NC 

NM_004049 Bcl2-related protein a1; BCL2α1 NC NC NC + 

NM_000591 Cd14 antigen precursor; CD14 NC NC + NC 

NM_001242 Cd27 antigen; TNFRSF7 NC ─ NC NC 

NM_001786 
Cell division cycle 2 protein, isoform 

1; CDC2 
NC NC ─ NC 

NM_003467 
Chemokine (c-x-c motif), receptor 4 

(fusin); CXCR4 
NC NC NC ─ 

NM_001274 
Chk1 checkpoint homolog (s. pombe); 

CHEK1 
NC NC NC ─ 

NM_004383 C-src tyrosine kinase; CSK NC NC NC ─ 

NM_003914 Cyclin a1; CCNα1 NC NC + NC 

NM_001239 Cyclin h; CCNH NC NC ─ NC 

NM_000075 
Cyclin-dependent kinase 4, isoform 1; 

CDK4 
NC + NC NC 

NM_001801 Cysteine dioxygenase, type i; CDO1 NC NC NC ─ 

NM_004417 
Dual specificity phosphatase 1; 

DUSP1 
NC ─ NC + 

NM_003875 
Guanine monophosphate synthetase; 

GMPS 
NC ─ NC + 

NM_021065 
H2a histone family, member g; 

H2AFG 
NC + NC NC 

NM_002156 
Heat shock 60kd protein 1 

(chaperonin); HSPD1 
NC ─ NC NC 

NM_000879 
Interleukin 5 (colony-stimulating 

factor, eosinophil); IL5 
NC NC NC ─ 

NM_002186 Interleukin 9 receptor; IL9R NC NC + NC 

NM_002358 Mad2-like 1; MAD2L1 NC NC NC + 

NM_002424 
Matrix metalloproteinase 8 

preproprotein; MMP8 
NC NC NC ─ 

NM_000245 Met proto-oncogene precursor; Met + NC ─ NC 

NM_004315 
N-acylsphingosine amidohydrolase 

(acid ceramidase); ASAH 
NC NC NC + 

NM_006235 
Pou domain, class 2, associating factor 

1; POU2AF1 
NC NC NC ─ 

NM_000946 Primase, polypeptide 1 (49kd); PRIM1 NC NC NC + 

NM_002592 
Proliferating cell nuclear antigen; 

PCNA 
NC NC ─ NC 

NM_000532 
Propionyl coenzyme a carboxylase, 

beta polypeptide; PCCβ 
NC ─ NC NC 

NM_002789 Proteasome (prosome, macropain) NC + NC NC 
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Gene ID 
(Accession 
No.) 

Description 

A431 cells A549 cells 

DAB8 DAB16 DAB16 
DAB1
6:DN

A 

subunit, alpha type, 4; PSMα4 

NM_002796 
Proteasome (prosome, macropain) 

subunit, beta type, 4; PSMβ4 
NC NC ─ NC 

NM_002737 Protein kinase c, alpha; PRKCα NC NC NC ─ 

NM_006083 Red protein; IK NC ─ NC NC 

NM_002914 
Replication factor c (activator 1) 2 

(40kd); RFC2 
NC NC NC ─ 

NM_002947 Replicationprotein a3 (14kd); RPα3 NC ─ NC NC 

NM_002957 Retinoid x receptor, alpha; RXRα NC NC + NC 

NM_007209 Ribosomal protein l35; RPL35 NC NC NC + 

NM_033301 Ribosomal protein l8; RPL8 NC ─ NC NC 

NM_003139 
Signal recognition particle receptor 

('docking protein'); SRPR 
NC NC NC + 

NM_003072 
Swi/snf related, matrix associated 
regulator of chromatin, SMARCA4 

NC ─ NC ─ 

NM_003236 
Transforming growth factor, alpha; 

TGFα 
NC NC + NC 

NM_000660 
Transforming growth factor, beta 1; 

TGFβ1 
NC NC NC + 

NM_003292 
Translocated promoter region (to 

activated met oncogene); TPR 
NC NC + NC 

NM_006087 Tubulin, beta, 5; TUBβ5 NC + NC NC 

NM_003299 
Tumor rejection antigen (gp96) 1; 

TRA1 
NC NC + NC 

NM_006826 

Tyrosine 3-
monooxygenase/tryptophan 5-

monooxygenase activation protein, 
theta polypeptide; YWHAQ 

NC ─ NC NC 

Table 2. Gene expression changes by DAB polymers in A431 and A549 cells. NC: no 
changes; +/-: up/down regulation; adapted with permission from (Omidi et al., 2005b). 

were in association with cell defense, DNA repair/damage and apoptosis (e.g., CCNH; 
ERCC1; PCNAM, CD14).  
With a particular interest on toxicogenomic of the DBA16:DNA nanoparticles in A549 cells, 

expression changes (upregulation/downregulation) were found for some important genes 

(i.e., TGFβ1,BCL2α1, IL5, CXCR4 and PCKα). Of these, TGFβ1 is a member of a super-family 

of multifunctional cytokines that regulate cell proliferation, differentiation, and apoptosis 

(Chiarugi et al., 1997; Haufel et al., 1999), while the BCL2 protein family is involved in a 

wide variety of cellular activities that also act as anti- and pro-apoptotic regulators. The 

protein encoded by BCL2 is able to reduce the release of pro-apoptotic cytochrome c from 

mitochondria and block caspase activation which is the main apoptosis pathway. Further, 

this gene is a direct transcription target of NF-KAPPAβ in response to inflammatory 

mediators, and has been shown to be upregulated by different extracellular signals, such as 

granulocyte-macrophage colony-stimulating factor (GM-CSF), CD40, phorbol ester and 
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inflammatory cytokine TNF and IL1, which suggests a cyto-protective function that is 

essential for lymphocyte activation as well as cell survival; reader is directed to see 

following citations (May et al., 1994; Ruvolo et al., 2001). The upregulation of TGFβ1 and 

BCL2α฀conceivably imply incitement of apoptosis in A549 cells upon treatments with 

DAB16:DNA polyplexes.  

It was also found that the altered genes induced by PF, DAB16 and OF in A431 cells shows 

some commonalities and differences in pattern, presumably due to their positive charge and 

structural architecture. In A431 cells, treated with either DAB8 or DAB16 resulted in ~13% 

and ~7% similar and opposite patterns of gene expression changes, respectively. For 

example, BCL2α1 which acts as anti- and pro-apoptotic regulator was largely affected by 

DAB16 compared to DAB8. This could be due to higher surface charge and/or interaction 

capacity of DAB16. Similar pattern was seen for proteasomeα4, but Met proto-oncogene 

revealed opposite pattern. Once DAB16 was tested in different cell line (i.e., A549 cells), 

similar and opposite patterns of gene expression changes were ~11% and ~9%, respectively. 

Intriguingly, upregulation of some important genes (e.g., IL9R, TGFα) was seen solely  

in A549 cells, but not in A431 cells. It can be speculated that A549 cells can show greater 

response than A431 cells.  Hence, these dendrimers could potentially affect cell growth and 

immune response of cells by altering the expression of some related genes at  

doses which did not distinctly modify cell viability (Table 2). It should be also evoked that 

the identity of the genes whose expression was significantly altered (i.e. the “gene 

signature” of the delivery system) was markedly different in the two cell lines, despite the 

similar expression of the majority of the genes (80%) that remained unaffected (Akhtar & 

Benter, 2007).  

Table 3 shows the gene expression of some selected genes induced by branched and linear 

polyethylenimine (BPEI and LPEI, respectively) in A431 cells. These data solely present the 

upregulated and downregulated genes, similarly induced by these cationic polymers, while 

there are a large number of genes showed opposite pattern (data not shown). Based on these 

results, it was found that the alterations in gene expression by BPEI were significantly 

greater than LPEI. We contemplate that this could be because of the greater interaction of 

BPEI with subcellular biomolecules.  

To examine the late effect of BPEI in target cells, we evaluated gene expression pattern of 

caspases genes in A431 cells as a time series approache (i.e., immediately after transfection, 

24 h and 48 h after transfection). Fig. 5 represents the gene expression profile of selected 

caspase pathway genes in A431 cells treated with BPEI, showing significant impacts of BPEI 

even 48 h after treatment. Of these genes, as previously mentioned, caspase 8 play a key role 

in apoptosis.   

These findings directed us to examine some other cationic polymers such as PAMAM and 

PEI. Upon our examination on SF and PF, we found that PF induced gene expression 

changes much greater than SF. This could be due to differences in dendrimers architecture. 

Significant decrease in gene expression changes were observed upon PF complexation with 

a DNA at the supplier recommended ratio of 10:1 (w/w) of PF:DNA. Reduced in number, 

but not in nature and magnitude, of expressed genes were observed upon PF:DNA 

complexation. In treated A431 cells with cationic dendrimer PF or cationic lipid OF, opposite 

and similar patterns of gene expression changes were 20% and 16%, respectively (Barar et 

al., 2009). 
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Function Gene ID 
T/UT ratio 

BPEI LPEI  

gi:407955 - membrane-associated protein hem-1 M58285 4.10 1.95 + 

gi:7106883 - HSPC247 AF151081 2.74 1.98 + 

gi:13569894 - diaphanous homolog 3; DIAPH3 NM_030932 2.23 2.44 + 

gi:14010613 - methylmalonyl-coa epimerase AF364547 2.13 2.21 + 

gi:14248538 - STONIN2 AF255309 2.10 2.13 + 

gi:188560 - prepro-mullerian inhibiting substance K03474 2.10 2.69 + 

gi:285915 - epimorphin D14582 2.07 3.17 + 

gi:7109206 - four alpha helix cytokine; ZCYTO10 AF224266 1.99 2.00 + 

gi:558098 - protein kinase c-theta; PRKCT L01087 1.97 1.93 + 

gi:9843747 - putative pyroglutamyl-peptidase i; 
PGPEP1 

AJ278828 1.93 2.82 + 

gi:22041589 - similar to data source:sptr, source 
key:q9h4b3, evidence:iss~homolog to 
mucolipidin~putative; loc255231 

XM70908 0.58 0.25 - 

gi:14588660 - histidase; hal AB042217 0.57 0.27 - 

gi:10439114 - homo sapiens cdna: flj22644 fis, 
clone hsi07088; unnamed protein product. 

AK026297 0.53 0.26 - 

gi:10944321 - myozenin; MYOZ AF240633 0.53 0.26 - 

gi:2613124 - small cell vasopressin subtype 1b 
receptor 

AF030512 0.52 0.26 - 

gi:20278870 - delta 4 progesterone receptor; pr AB084248 0.46 0.26 - 

gi:7020101 - cdna clone unnamed protein product AK000183 0.45 0.27 - 

gi:7209599 - melatonin 1b receptor AB033598 0.44 0.26 - 

gi:307425 - nerve terminal protein; SNAP L19760 0.43 0.25 - 

gi:18182679 - nkg2d AF461811 0.41 0.25 - 

gi:347133 - succinate dehydrogenase flavoprotein 
subunit; SDH 

L21936 0.39 0.23 - 

gi:2738815 - p2y1 receptor; p2yr1 AF018284 0.28 0.26 - 

gi:21928730 - seven transmembrane helix receptor AB065731 0.26 0.27 - 

gi:3088552 - cystatin-related epididymal 
spermatogenic protein; cres 

AF059244 0.24 0.24 - 

gi:22048232 - similar to riken cdna 2610027o18; 
KIAA1393 

XM_050793 0.21 0.22 - 

 

Table 3. Gene expression changes of selected genes induced by branched and linear 

polyethylenimine (BPEI and LPEI, respectively) in A431 cells (our unpublished data 

produced by Omidi et al.). +/-: up/down regulation 
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Fig. 5. Gene expression ratio of selected caspase pathway genes in A431 cells treated with 
BPEI after 4, 24 and 48 h (our unpublished data produced by Omidi et al.). 

Likewise, Pluronic block copolymers were shown to cause various functional alterations in 

cells through interacting with cellular biomolecules and thus affecting various cellular 

functions such as mitochondrial respiration, ATP synthesis, activity of drug efflux 

transporters, apoptotic signal transduction, and transcriptional activation of gene expression 

both in vitro and in vivo (Batrakova & Kabanov, 2008). This polymer is able to enhance 

expression of reporter genes under the control of cytomegalovirus promoter and NF-KB 

response element in stably and transiently transfected mouse fibroblasts and myoblasts in 

vitro. It has been shown that these block copolymers are able to act as biological response 

modifying agents through upregulating the transcription of genes via activation of selected 

signaling pathways such as NF-KB (Sriadibhatla et al., 2006).  

Furthermore, Pluronic P85 (P85) was reported to promote transport of the pDNA to the 
nucleus in cells transiently transfected with DNA/PEI polyplex (Kabanov, 2006). It has also 
been successfully exploited for DNA vaccine delivery, however some investigations 
revealed that P85 simultaneously increase transgene expression and activate immunity, in 
which P85 alone and P85:DNA complexes were shown to increase the systemic expansion of 
CD11c+ (DC), and local expansion of CD11c+, CD14+ (macrophages) and CD49b+ (natural 
killer) cell populations. DNA/P85 polyplex can also increase maturation of local DC 
(CD11c+ CD86+, CD11c+ CD80 +, and CD11c+ CD40+ (Gaymalov et al., 2009). Thus, the 
activation of immunogenes in the antigen-presenting cells by P85:DNA complexes can 
highlight new insights for these kinds of polymers.  

In addition, Pluronic can cause some alterations in HSP68 expression, suggesting that this 
polymer may affect stress-related pathways or there is a cross-talk between the stress and 
other pathways activated by the copolymer (Sriadibhatla et al., 2006). These results are in 

accord with what we have observed for some other cationic polymers or lipids. Pluronic  
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(a mixture of Pluronic L61 and F127; also called as SP1017) has been reported to deliver 
plasmid DNA in skeletal and cardiac muscle, as well as in solid tumors. Unlike other 

polycations, Pluronic does not bind and condense the nucleic acids, it does not protect 
DNA from degradation or facilitate transport of the DNA into the cell  and its effects involve 

transcriptional activation of gene expression (Kabanov, 2006). The effect of Pluronic was 

reported to be related to the activation of gene expression by activating the NF-κB and p53 
signaling pathways, in which pro-apoptotic AP-l gene that is frequently regulated by the 

NF-κB system, was not responsive. This, perhaps, indicates that Pluronic-mediated 
influence on transcription is selective and it is not a result of a general nonspecific activation 
of immune defense system such as NO-mediated burst (Kabanov, 2006). Nonetheless, to 
ensure about this supposition, it is essential to recruit global gene expression screening 
methods such as microarray technology as we have witnessed dramatic alterations in gene 
expression in vitro and in vivo upon treatment with different polymers using microarray 
technology. Kabanov's group has reported that Pluronic block copolymers interact with 
biomembranes and induce gene expressions through mechanisms that differ from the 
delivery of the DNA into the cell. They also questioned whether upregulation of expression 
of genes delivered into cells can also take place by other nonviral polymer-based gene 
delivery systems? We have observed that various polymers, in particular polycations, are 
able to alter gene expressions related to immune response and cell defense (Barar et al., 
2009; Hollins et al., 2007; Omidi et al., 2008).  
It appears that the cytotoxicity of nonviral vectors is largely dependent upon the cationic 
nature of the vector, which attains different level to different structural architecture. For 
cationic lipid, the cytotoxic effects are mainly determined by the structure of its 
hydrophilic group (Prokop & Davidson, 2008), e.g. the quaternary ammonium 
amphiphiles are more toxic than their tertiary amine counterparts. Such toxicity (due to 
positive charge of the head group) can be reduced by importing a heterocyclic ring such 
as imidazolium or pyridinium. 
The biodegradability potential of the advanced nanobiomaterials are also determined their 
toxicity. For example, poly(lactic-co-glycolic acid) nanoparticles elicit very low level of 
cytotoxicity and toxicogenomic compared to cationic polymers, but not the modified PLGA-
grafted poly(L-lysine) nanosystems (Omidi & Davaran, 2011).  
Surprisingly, the effect of hydrophobic chain on toxicity has not been adequately addressed 
to date even though it is deemed that the hydrophobic moieties may disrupt the integrity of 
lipid bilayer.  Like cationic lipid, cationic polymers with acid-labile linkage can be rapidly 
degraded and less toxic. It has been reported that the toxicity of polymers (e.g., PEI, PLL or 
dendrimers) increases with high molecular weight (Bieber & Elsasser, 2001). Polymers 
synthesized by linking low molecular weight with acid-labile show low toxicity (Li et al., 
2004). The creation of amphiphilic cationic polymer based on PEI or PLL, by linking PEG or 
other groups, reduces toxicity without compromising the gene delivery efficiency (Zhang et 
al., 2008).  
Upon our observations the biodegradable cationic polymers (e.g., polysaccharides) which 
display high degree of biodegradability possess low toxicity, thus we speculate that they 
may be extensively used for in vivo transfection in the future. Further, high transfection 
efficiency and low toxicity can be obtained by the addition of co-lipids or co-polymers 
(PEGylation). Water soluble lipopolymer, to combine the advantages of both cationic 
polymer and liposome, seems to be our next approach for optimized gene transfer. Besides, 
adding cell-specific biomolecules (e.g. aptamer, peptide ligands, antibodies or nanobodies) 
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to gene transfer vectors potentially improve the specific problem by permitting lower and 
safer vector doses while facilitating tissue targeting.  

9. Concluding remarks 

Synthetic lipids or polymers used for gene delivery may impose selective “phenotypic 
effects” in cells by affecting cell signaling involved in various biological functions such as 
cell defense, inflammation, differentiation, proliferation and apoptosis. It is believed that 
these effects result basically from their interactions with cell membranes, intracellular 
organelles and subcellular biomolecules, as a result the target cells can respond to these 
effects phenotypically or genotypically. In some cases, these effects can be relatively benign 
as they do not induce sever cytotoxic effects, while in the case of nonviral cationic vectors it 
is not the case since the interaction of the polycationic gene delivery nanosystems with 
target cells is significantly greater than non-cationic polymers. It is now deemed that one 
unifying property of polycationic gene delivery nanosystems is their potential to interact 
with cellular/subcellular biomolecules, upon which profound changes in various cell 
processes may occur. From this standpoint, it becomes clear  that these polycations are able 
to penetrate into cells and reach different critical subcellular targets and induce inventible 
biological functions, for which the nanoscaled range of sizes is an important factor. Different 
cell types as biological targets may response differently, and even modify the activities of 
such nanomaterials. While the genome-based therapeutics (e.g., oligonucleotides and gene 
silencing siRNAs) have already been lined up for clinical trials (up to 1700 trials), our 
knowledge is lacking upon genomic signature of such gene based medicines. As concluding 
statement, it is suggested that the inadvertent intrinsic genomic signature of nonviral 
delivery systems should be assessed and taken into consideration for a gene therapy trial 
since gene silencing/stimulation experiments are to target a specific gene while the gene 
delivery system may potentially mask or interfere with the desired genotype and/or 
phenotype end-point of gene therapy. The upregulation or downregulation of genes 
induced by gene delivery systems or any other drug carriers and excipients appears to 
instigate a new directionality such as “functional excipients”.  But, this approach simply 
represents the gene expression changes which are solely based on intensities of expressed 
genes for various signaling pathways, while we should look for ways to correlate such gene 
expression intensities with functional genomics.  
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