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1. Introduction  

Nanomedicine has the potential of clinical benefit by combination of engineering 
technologies and materials (Schatzlein, 2006). Development of nanometre scaled 
therapeutics which provides new and improved properties by specifically targeting the site 
of action and causing low level of side effects would be a big challenge to treat patients with 
severe and live-threatening diseases like cancer. Gene therapy provides a new way to treat 
patients and a lot of effort is made to improve the clinical benefit. But current gene therapy 
is still experimental and has not proven success in the clinics. Nevertheless there is a need 
for new approaches to treat „undruggable“ disease sites and there are some clinical trials 
ongoing which using RNA inference (RNAi) as therapeutic mechanism (Table 1). 

2. Gene silencing by siRNAs 

2.1 RNA interference 
RNA interference (RNAi), the Nobel Prize winning mechanism for gene silencing (Fire et al., 
1998), raises nowadays increasing attention of many researchers as a new way to treat life-
threatening diseases like cancer (Akhtar, 2006) or other genetic disorders like cystic fibrosis 
(Griesenbach and Alton, 2009) or viral infection as respiratory syncytial virus (RSV) (Ge et 
al., 2004) and as an in vitro research tool to investigate mechanisms which are involved in 
those diseases. Small interfering RNA (siRNA) duplexes of 19-23 base pairs could trigger 
sequence specific gene silencing in mammalian cells (Caplen et al., 2001; Elbashir et al., 2001; 
Hannon and Rossi, 2004; Meister et al., 2004; Mello and Conte, 2004). The siRNAs are double 
stranded molecules, consisting of a guide strand that is perfectly complementary to a target 
mRNA and a passenger strand. Core components of this siRNA-mediated post-
transcriptional silencing include the RNAse III enzyme Dicer and its co-factor 
transactivating response RNA-binding protein (TRBP) along with the Argonaute family of 
proteins, in particular Argonaute 2 (Ago 2) (Meister et al., 2004), which is the catalytic engine 
of the RNA induced silencing complex (RISC). Dicer converts dsRNA into 21-25 nucleotide 
duplexes with 3’ 2nt overhangs. The siRNA is incorporated into one or more of the 
Argonaute proteins in RISC for sequence specific target degradation or translational 
inhibition (Tuschl et al., 1999). In general, perfect or near perfect base pairing between the 
siRNA guide strand and the target mRNA is required for Ago2 cleavage to occur. In  
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Company siRNA Target 
Disease/
Disorder 

Status 
Administration
/ Formulation 

Remarks 

Acuity 
Pharmaceuticals 
(Opko Health) 

Bevasiranib 
(Cand5) 

VEGF AMD, DME Phase II 
intravitreal 

injection, free 
siRNA

- 

Alnylam 
Pharmaceuticals 

ALN-RSV-
01 

ALN-RSV-
02

RSV 
Pediatric 

RSV 

RSV 
Pediatric RSV

Phase IIb 
aerosolized 
siRNA, free 

siRNA 
- 

ALN-VSP02
KSP and 

VEGF
Liver cancer Phase I i.v., free siRNA - 

Silence 
Therapeutics 

Atu027 PKN3 
Advanced 

solid cancer
Phase I i.v., free siRNA - 

Sirna 
Therapeutics 

(Calando 
Pharmaceuticals) 

CALAA-01 RRM2 
Solid tumor 

cancer 
Phase I 

i.v., 
Cyclodextrin-
adamantan-

PEG-
transferrin 

nanocomplex. 

- 

Sirna 
Therapeutics 

(TransDerm Inc.) 
TD101 

PC keratin 
K6a 

Pachyonychia 
congenita 

Phase Ib 

Injection into a 
callus on the 

bottom of one 
foot, free 
siRNA

- 

Sirna 
Therapeutics 

AGN211745 
(Sirna-027)

VEGFR1 
AMD, CNV & 

AMD 
Phase II 

intravitreal 
injection, free 

siRNA
- 

Quarks 
Pharmaceuticals 

I5NP 
(QPI-1002)

p53 

Delayed graft 
function, 

 
Kidney 

transplantation

Phase I 
Phase II 

i.v., free siRNA - 

QPI-1007 Caspase 2 

Chronic optic 
nerve atrophy
Non-Arteritic 

Anterior 
Ischemic Optic 

Neuropathy

Phase I 
intravitreal 

injection, free 
siRNA 

- 

Tekmira 
Pharmaceuticals 

Corporation 
PRO-040201 APOB 

Hyperchol-
esterol- 

emia 
Phase I 

i.v., liposomal 
formulation 

study has 
been 

terminated 
due to 

potential for 
immune 

stimulation 
to interfere 

with  
further  

dose 
escalation 
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Silenseed Ltd 

siG12D 
LODER 

(Local Drug 
EluteR) 

KRAS 
G12D 

Pancreatic 
cancer 

Phase I 

miniature 
biodegradable 

polymeric 
matrix, placed 
in the tumor 

using an 
endoscopic 
ultrasound 

biopsy needle 

- 

source: http://clinicaltrials.ifpma.org/no_cache/en/search-trials-ongoing/all/index.htm,  

Table 1. Summary of ongoing clinical trials for siRNA delivery,  
abbreviations used: AMD: age related macular degeneration; APOB: apolipoprotein B; CNV: 
choroidale neovascularization; DME: diabetic macular edema; i.v.: intravenous; KSP: kinesin 
spindle protein; PC: pachyonychia congenital; PKN3: protein kinase N3; RRM2: 
ribonucleotide reductase M2 polypeptide; RSV: respiratory syntical virus; VEGF: vascular 
endothelial growth factor 

laboratory work and in clinical trials siRNAs are most often chemically synthesized, 
bypassing the Dicer cleavage step for entry into RISC and avoiding any immune 
responses and toxicity which is described for long double stranded RNAs (dsRNAs) 
(Behlke, 2008).  
RNAi has widely been used in drug development and several phase I and II clinical trials 
(Table 1) are ongoing. However, for therapeutic applications still some concerns and 
challenges need to be overcome, e.g. off-target effects, innate immune response and most 
importantly specific delivery into the cytoplasm of target cells.  

3. Small interfering RNAs (siRNA) 

siRNAs are very attractive for therapy because they are easily designed and synthesized, 
and their versatility allows simultaneous use of multiple siRNAs or change of sequences to 
accommodate virus mutations. The negative charge of siRNA and their size of around  
14 kDa make it difficult to cross the cell membrane without any carrier. There are various 
delivery strategies under investigation, which includes nanoparticular systems consisting of 
polymers and/or lipids of different compositions and with or without any conjugation like 
antibodies or ligands for achieving the most specific way to the target side of action. Davis et 
al. showed 2008 first evidence for RNAi mechanism of action in human with their self-
assembling, cyclodextrin polymer-based nanoparticle system (CALAA-01) targeting the 
riboucleotide reductase subunit 2 (RRM2) which could be used for therapy of different types 
of cancers (Heidel et al., 2007; Davis, 2009; Davis et al., 2010). At the same time Zimmermann, 
MacLachlan and colleagues reported successful siRNA delivery using a different approach 
for delivery (Zimmermann et al., 2006). They introduced so-called stable nucleic acid lipid 
particles (SNALP) generated by ethanol dilution technique and showed for the first time in 
non-human primate a successful targeting of ApoB in the liver (Soutschek et al., 2004; 
Morrissey et al., 2005; Zimmermann et al., 2006). Ge and co-workers (Ge et al., 2004) used PEI 
25 kDa to complex and protect siRNA specific to influenza virus genes and they showed 
successful reduction of influenza virus infection in mice. Alton et al. gave first evidence for 
successful gene therapy by using a lipid-based system to delivery CFTR DNA in cystic 
fibrosis patients (Alton et al., 1999). Thus, gene therapy approaches still need improvements 
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regarding specific targeting and successful delivery of the nucleic acid but clinical trials are 
ongoing and preclinical testing are conducted for different kind of diseases (Table 1). 

4. Non-viral vector systems for siRNA delivery  

RNA interference (RNAi) based therapeutics represent a fundamentally new way to treat 
human disease by addressing targets that are otherwise “undruggable” with existing 
medicines (Novina and Sharp, 2004; de Fougerolles et al., 2007). The goal of RNAi-based 
therapy represents the activation of selective mRNA cleavage for efficient gene silencing. 
There are two possibilities to harness the endogenous pathway: either i) by using viral 
vector to express short hairpin RNA (shRNA) that resembles miRNA precursors, or (ii) by 
introducing siRNAs that mimic Dicer cleavage product into the cytoplasm. Synthetic 
siRNAs utilize the naturally occurring RNAi pathway in a manner that is consistent and 
predictable, thus making them particularly attractive as therapeutics. Since they enter RNAi 
pathway later, siRNAs are less likely to interfere with gene regulation by endogenous 
miRNAs (Jackson et al., 2003; Grimm et al., 2006). The most important characteristics for 
effective design and selection of siRNAs are potency, specificity, and nuclease stability. Two 
types of off-target effects need to be avoided or minimized: i) silencing of genes sharing 
partial homology to the siRNA and ii) immune stimulation induced by recognition of 
certain siRNAs by the innate immune system. The activation of the innate immune systems 
by siRNA could be induced by recognition of dsRNAs by the serine/threonine protein 
kinase receptor (PKR) (Schlee et al., 2006). This pathway is normally triggered by dsRNAs 
that are more than 30 nucleotides long, but at higher concentrations also siRNAs may be 
able to activate this pathway resulting in global translational blockade and cell death. The 
potential to activate toll-like receptors (TLRs) in the endosomal compartment is more likely 
to occur after siRNA delivery due to recognition of specific nucleotide sequence motifs (e.g. 
GU) by TLRs. TLR activation could trigger the production of type I interferons and pro-
inflammatory cytokines, and induce nuclear factor kappa B (NF-kB) activation (Hornung et 
al., 2005; Judge et al., 2005). For example, the presence of 2’-O-methyl modifications within 
the siRNA duplex could abrogate the binding to TLR7 in endosomes and abolish 
immunostimulatory response. In addition, these modifications also reduce sequence-
dependent off-target silencing and may be particularly beneficial in enhancing siRNA target 
specificity (Judge et al., 2006; Robbins et al., 2008; Robbins et al., 2009).  
Due to increasing mortality and morbidity caused by several lung diseases, RNAi strategies 
have attracted particular attention and the lung as target organ provides an attractive tool 
because of the accessibility via non-invasive routes, e.g. nasal or pulmonary applications. The 
clinical success of siRNA-mediated interventions critically depends upon the safety and 
efficacy of the delivery methods and agents. Naked siRNAs are degraded in human plasma 
with a half-life of minutes (Layzer et al., 2004; Choung et al., 2006). Thus, the search for 
optimized nanocarriers to deliver siRNA is still under intensive investigation. The negative 
charge and chemical degradability of siRNA under physiologically relevant conditions make 
its delivery a major challenge (Gary et al., 2007). Depending on their origin, two types of 
positively charged carriers could be distinguished: i) lipid–based and ii) polymeric-based 
carrier systems. Both systems provided several advantages to deliver siRNA. Liposome 
formation agents like Lipofectamine 2000 (Dalby et al., 2004; Santel et al., 2006) and cardiolipin 
analogues (Chien et al., 2005; Pal et al., 2005) have been successfully used for the delivery of 
siRNA. Negatively charged nucleic acids and positively charged lipids spontaneously form 
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nanoparticles, known as lipoplexes, of 50-200 nm in diameter (Sitterberg et al., 2010). 
Interaction with serum components represents one of the major hurdles that influence the 
performance when used systemically (Zuhorn et al., 2007). Recently, lipid-mediated delivery of 
siRNA against apolipoprotein B (ApoB) has been used to target ApoB mRNA to the 
(Soutschek et al., 2004; Zimmermann et al., 2006). The in vivo use of cationic lipids especially by 
i.v. administration presents significant problems as these reagents can be quite toxic. Despite 
problems with i.v. use, cationic lipids are employed for i.p. injection (Verma et al., 2003; Flynn 
et al., 2004; Miyawaki-Shimizu et al., 2006), for CNS injection (Hassani et al., 2005; Luo et al., 
2005) or in topical epithelial surface application (Maeda et al., 2005; Palliser et al., 2006) and 
intratracheal (Griesenbach et al., 2006). Toxicity varies with the precise chemical composition of 
the lipids employed dose, and the delivering route. Variations in chemical composition can 
have a large impact on the functional properties of cationic lipid mixtures (Spagnou et al., 
2004), and lipoplex/liposomal preparations have been devised with decreased toxicity that are 
more compatible with i.v. administration. Liposomes can be modified with ligands such as 
folate or small peptides, which assist with delivery and help target specific cell types or tissues 
(Meyerhoff, 1999; Dubey et al., 2004). Through the use of neutral polyethylene glycol-
substituted surfaces and other approaches, liposomes can be stabilized and made more 
“stealthy” showing reduced clearance and improved pharmacokinetics (Oupicky et al., 2002; 
Moghimi and Szebeni, 2003). These kinds of lipid nanoparticles have been successfully used to 
deliver antisense oligonucleotides and siRNAs in vivo (Braasch et al., 2003; Chien et al., 2005). 
Similar to the lipid-based non viral vector systems, the positive charges of polycations allow 
an efficient interaction with siRNAs to form so-called polyplexes, which can bind onto cell 
plasma membrane and be endocytosed. In contrast to the lipid-based systems that rely on 
the fusogenic property of the liposomes to mediate endosomal escape, polymeric carriers 
such as poly(ethylene imine) (PEI) use the so-called “proton-sponge” effect to enhance 
endosomal release of endocytosed polyplexes (Boussif et al., 1995; Behr, 1997; Akinc et al., 
2005; Demeneix and Behr, 2005; Nel et al., 2009). According to this mechanism, the 
deprotonated amines with different pKa values confer a buffer effect over a wide range of 
pH. This buffering may protect the siRNA from degradation in the endosomal 
compartment during maturation of the early endosomes to late endosomes and their 
subsequent fusion with the lysosomes. The buffering property also allows the polycation 
to escape from the endosome. At lower pH the buffering capacity causes an influx of 
chloride ions and water into the endosomes, which burst due to osmotic pressure and 
facilitating intracellular release of PEI - siRNA polyplexes. PEI has been used for many 
years to facilitate nucleic acid delivery (Boussif et al., 1995; Demeneix and Behr, 2005). 
However, due to toxicity and variable performance it has not found generalized 
acceptance as a delivery tool for either antisense oligonucleotides or siRNAs. 
Nevertheless, PEI can be used as a prototype for formulation of more complex particles 
with improved properties (Kim and Kim, 2009).  

5. PEI-based non-viral vector systems 

Polyethylene imine (PEI) is a simple repetition of the 43 Da CH2-CH2-NH ethylene imine 

motifs. It can be synthesized from ethylene imine (aziridine) via ring opening 

polymerization or by hydrolysis of poly(2-ethyl-2-oxazolium), leading to branched or linear 

polymeric backbones, respectively (Godbey et al., 1999). PEI represents one of the most 

comprehensive investigated cationic polymer for gene delivery in vitro and in vivo (Godbey 
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et al., 1999; Fischer et al., 2002; Brus et al., 2004; Neu et al., 2005; Gary et al., 2007). PEI 25 kDa 

serves as gold standard for in vitro transfection experiments (Godbey et al., 2000). The 

mechanism of cell entry and action for gene delivery is intensively analyzed. To enhance the 

endosomal release of endocytosed polyplexes PEI uses the so-called “proton-sponge” effect 

(Boussif et al., 1995; Behr, 1997) Due to the high buffer capacity of PEI amino groups in PEI 

molecules will be protonated at lower pHs like in the endosomal-lysosomal environment, 

additional chloride influx into the vesicles increases the osmolarity and the vesicles begin to 

swell and under the increased osmotic pressure the vesicle will be disrupted and the nucleic 

acid protected from PEI will be released into the cytoplasm (Godbey et al., 1999; Akinc et al., 

2005; Nel et al., 2009). PEI has been used for many years to facilitate nucleic acid delivery 

(Demeneix and Behr, 2005). However, due to toxicity and variable performance a lot of 

research is undertaken to reduce the toxicity of PEI and maintain or improve the efficacy 

and specificity by modification PEI backbone and/or conjugation of hydrophilic 

molecules like polyethylene glycol (PEG) (Petersen et al., 2002a; Petersen et al., 2002b), 

disulfide linkages (Breunig et al., 2008), or for specific targeting molecules like transferrin, 

galactose, TAT-peptide, RGD-motifs (Ogris et al., 1999; Kunath et al., 2003a; Kunath et al., 

2003b; Kleemann et al., 2005). Other approaches are reduction of the molecular weight of 

PEI 25 kDa or purification of PEI 25 kDa via gel filtration (Boeckle et al., 2004; Urban-Klein 

et al., 2005; Werth, 2006; Fahrmeir et al., 2007) or using instead of the branched PEI 25 kDa 

the linear form PEI22kDa (Breunig et al., 2005). Thomas and colleagues showed that full 

deacylation of linear PEI dramatically improves the efficacy but on cost of increased 

cytotoxicity due to increased numbers of protonatable nitrogens in the PEI molecule 

(Thomas et al., 2005). 

6. Modifications of PEI 

Modifications of PEI with the hydrophilic poly(ethylene glycol) (PEG) reduces dramatically 

the cytotoxicity of PEI 25 kDa but in part on cost of efficacy and increased 

immunomodulatory and proinflammatory effects (Kichler et al., 2002; Petersen et al., 2002b; 

Mao et al., 2005; Glodde et al., 2006; Beyerle et al., 2010a; Beyerle et al., 2010b). PEG provides 

polyplexes with improved solubility, lower surface charge, diminished aggregation, lower 

cytotoxicity, and possibly improved “stealth effect” in the bloodstream.  

Glodde et al. synthesized a series of PEG-PEI copolymers and found that the molecular 

weight of PEG was found to be the major determinant of polyplex size, via its influence 

on particle aggregation and polyplex stability (Glodde et al., 2006). Transfection efficiency 

was correlated to polyplex stability and low molecular weight PEI 2 kDa grafted with  

PEG showed higher activity than their counterparts with high molecular weight  

PEI 25 kDa (Williams et al., 2006). In contrast, Petersen and Mao showed good transfection 

efficiencies for PEI 25 kDa - PEG copolymers with high molecular weight PEG and  

low numbers of grafting on PEI backbone compare to low molecular weight PEG with 

high grafting numbers on PEI 25 kDa (Mao et al., 2005; Merkel et al., 2009; Beyerle et  

al., 2011a). 

Grayson and colleagues investigated the siRNA transfection efficacy of different PEI 

polymers (branched 800 Da, branched 25 kDa and linear 22 kDa) in HeLa derivative cell line 

(Grayson et al., 2006). They showed that the siRNA delivery and activity was mainly 

dependent on the biophysical and structural characteristics of the polyplexes and only  
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25 kDa PEI was able to effective deliver siRNA. The authors explained the high activity of 

PEI25kDa/siRNA with good stability of polyplexes, small size, and positively surface 

charge, but nevertheless the cytotoxicity was highest for PEI 25 kDa.  
Succinylated PEI polymers for complexation of siRNA were introduced by Wagner and 
colleagues which showed 10-fold lower toxicity and higher knockdown efficacy compare to 
pure PEI polyplexes (Zintchenko et al., 2008).  

7. Toxicity of PEI-based non-viral vector systems  

Synthetic polymers and nanomaterials display selective phenotypic effects in cells and in the 
body that affect signal transduction mechanisms involved in inflammation, differentiation, 
proliferation, and apoptosis. When physically mixed or covalently conjugated with cytotoxic 
agents, bacterial DNA or antigens, polymers can drastically alter specific genetically 
controlled responses to these agents (Kabanov, 2006). These effects, in part, result from 
cooperative interactions of polymers and nanomaterials with plasma cell membranes and 
trafficking of polymers and nanomaterials to intracellular organelles. Cells and whole 
organism responses to these materials can be phenotype or genotype dependent. In selected 
cases, polymer agents can bypass limitations to biological responses imposed by the 
genotype, for example, phenotypic correction of immune response by polyelectrolytes. 
Overall, these effects are relatively benign as they do not result in cytotoxicity or major 
toxicities in the body. Collectively, however, these studies support the need for 
thoroughly assessing pharmacogenomic effects of polymer materials to maximize clinical 
outcomes and understand the pharmacological and toxicological effects of polymer 
formulations of biological agents, i.e. polymer genomics. In addition, it is well described 
in the literature that cationic nanoparticles disrupt lipid bilayers (Hong et al., 2006; 
Leroueil et al., 2008), induce oxidative stress inside the cell as a result of cell-type interplay 
and cause in some cases acute lung inflammation when administered intratracheally (Tan 
and Huang, 2002; Beyerle et al., 2010b; Beyerle et al., 2011a and Beyerle et al., 2011c). 
Intensive efforts will have to focus on the issue of cytotoxicity to obtain more insight in 
the exact mechanisms behind, which are multidimensional and largely depend on the 
application route as well as the formulation that is delivered. Therefore, tissue specific 
toxicity profiles are still needed and represent a great implement in improving non-viral 
delivery systems. 

8. General toxicity 

Hornung et al. described that any rupture or leakage of the endosomal or lysosomal 

membrane will release cathepsin B, which leads to an inflammasome activation associated 

with IL-1 production and apoptosis (Hornung et al., 2008). Beyerle et al. found that 

application PEI/siRNA complexes caused release of proinflammatory cytokines like IL-6, G-

CSF, TNF-a, IP-10 in murine lung cell lines (Beyerle et al., 2010a; Beyerle et al., 2010b; Beyerle 

et al., 2011a and Beyerle et al., 2011c). Cytokine release upon PEI/nucleic acid polyplex 

treatment has been also described by Gautam and Kawakami et al. (Gautam et al., 2001; 

Kawakami et al., 2006). Cubillos-Ruis and co-workers investigated linear PEI/siRNA 

complexes for antitumor immunity and identified linear PEI as TLR 5 agonist of mouse and 

human. They found that linear PEI/siRNA complexes induced a pattern of inflammatory 

cytokines which are triggered in vivo by flagellin in a TLR5 dependent manner (Cubillos-
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Ruiz et al., 2009). Thus, for in vivo use a lot of effort should be made to avoid the high 

proinflammatory effects caused by the rupture or leakage of the endosome caused by PEI. 

Godbey classified PEI-mediated toxicity in an immediate toxicity, associated with free PEI 

and a delayed form, connected with cellular processing of PEI/DNA polyplexes (Godbey et 

al., 2001). To form stable and protective PEI nucleic acid polyplexes an excess of PEI polymer 

is needed, 60-80% PEI remains in a free form after nucleic acid escape and is mainly 

attributed to PEI toxicity. The high positively charged PEI molecule is able to disrupt cell 

membranes, disruption of the endosome is on one hand favourable with respect to the 

intended cytoplasmatic delivery, but on the other hand disruption of other cell membranes 

(e.g., lysosomal membranes, mitochondrial membrane, plasma membrane) is not favourable 

as it will cause stress responses or even apoptotic or necrotic cell death. In this context it has 

been shown that PEI causes apoptosis in an unspecific manner in all kinds of cells (Beyerle et 

al., 2010a; Merkel et al., 2011) which should be avoided with regard to human use. Therefore, 

a purification approach of the PEI polymer before and after complexation with nucleic acid 

is one possibility to reduce PEI-related toxicity (Boeckle et al., 2004; Werth, 2006; Fahrmeir et 

al., 2007).  

9. Lung toxicity 

Espescially, when regarding the lung as target organ the activation of the inflammosome 

should be avoided. Lung targeting could in general be achieved by systemic delivery or 

pulmonary delivery. Pulmonary delivery enhances siRNA retention in the lungs, lowers the 

dose of siRNA required for efficient delivery, and therefore implicates reduced systemic 

toxic effects, and due to lower nuclease activity in the lung siRNA stability is increased. 

RNAi can be used to treat or prevent diseases affecting the lungs, such as lung cancer (Li 

and Huang, 2006; Tong, 2006; Jere et al., 2008; Ren et al., 2009; Zamora-Avila et al., 2009), 

various types of respiratory infectious diseases (Ge et al., 2004; Fulton et al., 2009; 

DeVincenzo et al., 2010), airway inflammatory diseases (Lee and Chiang, 2008; Seguin and 

Ferrari, 2009), and cystic fibrosis (Pison et al., 2006).  

Beyerle and co-workers investigated the effects of PEGylation on cytotoxicity and cell-

compatibility of different PEG-PEI copolymers in murine lung cell lines and found a clear 

structure-function relationship (Fig. 1).  

The higher the degree of PEGylation on PEI25kDa with low molecular weight PEG, the 

stronger was the reduction of cytotoxicity and oxidative stress, but the proinflammatory 

potential of PEI remained high (Beyerle et al., 2010b). The same group evaluated the 

pulmonary toxicity of PEI/siRNA complexes and found at day three after intratracheal 

delivery still high numbers of neutrophils and high levels of proinflammatory cytokines in 

the airspace of polyplex treated mice (Beyerle et al., 2011a and Beyerle et al., 2011c). The 

higher inflammatory potential but lower toxicity of PEI modifications is still an issue to be 

overcome when targeting pulmonary diseases. There is an urgent need to balance the 

efficacy and toxicity of such nucleic acid carriers. 

10. Toxicogenomics of PEI-based non-viral vector systems  

Toxicogenomic and genotoxic information of non-viral vector systems is rare, but of great 

concern when nowadays focusing personalized medicine. Gene delivery systems should be  
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Fig. 1. Structure-function-relationships of PEG-PEI copolymers 
Overview of the structure-function relationships of PEG modified PEI copolymers (B-C) in 
comparisonto PEI 25kDa (A) with regard to cytotoxic (v,w), oxidative stress (x,y) and 
proinflammatory responses (z). Arrows represent the up- or downregulation of the 
investigated molecules. 

able to pass through biological membranes/barriers and transfer the desired information to 

target sites with minimal impact on the integrity of the target cell or tissue (Forrest and 

Pack, 2002; Omidi et al., 2008). Viral vectors possess high efficacy accompanied by 

stimulation of the immune systems which is a limitation of these systems to deliver nucleic 

acids and human use. Therefore, non-viral vector systems should overcome these adverse 

side effects and represent safer and more efficient alternatives with improved bioavailability 

and reduced cellular toxicity in the clinics (Akhtar et al., 2000; Somia and Verma, 2000; 

Panyam and Labhasetwar, 2003). It has been shown that cationic polymers and lipid-based 

transfection reagents could elicit cellular gene expression changes and complexation with 

siRNA increased these changes (Omidi et al., 2003; Omidi et al., 2005; Fedorov et al., 2006; 

Hollins et al., 2007; Tagami et al., 2007; Tagami et al., 2008). Beyerle et al. analyzed the 

expression changes of genes related to cytotoxicity, inflammation and oxidative stress in a 

pathway focused qRT-PCR array system upon treatment with different PEI-PEG copolymers 

in murine lung epithelial cells (LA-4 cell line) and could show that PEGylated PEI 

copolymers altered the gene expression profile on cost of upregulation of genes involved in 

inflammatory and oxidative stress processes while PEI 25 kDa mainly induced genes related 

to cytotoxicity and apoptosis (Beyerle et al., 2010a). In addition, the potential of PEI and PEI-

PEG copolymers to induce DNA damage and therefore their genotoxic potential was 

investigated in a lung epithelial cell line derived from the MutaMouse, but no indication for 
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genotoxicity of PEI 25 kDa and PEI-PEG copolymers was observed (Beyerle et al., 2011b). 

These investigations showed that PEI uptake causes cellular oxidative stress which affects 

the cytoplasmatic compartment with subsequent gene expression responses, but PEI not 

necessarily penetrate the nuclear membrane and cause DNA damage.  

11. Conclusion 

In conclusion, for development of safe and efficient non-viral vector systems a lot of 
investigations are needed before enter clinical trials. In our book chapter we mainly focused 
on PEI-related polymers for siRNA delivery to the lungs and gave an overview of the 
ongoing research in this field with a great focus on toxicity. To improve the toxicity profile 
of such carriers for pulmonary application one of the biggest challenge is to overcome the 
inflammatory response besides reduction of the overall cytotoxicity. Future studies should 
implement basic toxicity testing like evaluation of cytotoxicity (cell viability, LDH release, 
erythrocytes aggregation, apoptosis), inflammation (cytokine release, gene regulation, in 
vivo analysis of relevant tissues and cells or liquids), oxidative stress (lipid mediators, GSH 
levels) before extensively improving the efficacy of such carriers. 
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