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1. Introduction 

Human gene therapy holds great promise in treating not only hereditary genetic disorders, 
but also disease states such as cancer and viral infections, and contingencies such as stroke 
or myocardial infarctions.  It can be achieved by delivery of a correct gene into target cells 
with genetic deficiency or mutations, or by transfer of a therapeutic agent such as agents 
targeting a cancer-causing oncogene, growth factor gene, antisense oligonucleotides (ODN), 
or small interfering RNA (siRNA) to correct the disease state using either viral or nonviral 
vectors.  Viral gene therapy has succeeded in many animal disease models {Snyder 1999}, 
and has progressed to clinical trials {Hacein-Bey-Abina et al. 2002; Kay et al. 2000}. However, 
significant obstacles remain, including immune responses {Manno et al. 2006} or tumor 
genesis {Hacein-Bey-Abina et al. 2003}.  A nonviral approach would provide a safer strategy. 
The potential for therapeutic ultrasound (US) to effect minimally invasive nonviral gene 

transfer has long been recognized, and a growing body of evidence indicates that significant 

enhancement of transgene expression can be achieved by using high frequency acoustic 

energy. In addition to its well-known role in providing inexpensive, real-time imaging 

capability, US has been used therapeutically for years {Herzog et al. 1999}.  The most 

common therapeutic application involves low acoustic intensities and is intended to heat 

deep tissues; e.g., as used in sports medicine.  At the other 'end' of the acoustic intensity 

spectrum is HIFU (high intensity focused ultrasound), which can be used to ablate {Fischer 

et al. 2010} or to liquefy tissues {Hall et al. 2009}. US of intermediate intensities has been 

applied to many systems, together with exogenous microbubbles [MBs], to use the 

acoustically-forced behavior of the MBs to generate desired bioeffects. The latter usually 

involves changing the permeability of endogenous barriers to otherwise impermeable 

materials (e.g., drugs or macromolecules). Many gene therapies have been attempted by 

direct intramuscular or intraparenchymal injection of gene vectors; these vectors gain 

immediate access to the interstitial space and must then traverse the plasma membrane of 

the targeted cells.  US contrast agents are almost always administered intravascularly.  

When accompanied by a gene vector, the first barrier encountered is the vascular 

endothelium. The next are other vascular anatomical features (e.g., the basement membrane, 

smooth muscle layer, etc.) and then the outer cell membrane of the cells one hopes to target.  

Finally, DNA needs to be transferred across the nuclear membrane to enter the nucleus for 

efficient gene expression.  

This review will focus almost entirely on the use of ultrasound targeted microbubble 
destruction (UTMD) as a means by which to deliver foreign DNA (or drugs or photo 

www.intechopen.com



 
Non-Viral Gene Therapy 

 

214 

reactive nanoparticles, as other examples for which there are numerous publications) into 
targeted host tissues and cells.  The literature on this topic is growing at an incredible rate, 
because almost immediately following the commercial availability of microbubble-based US 
contrast agents in the 1980s, it was recognized that acoustic cavitation could cause 
potentially undesirable bioeffects, desirable ones, or both. 
Exploitation of acoustically-activated MBs for therapeutic effect remains an exciting topic. 
Indeed, harnessing the dynamical behavior of acoustic MBs is somewhat of the 'holy grail' of 
acoustically-targeted gene (or drug) delivery {Lindner 2009}. However, a healthy skepticism 
has been (see, e.g., {Villanueva 2009} and should continue to be, applied to claims of great 
successes achieved using UTMD, as replication studies are few, and contradictory findings 
not unusual.  Skepticism should obtain especially when considering ‘black box’ US studies. 
A reasonably coherent picture of US-mediated gene therapy is emerging.  With UTMD 
techniques, the issue ultimately reduces to the fact that US can force dynamic behaviors of 
MBs.  Endogenous MBs are absent in most tissues of the body {Carstensen et al. 2000; Gross 
et al. 1985}.  Exogenously-administered MBs are generally inert without acoustic exposure, 
but can be made to pulsate gently, or to undergo violent but highly localized dynamic 
behavior when driven by acoustic fields.  Targeting can thus be achieved by methods as 
simple as co-administering MBs and gene vectors and exposing the targeted tissue to US, 
which will thus be the only site where bubble activation occurs.  As we shall see, bioeffects 
typically arise when MBs are driven at pressure amplitudes sufficient to produce nonlinear 
bubble oscillations. 
Here we will discuss the issues broadly, in the hope that the reader will gain a general 
understanding of the techniques, applications, apparent mechanisms, and some insights into 
what has been achieved. We focus most of our discussion on in vivo studies, as US-assisted 
gene therapy in vivo continues to be a more challenging problem than US-enhanced cell 
permeabilization in vitro or even in intact ex vivo tissues (see; e.g. {Kodama et al. 2005}). We 
have striven to be as jargon-free as possible, and have neglected mathematical treatments of 
the topics discussed here, as these can be found elsewhere.  A few simple abbreviations are 
used: US (ultrasound); MB (microbubble); Pa or Pr (acoustic pressure amplitude or 
rarefaction pressure, respectively); and pDNA (plasmid DNA).  Some words on US 
exposure metrics are also necessary. In some applications of therapeutic US (e.g., tissue 
heating), the acoustic intensity in dimensions of W/cm2 is the parameter of interest. In 
contrast, the occurrence and character of acoustic cavitation in vivo is largely determined by 
the presence or absence of exogenous MBs and by peak acoustic intensity, or more properly, by 
the peak acoustic pressures. These are  expressed in units of mega- (MPa) or kiloPascals (kPa), 
where 1 MPa = 10 atm.  Acoustic intensity scales as the square of the pressure amplitude.  
The quality of acoustic reporting in the US-mediated gene therapy literature varies widely.  
We will describe most acoustic exposures in terms of the pressure amplitude (Pa) or the peak 
rarefactional acoustic pressure (Pr), sometimes inferred by us. In any case, it is not our 
purpose here to be rigorously quantitative.  

2. Ultrasound-targeted microbubble destruction: Physics & technology   

There are many potential applications for UTMD gene delivery; a large body of work has 
been conducted using both in vitro and in vivo model systems to understand if, and how, 
UTMD ‘works’ to produce therapeutic effects.  Most studies have as their ultimate goal the 
application of the technology to effect minimally-invasive treatment of disease or 
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contingency, although in vitro UTMD transfection techniques are being used for cell-based 
therapies {Otani et al. 2009}.  Specific applications to various organs or for various clinical 
conditions will be discussed in §5.  Here it is sufficient to note that in UTMD-based gene 
delivery studies, much of the work has focused on model or surrogate systems; e.g., the 
delivery of reporter genes rather than therapeutic ones. However, therapeutic gene transfer 
effects such as tumor volume reduction have been reported in some model systems. 
Therapeutic US has the potential for enhancing minimally invasive gene therapies.  For gene 
therapies involving naked DNA vectors in particular, UTMD techniques have many desired 
characteristics. These include (1) low toxicity of all components of the treatment, (2) low 
immunogenicity of the vectors,  (3) low invasiveness (e.g., the vector and gas bodies can be 
administered intravascularly, and for sonographically-accessible organs, the therapeutic US 
can be applied through the skin), (4) there is good potential for repeated application, (5) 
organs can be targeted with high specificity, and (6) the technique has broad applicability 
(again related to sonographic accessibility). However, low efficiencies remain a problem. 

2.1 What is ultrasound targeted microbubble destruction?  

Here we hope to provide a sense of the types of MBs often used in US-mediated gene 

therapies, the ways in which US can cause these MBs to be destroyed (either gradually or 

abruptly) and/or otherwise activated, and the mechanisms by which UTMD-induced 

microvascular damage, extravasation, and target cell uptake of gene vectors may occur. A 

more comprehensive discussion of the physics can be found in {Wu & Nyborg 2008}. 

In broad terms, the targeting ‘part’ of UTMD therapies is based principally on the fact that 

MBs present in tissues respond dynamically only if the area is exposed to US.  Ligands 

incorporated into the MB shell may enhance accumulation of the MBs and any vector load 

they carry in a region of interest, but it is the selective acoustic exposure which ‘activates’ 

the MBs.  As mentioned, site-specific ligands can be added to MB shells to improve retention 

in regions of interest.  This field has received considerable attention {Ferrara et al. 2009}.  

Some degree of targeting can also be achieved by acoustically ‘pushing’ bubbles to a region 

of interest. A propagating acoustic field exerts a radiation force on MBs {Sarvazyan et al. 

2010}, and this force can propel them in the direction of wave propagation.  If the MB is 

undergoing radial oscillations {Emmer et al. 2007}, the bubble lurches forward, slowing as it 

expands and accelerating as it collapses. Radiation force can be used to concentrate MBs 

along a specific wall of an intracavitary space {Horie et al. 2010}, or blood vessel. 

The MB destruction ‘part’ of UTMD occurs in response to the acoustic exposure, and may 

result in release of lipid or aqueous-phase drugs {Smith et al. 2010} or produce small-scale 

damage to microvessels which allows normally impermeable materials (drugs, plasmids, 

even objects as large as cells or MB fragments) to escape the vascular lumen and enter the 

interstitial space.  Cellular permeabilization is also associated with MB activation. 

2.2 Ultrasound contrast agents and other stabilized gas bodies 

Microbubble US contrast agent evolution from early, agitated saline or sugar solutions to 
protein-shelled agents containing air to lipid- or polymer-shelled agents using relatively 
insoluble gases was rapid. The evolution of these agents continues {Qin et al. 2009}, as do 
new applications for them {Cosgrove & Harvey 2009}. US contrast agents are typically 
micron-sized gas bodies which are stabilized against diffusion by a shell {Overvelde et al. 
2010; Sarkar et al. 2009}; most contrast agent MBs have mean diameters of ~2 µm. New 
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agents currently under development for imaging or therapy are smaller still, and are 
considered to be nanobubbles {Krupka et al. 2009}. Multi-layered structures in which a gas 
body stabilized by a lipid monolayer is contained in an aqueous compartment bounded by a 
lipid bilayer (echogenic liposomes) are also under development.  When used for imaging, US 
contrast agents are unique amongst contrast agents in that they respond dynamically to the signal 
used to interrogate tissues for their presence.  It is this same property that is exploited for UTMD 
therapies or therapy models.   

2.3 Microbubble destruction: Shell disruption and shell/gas body fragmentation  

There are three principal mechanisms by which US or time can destroy a shelled MB 

{Chomas et al. 2001}.  In increasing order of ‘violence’ to the MBs, these are: (1) static 

diffusion, in which gas dissolves into the surrounding host fluid. This may be rapid if the 

bubble is ‘free’ (without stabilizing shell) or very slow if a stabilizing shell is present; (2) 

acoustically-forced shell disruption, which leads to accelerated diffusive loss of gas relative 

to unperturbed shelled bubbles; and (3) shell fragmentation and rapid loss of gas. 

A micron-sized free air bubble can be expected to dissolve in  water in ~30 ms {Sarkar et al. 

2009}, which is why relatively insoluble gases such as perfluorocarbons are now used in 

modern contrast agents, and a stabilizing shell is employed.  The principal mechanism by 

which bubble shell materials stabilize MBs against diffusion is by reducing the surface 

tension at the bubble surface.  Shell properties also affect the dynamic responses  

and stability of MBs at Pa below the shell fragmentation threshold {Emmer et al. 2007; 

Ferrara et al. 2009}.   

Acoustically-forced MB dissolution can occur when the Pa is sufficient to drive MB 

oscillations which stretch and compress the shell sufficiently to produce relatively small 
defects in the shell, which may re-seal {Huang 2008}.  Very high physical stresses develop 

in the shells as the MB oscillates, even when the driving pressures are only a few hundred 
kPa {Stride & Saffari 2003}.  Small shell defects lead to more rapid dissolution of the gas 

body than would otherwise occur, but complete gas dissolution may require many 
acoustic cycles {Smith et al. 2010}.  For examples, Optison MBs exposed to 3.5 MHz US of 

Pa > 0.15 MPa undergo accelerated loss of gas, indicating shell compromise {Porter et al. 

2006}. Shell disruption Pa thresholds for albumin-stabilized Optison and surfactant 
stabilized Sonazoid are similar; at 1.1 MHz, these are 0.13 MPa or 0.15 MPa, respectively. 

At 3.5 MHz, these thresholds are somewhat higher (Optison: 0.48 MPa; Sonazoid: 0.58 
MPa) {Chen et al. 2003}. Others have reported a somewhat lower threshold (0.15 MPa) for 

Optison shell disruption at 3.5 MHz {Porter et al. 2006}.  Likewise, {Borden et al. 2005} 
studied the behavior of lipid monolayer-encapsulated MBs at 2.25 MHz using single-cycle 

pulses, and found that the Pr threshold for slow MB dissolution to be in the range of 0.4 – 
0.6 MPa, and the Pr threshold for MB fragmentation to be 0.8 MPa.  A Pa of around 0.3 

MPa was also found to be the threshold for soft-shelled contrast agent MB disruption {de 
Jong et al. 2009}.  Echogenic liposomes also appear to have two pressure thresholds; one 

associated with compromise of the shell of the interior gas body, and a higher one 
associated with disruption of the outer lipid bilayer {Smith et al. 2010}.  Rapid 

fragmentation occurs on a time scale of microseconds when Pa is sufficient to buckle and 
completely rupture the shell {Marmottant et al. 2005}, creating free gas bodies which may 

then dissolve, grow by rectified diffusion, coalesce into larger bubbles, or dissolve, 
depending stochastically on exposure conditions. 
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2.4 Microbubble dynamics: An overview of how gas bodies respond to ultrasound 

At very low Pa, MB volume oscillations are related linearly to Pa. At modest Pas of a few 
hundred kPa (or less), MB volume oscillations become non-linearly related to Pa, with 
bubble expansion being relatively slow and bubble collapse much faster, being governed by 
the inertia of the in-rushing surrounding fluid to a greater extent than by the compressive 
phase of the applied pressure field; hence the phenomenon of bubbles undergoing 
acoustically-driven expansions followed by rapid, inertially-dominated collapse is termed 
‘inertial cavitation’.  This typically occurs when a MB has been driven by the rarefaction 
phase of the acoustic wave to a diameter roughly 2 – 3 times the initial diameter {Chomas  
et al. 2001}.  At very modest Pas, inertial cavitation can be stable and sustained for an almost 
indefinite number of acoustic cycles.  For example, {Church & Carstensen 2001} found that 
surfactant-coated Sonazoid MBs could undergo repetitive inertial collapses and rebounds 
when driven by 2.5 MHz US at acoustic pressures greater than about 0.3 – 0.4 MPa; for this 
agent, irreversible post-collapse fragmentation occurred at a Pa of ~ 1.5 MPa.  Others have 
reported that a 3 µm bubble exposed to 2.25 MHz US can be expected to undergo expansion, 
inertial collapse, and fragmentation at a Pa just over 0.3 MPa  {Chomas et al. 2001}. The  
albumin-shelled, first-generation US contrast agent Albunex began to emit acoustic 
signatures characteristic of nonlinear oscillations at acoustic pressures as low as 0.005 – 0.010 
MPa {Krishna & Newhouse 1997}.  At even modest Pa (e.g., 0.6 MPa at 1 MHz), some 
contrast agent bubbles can expand to 10 times or larger than their equilibrium radius; under 
such conditions, inertial collapse is expected. Fragmentation of the inertially-collapsing 
bubble occurs at some instant near the time of minimum bubble radius {Postema & Schmitz 
2007}. Inertial bubble collapse is so rapid and the gas so compressed that the maximum 
temperature inside the bubble can reach more than 5000 K {Apfel & Holland 1991}. Light 
emissions {Matula 2003} and reactive free radicals may be produced {Okada et al. 2009}.  MB 
rebound and fragmentation can re-emit acoustic energy at many times the excitation 
pressures.  These emissions also contain higher frequency spectral components which can 
produce local heating.  In  the present context, however, it appears that the most important 
determinant of UTMD gene delivery methods is that bubble expansion and collapse can produce 
local tissue distortions or damage which are presumed to be the principal mechanism by which 
microvascular bioeffects become manifest, and target cell permeabilization occurs. 
Cavitation bubbles can interact with nearby boundaries; these interactions can produce 
high velocity fluid jets and induce bubble translation, with the directions of fluid jets and 
translation depending on the boundary’s properties.  For rigid boundaries, bubbles closer 
to the boundary than about twice the fully-expanded radius of the bubble {Kodama & 
Tomita 2000} may collapse asymmetrically, with a high velocity water jet ‘punching 
through’ the bubble and impinging on the rigid boundary. Near rigid, planar boundaries, 
an oscillating MB translates toward the boundary and if collapse jetting occurs, the jet is 
directed toward the rigid surface {Plesset & Chapman 1971} with sufficient water hammer 
pressure to damage the surface {Blake & Gibson 1987}.  In vivo, however, this condition 
would seem rare.   
MBs driven to oscillate near pressure release boundaries (an air-water interface, for 
example), collapse jets which occur are directed away from the boundary, as is the direction 
of bubble translation {Chahine 1977; Robinson et al. 2001}.  
Oscillating MBs collapsing near a ‘soft’, planar boundary (e.g., gels or large vessel walls) also 
undergo translation and jetting, but the directions of jetting and translation can be either 
toward or away from the boundary, being determined by bubble size, bubble distance from 
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the boundary, and the mechanical properties of the boundary (see. e.g., {Kodama & Tomita 
2000; Shima et al. 1989}. Deformation of the elastic boundary stores energy which is 
‘returned’ as the bubble collapses; this creates a hydrodynamic pressure gradient which in 
turn produces fluid flow away from the elastic boundary.  If the pressure gradient is large 
enough, bubble collapse jets directed away from the boundary, and bubble translation away 
from the boundary, can result {Blake & Gibson 1987}.  Liquid jets were observed in an early 
experimental study of acoustically forced MB behavior in a 200 µm diameter cellulose tube 
{Postema et al. 2004}.  In vessel-simulating gel tunnels, at 1.7 MHz, the Pa at which Optison 
MBs began to emit broadband noise characteristic of inertial collapse and rebound was 
weakly dependent on tunnel diameter (~0.8 MPa in 90 µm diameter tunnels vs. ~0.6 MPa in 
800 µm tunnels) {Sassaroli & Hynynen 2007}.  Single-MB dynamics observations in actual 
microvessels were acquired using a rat cecum model; MBs translated toward the vessel 
walls and a toroidal bubble morphology consistent with the formation of a microjet was 
observed {Caskey et al. 2007}.  
Where bioeffects attributable to inertial cavitation occur, cavitation jets directed toward cells 

or tissues have long been assumed to be causative. Vessel ‘stretching’ during bubble 

expansion has also been proposed as a mechanism of vessel damage {Miao et al. 2008}.  Very 

high speed imaging of MBs driven to growth and inertial collapse in microvessels of rat 

mesentery {Chen et al. 2010; Chen et al. 2011} indicate that (1) MB collapse jets form 

frequently in the intravascular environment, (2) jets are typically directed away from the 

nearest blood vessel wall, (3) blood vessel expansion in response to bubble growth is 

minimal, and (4) tissues ‘follow’ the collapsing bubbles such that inward vessel distortions 

are much greater than outward distortions, with inward vessel wall motion having speeds 

of 5 – 10 m/s and the events occurring on microsecond time scales.  This is perhaps one 

mechanism by which vessel permeabilization occurs.  In any case, permeabilization of 

biological transport barriers is associated with some cell killing, both in vitro {Brayman et al. 

1999} and in vivo {Ferrara 2008; Miller et al. 2011; Price et al. 1998; Skyba et al. 1998}   

Finally, it is worth mentioning that MB-excitation techniques for cellular permeabilization 

need not use US to achieve MB activation or cell permeabilization; targeted laser 

illumination can also be used effectively.  For a recent research paper on this topic, using a 

liposome MB contrast agent, see {Zhou et al. 2010}.  

2.5 Effect of different shell compositions or agents on gene delivery 

It is difficult to compare the efficacy of different contrast agents in US-mediated gene 
delivery between different studies, because MB type, concentration as injected, rate of 
injection, total dose, animal model, US exposure source, exposure conditions, and even the 
way the MBs are handled vary widely and can influence outcome.  MB concentration is a 
determinant of UTMD-mediated pDNA expression in mouse liver {Miao et al. 2005; Shen et 
al. 2008}.  Different agents have different ‘native’ concentrations, and agents with similar gas 
content but dissimilar shells can have different efficacies in enhancing gene delivery under 
otherwise comparable conditions (cf. effects of Optison and PESDA MBs; {Pislaru et al. 
2003}). Relatively large differences between contrast agent types in UTMD gene delivery 
have been observed, but the reasons are not always clear. With equalized MB concentrations 
and either Optison, SonoVue or Sonazoid contrast agents, UTMD-mediated transfer of 
phosphorodiamidate morpholino oligomer to a dystrophin-deficient murine heart model 
induced dystrophin-positive cells in the hearts when harvested 7 days after treatment.  
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Optison and Sonazoid were equivalent in effectiveness, producing about four times greater 
expression than did SonoVue {Alter et al. 2009}.   

2.6 Sensitivity of stabilized gas bodies to technique 

Bubbles are buoyant, fragile, can coalesce into larger bubbles, or ‘disappear’ as gas is lost to 
diffusion. In many in vivo studies of UTMD, the MBs and gene vectors are infused slowly; 
this prolongs the time window in which acoustic treatments can occur, but aggravates the 
problem of time-dependent changes in MB distribution and delivery {Kaya et al. 2009}. It is 
worth noting that MBs can be destroyed by static pressure or tension; an over-pressure of 
only ~0.3 MPa can destroy them {Stringham et al. 2009}. MBs can also be destroyed by 
drawing up or injecting an MB suspension too rapidly when using a small gauge needle {Talu 
et al. 2008}; thus one can unwittingly alter experimental outcome by ‘over-enthusiasm’.   

3. Breaching the physical barriers to gene delivery using ultrasound 

In order to achieve efficient gene expression following ultrasound-mediated gene delivery, 
multiple barriers need to be overcome to allow pDNA to enter into the nucleus of target 
cells including penetrating vascular and cellular membranes as well as trafficking through 
different intracellular compartments. 
US contrast agents are intended to be intravascular agents.  Whether the gene vector  
is administered as a simple mixture with the gas body suspension, or is in some way linked 
to the gas bodies, they are also intravascular agents in vascular UTMD methods. The  
first barrier encountered is the vascular endothelium. The next are other vascular anatomical 
features (e.g., the basement membrane, smooth muscle layer, etc.) and then the outer  
cell membrane of the cells one hopes to target. Some intracellular membranous 
compartments must also be traversed. However, MBs have been used with intramuscular or 
intraparenchymal injections of vectors, and some successes reported.  In UTMD-based gene 
transfer methods using vascular approaches, to mediate gene therapy via acoustic excitation, 
gas bodies must first exert their influence from within the vascular lumen.   
Most of the available evidence from in vivo studies indicate that vessel permeabilization 
effects occur principally in the microcirculation; larger vessels are too robust to be 
penetrated by cavitation events, even if their vascular endothelium can be effectively 
destroyed by intraluminal inertial cavitation {Hwang et al. 2005}. Extravasation of dyes, 
nanoparticles or macromolecules through microvessels is almost always accompanied by 
extravasation of red cells (see below); since these have diameters on the order of 6 µm,  
breaches in the endothelial wall can be quite large.  However, there is also some evidence 
that more subtle effects, such as partial opening of the tight junctions between endothelial 
cells, can also contribute.  Assuming that the gene vector escapes the intravascular 
compartment and enters the interstitium, it must then enter the surrounding cells; thus the 
plasma membrane is the second major barrier encountered by the vectors.  Lethal effects of 
cavitation occurring in the cardiac microcirculation can extend outward into the 
myocardium {Miller et al. 2011}; there is good reason to expect that sub lethal poration of 
cells located within a few cell diameters of the intravascular cavitation event(s) also occurs. 

3.1 Extravasation of dyes, nanoparticles and cells 

Evans blue [EB] is an azo dye which binds serum albumin with high affinity, and is 
normally unable to pass through the endothelium. Extravasation of EB through reversible or 
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irreversible capillary modification has been observed in small animal (rat) hearts exposed to 
low-MHz frequency US with the use of various contrast agent MBs, accompanied by 
premature ventricular contractions {Li et al. 2004}.  The effect was sensitive to Pa (apparent 
threshold somewhat less than 1.6 MPa at 1.5 MHz) and to the concentration of the injected 
MBs {Miller et al. 2004}. The effect appears to be of mechanical origin {Miller et al. 2004} With 
injection of dilute Definity suspensions, extravasation of EB from canine hearts, and cell 
killing of cardiomycetes within the ultrasonically-interrogated area also occurs under 
diagnostically realistic exposure conditions  {Miller et al. 2006}. 
Erythrocyte extravasation has been observed in rat kidney glomerular capillaries exposed 
to diagnostic US with contrast agent MBs in the circulation {Miller et al. 2010a, Miller et 
al., 2010b}; such damage was associated with tissue inflammation at 1 week and fibrosis at 
4 weeks {Miller et al. 2009}. A threshold Pa of ~0.8 MPa was indicated {Miller et al. 2007}. 
Glomerular capillary hemorrhage with contrast-enhanced diagnostic US also occurs in 
large animals (pigs) exposed to 1.5 MHz, 1.7 MPa US {Miller et al. 2010}.  Petechial 
hemorrhage on intestinal blood vessels in an in vivo murine model was observed with the 
contrast agent Albunex, with apparent Pa thresholds of 0.4 MPa at 0.4 MHz, 0.8 MPa at 1.1 
MHz, or 2.3 MPa at 2.3 MHz; the thresholds were lower with the agent Levovist than with 
Albunex {Miller & Gies 1998a, Miller & Gies 1998b}. At 2.25 MHz, a threshold Pa of 
between 0.85 and 1.0 MPa was indicated for vessel damage in exteriorized rat cremaster 
muscle containing Definity MBs {Samuel et al. 2009}.  Similarly, intravital observation of 
red cell extravasation from rat cremaster muscle capillaries containing MB contrast agent 
was observed more than a decade ago {Price et al. 1998; Skyba et al. 1998}. Microscopic 
observations of US and MB-induced red cell extravasation have been reported in glass 
catfish {Maruvada & Hynynen 2004}. In exteriorized rat spinotrapezius muscle,  1 MHz 
US at a Pa of 0.75 MPa was shown to result in extravasation of 100 nm diameter 
microspheres co-injected with contrast agent MBs {Song et al. 2002}.  In rats, in vivo 
exposure of the kidneys following injection of MBs resulted in red cell extravasation from 
the glomerular capillaries into Bowman’s space with an apparent threshold Pa of ~ 0.73 
MPa (at ~ 1 MHz), with  nearly 40% of histological sections taken from the focal plane 
showing extravasation at a Pa of 1.8 MPa {Miller et al. 2007}.  Intravital microscopy and 
concurrent cavitation detection was used to study the relationship between bubble 
dynamics and extravasation of red cells from rat cremaster muscle using 2.25 MHz US, 
and Definity contrast agent infused via the tail vein. Vascular damage and acoustic 
emissions from the MBs were correlated.  The greatest amount of red cell extravasation 
and the greatest cumulated bubble acoustic emissions occurred at 10 Hz pulse repetition 
frequency [PRF], indicating that the time for tissue refill with bubbles following each 
pulse was ~100 ms. In experiments in which pulses were applied at 100 Hz PRF and the Pa 

varied from 0 – 2.0 MPa, there was no vascular damage at Pr ≤ 0.85 MPa, but 
unambiguous damage occurred at Pr  ≥ 1.0 MPa {Samuel et al. 2009}. Finally, there is 
evidence that low amplitude US induced MB oscillations (1 MHz, Pr = 0.l MPa, SonoVue 
bubbles) can increase the permeability of primary endothelial monolayer cultures in vitro.  
Insonation produced immediate influx of Ca2+ ions into the cells, indicating poration of the 
endothelial plasma membranes.  The effect was essentially abolished by application of 
catalase, strongly suggesting a role for extracellularly-produced H2O2 associated with 
nonlinear bubble oscillations.  Moreover, histochemical staining for a protein associated 
with gap junctions showed an approximately 50% increase immediately after insonation, 
but returned to control levels within 30 minutes of insonation {Juffermans et al. 2009}.   
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3.2 Transient poration of the cell membrane  

Two mechanisms by which US and MBs facilitate poration of cell membranes are 
prominent; these are: (1) cavitational; e.g., the opening of transient holes in membranes in 
consequence to local shear forces exerted on membranes by fluid flow (‘micro streaming’) 
around oscillating bubbles, local shock waves (which produce large pressure gradients 
across a cell), or cavitation microjets, or (2) endocytosis {Doinikov & Bouakaz 2010; Walton 
& Shohet 2009}.  Other mechanisms have been proposed, of course.  However, it appears 
that shear stresses associated with bubble activation is probably the principal mechanism. A 
third mechanism by which normally ‘tight’ physiological barriers may be permeabilized is 
by sonochemical stimulation. 
Transient pores of a few hundred nanometers in diameter and lifetimes of several seconds 
can be formed in cell membranes by acoustically-driven, single MB oscillations {Deng et al. 
2004; Han et al. 2007; Zhou et al. 2008; Zhou et al. 2009}. Voltage clamp studies of Xenopus 
oocytes exposed to 1 MHz US showed that without MBs, there was no change in current at 
Pr as high as 1.2 MPa.  With Optison MBs, opening and resealing of individual pores was 
observable even at Pr as low as 0.2 MPa.  The transmembrane current was carried by influx 
of Ca2+ ions. The transmembrane current was greater at 0.4 MPa than at 0.2 MPa; in both 
cases, pore lifetime was ~2 s. More generally, the effect was Pa dependent, increasing slowly 
with increasing Pa over the range of 0.3 – 0.55 MPa, and then inflecting sharply upward at 
higher Pa {Deng et al. 2004}.  Pore opening showed a high level of temporal correlation with 
inertial cavitation noise {Zhou et al. 2008}.  Pore size was estimated as 220 ± 80 (mean ± SD) 
nanometers, and refined estimates of pore resealing times indicated closure in 3 – 5 s {Zhou 
et al. 2009}. In vitro studies of cells in contact with SonoVue MBs excited by 1 MHz US at Pa 
of 0.05 – 2.50 MPa have shown Ca2+ influx associated with poration {Juffermans et al. 2008}.  
Sonoporation to naked DNA in vitro is correlated with inertial cavitation activity {Qiu et  
al. 2010}, and depends in part on the fluidity of the membrane at the time of UTMD 
treatment {Zarnitsyn & Prausnitz 2004}, with higher reporter gene transfection rates at 37 oC 
than at 21 oC. This is consistent with the need for porated membranes to reseal rapidly in 
order to maintain viability.  Still others have shown that 1 MHz US at Pa as low as 0.1 MPa 
can permeabilize cells in vitro to pDNA {Rahim et al. 2006}. In cell suspensions containing 
Definity MBs, the Pa thresholds for cell permeabilization to 70 kDa FITC-dextran, propidium 
iodide (indicating cell death) and MB destruction were 75 kPa at 0.5 MHz, 200 kPa at 2.5 
MHz, and 600 kPa at 5 MHz {Karshafian et al. 2009}. However, the idea that cellular poration 
results from inertial cavitation has been challenged on the basis of observations of cavitation 
noise and permeabilization of in vitro cell monolayers to 500 kDa FITC dextran; the 
supporting data indicate that permeabilization precedes the occurrence of broadband noise 
associated with inertial collapse and rebound cavitation. The authors conclude that the 
forces associated with microstreaming around activated bubbles is the principal mechanism 
of sonoporation  {Forbes et al. 2008}. More study is clearly needed. 
US and MB-induced cell lysis and reversible poration in other cell types in vitro are strongly 
correlated with inertial cavitation {Chen et al. 2003a; Chen et al. 2003b; Lai et al. 2006}.  Cell 
surface antigens may be stripped off the surface of viable cells during such events {Brayman 
et al. 1999}. While in vitro UTMD-based transfection with naked DNA is often associated 
with high cell mortality, this is not always the case {Wang et al. 2009}. 
The use of the collapse jets of MBs generated by laser pulses to selectively and directionally 
sonoporate individual cells has reached a high level of sophistication, producing pore sizes of 
~ 200 nm {Sankin et al. 2010}, which may someday prove useful for cell therapies. This is very 
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similar to pore size determined by sonoporation of Xenopus oocytes using 1.07 MHz US of 0.3 
MPa Pa with Definity MBs; viz., a mean pore size of 220 ± 80 nm diameter {Zhou Y et al. 2009}. 
Lipoplexes, which are normally taken up by cells via endocytosis, are taken up poorly when 
‘PEGylated’ (coated with polyethylene glycol). However, when PEGylated pDNA/lipolexes 
were attached to acoustically activated MBs, large increases in PEGylated lipoplex 
transfection were achieved in an in vitro model system, relative to ether 'free' PEGylated 
lipolexes, or lipolexes + MB simple (un-linked) mixtures {Lentacker et al. 2009}. The 
investigators also used a number of endocytosis inhibitors; their results indicate that 
endocytosis was not the primary mechanism involved.  They postulate that lipoplex-loaded 
MBs collapsing near cell monolayers in culture plates released the lipolexes, resulting in 
high local lipoplex concentrations, that some of the released lipolexes became entrained in 
MB collapse jets and were 'injected' into the cells with the fluid jet (see also {Miller 2000}).  
However, Meijering and colleagues, using fluorescently labeled dextrans of ~4 – 500 kDa, 
present data which indicate that the principal mechanism by which UTMD treatment (1 
MHz US, 0.2 MPa Pr, SonoVue MBs) facilitates macromolecule delivery across the plasma 
membrane is via induction of endocytosis.  Sonoporation was also observed, but did not 
seem to be the mechanism for macromolecular uptake {Meijering et al. 2009}. It is clear that 
the our understanding of the mechanism(s) of UTMD-enhanced uptake of macromolecules 
remains incomplete.  

3.3 Entry of pDNA into the nucleus  

Following delivery of pDNA across the plasma membrane of cells into cytoplasm, pDNA 

may travel through multiple cellular compartments and finally enter the nucleus via 

diffusion {Liang et al. 2004} or other assisted mechanism to produce efficient transgene 

expression.  UTMD may facilitate overcoming some of these barriers most likely via 

cavitation bioeffects.   It was reported that long-term exposure to therapeutic ultrasound (1 

MHz, 2 W/cm2, 30% duty cycle for 30 mins) can overcome the rate-limiting step of driving 

DNA into the cell nucleus {Duvshani-Eshet & Machluf 2005}. One thousand fold higher gene 

expression levels of luciferase was achieved with minimal loss in cell viability (<20%) in 

three different cell types (BHK, LNCaP, and BCE).  These data implied that therapeutic US is 

the main driving force delivering pDNA not only to the cell cytoplasm but also to the 

nucleus.  However, in this case, no MB was used.  The same group {Duvshani-Eshet et al. 

2006} showed that adding Optison further increased transfection levels. Confocal and 

atomic force microscopy studies indicated that long-term therapeutic US application 

localizes the pDNA in cell and nucleus regardless of Optison addition.  In addition, the use 

Optison did not affect the kinetics of protein expression, indicating Optison did not affect 

DNA trafficking to the nucleus.  They hypothesized that US application by itself plays a 

major role in delivering DNA to the nucleus.    

An interesting recent report used Doxorubicin (DOX) as a molecular nanotheranostic agent 

to study UTMD-mediated intracellular delivery and nuclear trafficking {Mohan & Rapoport 

2010}. DOX is a popular research tool due to its inherent fluorescence and was encapsulated 

in poly(ethylene glycol)-co-polycaprolactone (PEG-PCL) micelles or PEG-PCL stabilized 

perfluorocarbon nanodroplets in this study.  US triggered DOX trafficking into cell nuclei; 

the trafficking was further enhanced in the presence of phase-transition nanodroplets which 

become gas MBs upon US exposure of sufficient Pr. This was believed to be due to  

cavitation induced transient permeabilization of both plasma and nuclear membranes, thus 
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allowing DOX penetration into the cell nuclei.  Whether MBs and/or nanodroplet emulsions 

can significantly augment DNA delivery to the nucleus needs further investigation.    

Once pDNA enters the nucleus, some DNA can be condensed by histones and form 
persistent nucleosome-like structures.  Persistent gene expression from these stable episomal 
pDNA genomes requires the introduction of specific cis-acting elements in the gene transfer 
constructs.  We have demonstrated that incorporation of locus control region and intron 
elements into specific gene transfer constructs can achieve persistent expression of 
therapeutic-levels of coagulation proteins in the liver following nonviral gene therapy {Miao 
et al. 2001; Miao et al. 2003; Ye et al. 2003}. The locus control region {Yant et al. 2003} can 
contribute to the open chromatin structure of the pDNA genome and avoid silencing of the 
transgene expression cassette {Miao et al. 2005}.  Furthermore, addition of an intron element 
significantly enhanced the transcription efficiency of stable mRNA {Miao et al. 2005}.  Thus, 
gene transfer of episomal pDNA into slow-dividing or terminally differentiated cells 
facilitated by UTMD has high potential to achieve a therapeutic effect to treat specific 
diseases.   For gene transfer into dividing cells where integration of target genes are 
required, incorporation of other systems such as sleeping beauty transposons {Aronovich et 
al. 2011; Yant et al. 2007} or PhiC31 integrase {Keravala et al. 2011} with UTMD-mediated 
nonviral gene transfer methodology can lead to long-term transgene expression. 

4. The vectors: Packaging desired genes for ultrasound-mediated delivery 

4.1 Naked DNA: Plasmids 

Naked plasmid DNA provides many advantages as a nonviral gene transfer vector, 
including:  (1) ease of preparation, (2) cost-effectiveness, (3) minimum toxicity, and (4) it is 
least immunogenic of the vectors. Indeed, the immunogenic CpG moiety can be modified 
easily if needed. Most importantly, quality control is quite easy compared to other pDNA 
complexes containing synthetic vehicles.  However, it has been a very challenging problem 
to deliver naked pDNA into specific cells due to its large size and negative charge.  In vivo 
delivery of naked pDNA is especially difficult with additional impediments of instability of 
pDNA in blood serum as well as in cellular sub-compartments such as cytosol, endosome, 
and nucleus after cell entry.  Recently a hydrodynamic approach has been developed to 
drive efficient gene delivery into liver {Liu et al. 1999} and muscle {Danko et al. 1997}  
resulting in therapeutic levels of transgene expression in animal disease models, including 
hemophilia B {Miao et al. 2003} and others {Zhang et al. 2000}.  This method in its current 
form is not suitable for clinical use; however, notable recent advances have been made in 
large animal models (vide, e.g., {Fabre et al. 2008; Kamimura et al. 2009; Suda et al. 2008}.  
Alternatively, innovative US and MB technology to facilitate delivery of naked pDNA is a 
potential clinically feasible nonviral gene therapy approach {Miao et al. 2005; Shen et al. 2008; 
Song et al. 2011}.    
The potential for sonoporation to increase pDNA loading of cells was recognized years    
ago  {Fechheimer et al. 1987}.  Sonoporation-enhanced transport of nanoparticles into cells is 
dependent on molecular size; uptake of particles ≤ 37 nm diameter was enhanced by 
sonoporation without gross damage, but particle uptake generally declined as particle size 
increased {Mehier-Humbert et al. 2005a}.  pDNA gene expression is faster with sonoporation 
than with liposome-based methods which depend on endocytosis {Mehier-Humbert et al. 
2005}, indicating that pDNA enters cells through transient pores.  Moreover, due to the risk 
of pDNA degradation by serum nucleases and removal by phagocytes {Niidome & Huang 
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2002}, injection of a nonviral gene transfer vector long before US treatment occurs is unlikely 
to be effective. With simultaneous delivery of pDNA and US exposure, UTMD can 
significantly facilitate the transfer of naked pDNA up to several hundred fold in vitro {Miller 
et al. 2002; Newman & Bettinger 2007} and up to several thousand fold in vivo, depending on 
different US and transfection systems {Chen et al. 2010; Miao et al. 2005; Shen et al. 2008; 
Song et al. 2011}.  Furthermore, with introduction of specific cis-acting elements in the gene 
transfer constructs, persistent expression of near-therapeutic levels of proteins can be 
achieved from episomal plasmids following UTMD-mediated gene therapy {Miao et al. 
2005}.  These results demonstrate that development of UTMD has high potential to achieve a 
therapeutic effect for treating specific diseases.   

4.2 Encapsulated or compacted DNA 

Polyanionic solutes can be complexed to phospholipid polar head groups via Ca2+ bridges 
{Huster et al. 1999}. Thus, anionic DNA molecules can be compacted onto cationic MB lipid 
shells. Polylysine has also been used to link naked DNA to phospholipid MB shells {Wang  
et al. 2009}.  It appears to be widely believed that enhanced efficiency of gene delivery can be 
obtained with pDNA in close proximity to MBs and any cell membrane ‘defects’ they may 
create, thereby increasing the probability that pDNA will be available to enter through these 
pores prior to their closure.  Thus far, however, there has been inconsistent support for this 
idea. For example, pDNA coupled electrostatically with cationic MBs were used for local 
delivery of DNA to vascular muscle cells.  One percent of cells were transduced with 40% of 
the cells remaining viable {Phillips et al. 2010}.  However,  reporter plasmid bound to the 
cationic MB preparation MRX-225 was used to transfect canine myocardium which was 
exposed to diagnostic US.  Reporter gene activity was only observed in the myocardium of 
those animals that received MB-linked DNA and were exposed to US but not in control 
untreated animals {Vannan et al. 2002}. It is not clear if the pDNA-MB linkage influenced the 
experimental outcome.     
Due to large size of DNA molecules and the concerns of enzymatic degradation of the 

injected pDNA as well as the low pDNA concentration in the vicinity of sonoporated cell 

membranes, polymer-coated MBs that can bind and protect the pDNA have been developed 

for UTMD-mediated gene delivery.  Coating albumin-shelled MBs with poly(allylamine 

hydrochloride) (PAH) makes the surface charge of the MBs positive, but did not affect the 

size distribution of the MBs.  The cationic coating allowed the MBs to bind to 100 fg of 

pDNA per MB and protected the bound DNA against nucleases.  The PAH coating also 

significantly increased the lifetime of MBs (half-life ~7 h), making them more convenient for 

in vivo applications  {Lentacker et al. 2006}.  

Another approach to compacting DNA onto MBs is to first incubate the pDNA with a 

cationic lipid such as GL67 or a cationic polymer such as polyethylenimine (PEI), followed 

by mixing with MBs.  PEI/DNA mixed with SonoVue MBs were injected intravenously in 

tumor–bearing mice.  Following US exposure, reporter gene expression in tumor xenografts 

was significantly enhanced without causing any apparently adverse effect.  Furthermore, 

with UTMD and PEI complex, vectors carrying a short hairpin RNA (shRNA) targeting 

human survivin were efficiently delivered into the tumor site, leading to inhibition of 

surviving gene expression and apoptosis of the tumor cells {Chen et al. 2010}.  

DNA loading of MB shells can be impressive, but may also be limiting to high yield gene 

therapies using UTMD.  By first forming pDNA-Lipofectamine 2000 complexes, mixing 
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these with home-made phospholipid mixtures, agitating under a perflutren atmosphere to 

generate MBs, and then repeatedly washing the bubbles to remove unassociated DNA, a per 

bubble loading of 50 x 10-15 gram/MB was achieved {Chen et al. 2006}.   Similar binding rates 

(approximately 100 fg/MB) were reported by others {Carson et al. 2011}. Using a layer-by-

layer approach, DNA loading of pre-existing cationic MBs was increased 10-fold by first 

bringing anionic DNA to the surface of the cationic bubble, followed by binding a coating of 

poly-cationic polylysine to the DNA, followed by more DNA, etc.  Loading as high as ~2500 

fg DNA/MB was achieved, without apparent impact on the bubbles’ dynamical response to 

acoustic excitation {Borden et al. 2007}. However, others have found that in vitro transfection 

rates are not enhanced by conjugation of reporter pDNA to MB shells {Tlaxca et al. 2010},  as 

found in the in vivo canine myocardium example discussed earlier in this section.  

4.3 Viral vectors 

There have been many reports that US treatment alone, or in combination with MBs, can 
increase transgene uptake by cells  {Miller et al. 2002; Newman & Bettinger 2007}.  Even with 
the difficulty of translating UTMD-mediated results obtained under tissue culture 
conditions (e.g., infinite media for suspended cells vs. nearby noncompliant boundaries for 
monolayers) to the fully 3-D, viscoelastic intravascular environment in vivo, in vitro 
experiments often have the advantage of being better controlled and the results therefore 
more easily understood. This is not always the case, however.  Zheng and colleagues 
exposed two different endothelial pigment cell lines to adenoviral gene vectors in 
combination with US or US and MBs (1 – 3 W/cm2; Pr appears to have been ~0.17 – 0.30 
MPa at 1 MHz;  SonoVue MBs were used when bubbles were employed). They found that 
treatment with US and MBs increased adenoviral gene transfer in human retinal pigment 
epithelium cells, but was without effect on rat retinal pigment epithelial cells under 
otherwise identical conditions {Zheng et al. 2009}.  The differences were speculated to arise 
in consequence to differing ability of the two cell lines to phagocytize the SonoVue MBs, to 
which the adenoviral vectors were believed to be attached. 
It is difficult to limit the specificity of delivery of viral vectors, which are usually delivered 
systemically.  By using retrovirus-loaded MBs, UTMD facilitated the delivery of viral 
vectors in a restricted area of cells exposed to Pr of 0.4 MPa or greater, despite uniform 
dispersion of the vector {Taylor et al. 2007}.  An envelope-deficient retroviral vector was 
combined with cationic MBs and added to target cells. Transduction efficiencies and sites 
can thus be controlled by means of US exposure.  These results emphasize that UTMD can 
not only facilitate the delivery of nonviral vectors, but also has the potential to enhance 
efficiencies and restrict targeted sites of viral gene transfer.    

4.4 Small RNAs and oligonucleotides 

Small RNAs and oligonucleotides (ODN) have recently been developed as promising 
therapeutics to treat diseases like viral infections, cancer, and several genetic disorders.  
Among these, small inhibitory RNA (RNAi or siRNA) based therapeutics have been 
investigated for treating a number of different diseases, including viral infections (e.g., 
hepatitis, HIV, influenza), cancer, Huntington’s disease, and others. Other therapeutic 
agents including microRNA (miRNA), transfer RNA (tRNA), and antisense ODN are also 
being developed to regulate gene or cell functions as treatment regimens.  Since these agents 
are small, it is expected that they will be good candidates for augmented delivery by UTMD.  
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The US contrast agent pioneer Thomas Porter recognized early that UTMD delivery of 
oligonucleotides had the potential to influence vascular tissue remodeling after injury. In a 
2001 study, an oligonucleotide which inhibits vascular smooth muscle cell proliferation was 
bound to albumin-shelled MBs and UTMD effected by transcutaneous application of 20 kHz 
US to porcine carotid artery walls following balloon catheter injury.  Thirty days after 
treatment, the percent area stenosis in UTMD-treated animals was half that in controls  
{Porter et al. 2001}. The uptake of ODNs into intact ex vivo human saphenous veins and 
isolated smooth muscle cells from the veins was also potentiated by US {Kodama et al. 2005}.  
In addition, UTMD facilitated the delivery of antisense ODN targeting the human androgen 
receptor (AR) in prostate tumor cells, resulting in 49% transfected cells, associated with a 
decrease in AR expression compared to untreated controls {Haag et al. 2006}. 
UTMD-mediated sonoporation (frequency: 1 MHz; intensity: 2 W/cm2; exposure time:  
2 min) was capable of enhancing in vivo siRNA delivery into salivary gland of rats, leading 
to significant GAPDH gene silencing by 10-50% for 48 hours {Sakai et al. 2009}.  No gene 
silencing was observed with exposure to US only in the absence of Optison MBs.   
Intraventricular co-injection of siRNA-GFP and MB BR14 with concomitant ultrasonic 
exposure resulted in a substantial reduction in EGFP expression in the coronary artery in 
EGFP transgenic mice {Tsunoda et al. 2005}.  Liposomal MBs combined with US can 
efficiently delivery siRNA with only 10s of US exposure in vitro.  siRNA was also efficiently 
delivered into the tibialis muscles using the same system and the gene-silencing effect could 
be sustained for more than 3 weeks {Negishi et al. 2008}. These results demonstrate that 
UTMD-mediated delivery of siRNA can serve as a very useful tool for loss-of-function 
genetic engineering both in vitro and in vivo.   

4.5 Transduced cell therapy  

Cell therapy is a promising strategy for many applications, including genetic diseases, 
cancer, regenerative medicine, and others.  However, it is very difficult to transfect certain 
cell types and maintain their viability following transfection, including hematopoietic and 
mesenchymal stem cells, T cells, and others which are important targets for cell therapy 
using the transfection methods currently available.  UTMD has been demonstrated to 
facilitate the delivery of siRNA into mesenchymal stem cells (MSCs) {Otani et al. 2009}, 
which knocked down mRNA expression of specific genes, leading to the improvement of 
cellular function and viability.  The application of UTMD has high potential to facilitate the 
delivery of genetic materials into target cells and can be expanded for use in a variety of cell 
therapy protocols. 

5. Selected applications of ultrasound-mediated gene delivery 

5.1 Cardiovascular 

Recent reviews of cardiac applications of UTMD are provided elsewhere {Laing & 
McPherson 2009; Porter 2009}. Desired endpoints may be improved vascular function (e.g., 
following ischemia) or inhibition of vascularization to ‘starve’ tumors. The following 
discussion is intended only to provide an indication of some of the exciting avenues of 
research in the area. 
Cardiovascular graft remodeling: Tissue remodeling after transplantation surgery is required 
for long term transplant success.  It has been shown that US-mediated gene therapy can 
improve transplanted vessel patency after surgery.  Carotid interposition saphenous vein 
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grafts in pigs were treated ex vivo prior to transplantation with 1 MHz US at ~1.8 MPa Pa 
with both a MB contrast agent and a plasmid encoding for metalloproteinase 3 (TIMP-3; the 
enzyme inhibits post-graft vessel restriction) present during US exposure. At 4 weeks, 
luminal diameters in animals receiving the transfected grafts were significantly greater than 
in controls {Akowuah et al. 2005}.  Similarly, US treatment enhanced the delivery of an 
adenoviral vector to the aortic root, yielding a 2.5-fold enhancement in gene delivery {Beeri 
et al. 2002}. A technical issue of note is that a balloon catheter was used to briefly occlude  
the aortic root above the sinuses to increase the dwell time of the injected MBs and 
adenoviral vectors. 
Reperfusion therapies: US-mediated gene therapy to improve myocardial reperfusion 

following induced myocardial infarcts in mice was studied using Definity MBs, and UTMD 

achieved using high frequency (8 MHz), relatively high Pa (estimated ~4.5 MPa) US from a 

diagnostic US machine. Plasmids were either empty (controls) or encoded for Stem Cell 

Factor (SCF; expected to enhance reperfusion by recruitment of cells during tissue 

remodeling) or VEGF (expected to stimulate angiogenesis). At 21 days, UTMD with either 

VEGF or SCF-bearing pDNA increased the microvessel density  and blood flow relative to 

controls {Fujii et al. 2009}.  Similarly, reperfusion of ischemic rat hind limbs was improved 

by US-mediated gene therapy. Cationic lipid-shelled MBs and a pDNA encoding for VEGF-

165 were used; US frequency and amplitude were 1.3 MHz and ~2 MPa, respectively 

{Kobulnik et al. 2009}. A murine cardiac infarct model treated with UTMD with pDNA 

encoding for either VEGF or stem cell factor (SCF) has been reported to increase reperfusion; 

the observation that SCF-encoding pDNA increased perfusion was interpreted as evidence 

for the recruitment of reparative cells into the area of infarction {Fujii et al. 2009}.  

Expression of a reporter plasmid gene delivered to the myocardium by UTMD methods was 

relatively brief (4 d), but was improved by retreatment {Bekeredjian et al. 2003}. Under 

similar exposure conditions, damage to the heart was negligible {Bekeredjian et al. 2004}.   

However, UTMD-enhanced gene delivery to the heart is often attended by at least minimal 

damage, which can include extravasation of large molecules and red cells {Hernot et al. 

2010}. It is noteworthy that under diagnostic US exposure conditions, premature ventricular 

contractions can occur with the use of US contrast agents (see, e.g. {Miller et al. 2005}), and in 

contrast with the results of {Hernot et al. 2010} these have been unambiguously correlated 

with cell killing of cardiomycetes. In rats, using 1.7 MHz ultrasound, premature complexes 

and cardiomycete death were observable at Pas of 2 MPa or greater {Miller et al. 2011}. 

Premature contraction complexes appear to be related directly to extravascular cell killing, 

so even absent gross side effects, some side effects can be expected in gene therapies 

involving UTMD.  This has important implications not only for safety, but also efficacy; i.e., 

one hopes to transfect the target cells, not kill them.  It seems unlikely that transfection to 

meaningful extents can be achieved without some cell killing, so attempts to optimize 

UTMD treatments must strive to achieve an acceptable balance between desired effect 

(transfection) and undesired effect (killing of the target cells).  

When treating the heart using reporter genes, MBs and a diagnostic scanner as the acoustic 

source, superior results were obtained by moving the scan head about to ‘paint’ a larger 

volume of tissue {Geis et al. 2009}. Another noteworthy finding was that moving the beam 

relative to the heart did not increase Evans blue dye extravasation, which suggests less 

microcirculation damage per unit transgene expression when the insonifying beam is 

moved relative to the target. 
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Inhibition of neovascularization: A substantial literature on therapies to inhibit 
neoangiogenesis exists.  Here we mention one recent example:  MBs and pDNA encoding 
for pigment epithelium derived factor, which inhibits neovascularization in the retina, were 
injected into the vitreous humor of rats having laser-induced choroidal injury, which leads 
to neovascularization. The eyes were treated immediately with 0.3 MHz US of Pa estimated 
to be in the range of 0.1 – 0.3 MPa. At 28 days post treatment, choroidal neovascularization 
was inhibited in the UTMD group relative to untreated controls {Zhou XY et al. 2009}. 
Similarly, pDNA carrying a silencing sequence for the gene coding for survivin were 
introduced into implanted murine tumors using UTMD methods.  Treated tumors were 
sonicated with 3 MHz US at an intensity of 2 W/cm2 (estimated Pr: 0.2 - 0.5 MPa).  
Transgene expression was significantly increased in tumors treated with UTMB. It was 
proposed that the technique could be applied therapeutically to tumors to increase in tumor 
cell apoptosis via the silencing effect on survivin expression in transfected cells {Chen   
et al. 2010}.  

5.2 Skeletal muscle 

Among the applications for gene therapy in skeletal muscle is the treatment of muscular 
dystrophy (see, e.g., {Alter et al. 2009} and references therein).  As a specific recent example,  
Kodama and colleagues used various means to attempt delivery of PGL3 luciferase pDNA 
into murine skeletal muscle. Optison, human albumin MBs or acoustic liposomes (all 
formulated with C3F8 gas) were compared, using a 1 MHz US source; Pa was 0.2 MPa.  
Treatment with plasmid, US and either Optison or liposomes increased luciferase expression 
relative to controls. The ~200 nm diameter acoustic liposomes produced the highest 
expression rates, presumably because of their very high concentration  {Kodama et al. 2010}. 

5.3 Pancreas 

Pancreatic gene therapies have focused principally on treatments for diabetes types I and II.  
The feasibility of using pDNA and UTMD methods to deliver transgenes to the pancreas has 

been described by Grayburn and colleagues. Following injection of reporter gene pDNA 
attached to the MB phospholipid shells, the reporter gene was expressed with fairly high 

spatial specificity, declining after 4 days, but with measurable expression persisting for as 
long as 21 days ({Chen et al. 2006}; see internal citations for a discussion of viral approaches). 

US of ~3 MHz was used, with an apparent Pa of ~1 MPa at the pancreas.  When plasmid 
vectors carrying human insulin and hexokinase I gene were delivered using UTMD, 

transgene expression was obtained in islets and decreased circulating glucose levels were 
observed in treated rats.  These data indicate that UTMD allows relatively noninvasive 

delivery of genes to pancreatic islets to modulate beta cell function.  More recently, the same 
group reported that delivery of NeuroD1 gene driven by a rat insulin promoter (RAP3.1) 

into rats by UTMD-mediated gene delivery targeting pancreas in vivo promoted islet 
regeneration from surviving beta-cells, with normalization of glucose, insulin and C-peptide 

levels at 30 days {Chen et al. 2010}. 

5.4 Liver  

Liver is a major organ for protein synthesis, and therefore represents an important target for 
gene therapy.  We will discuss here UTMD-mediated gene therapy targeting liver for 
treating non-tumoral diseases.   

www.intechopen.com



 
Ultrasound-Mediated Gene Delivery 

 

229 

Our group has extensively studied gene delivery of reporter and therapeutic genes into the 
liver.  We have demonstrated that UTMD (1 MHz US) can significantly enhance gene 
transfer of naked pDNA into the mouse liver in the presence of either Optison {Miao 2005}  
or Definity MBs {Shen et al. 2008}.  Transgene expression was dependent exponentially on 
Pr, with an inflection point usually between 1 and 2.5 MPa followed by a plateau above 3 
MPa {Song et al. 2011a}, consistent with an inertial cavitation mechanism. More than 
thousand-fold enhancement of gene transfer efficiencies was obtained compared to control 
experiments in the absence of UTMD.  Recently we have  gained preliminary success in 
scaling up pDNA delivery in larger animal models, including rats {Song et al. 2011b } and 
dogs {Noble et al. 2011}.   Previously we have shown that near therapeutic levels of factor IX 
were achieved by UTMD-mediated gene delivery in mice.  Technical improvements to 
further enhance gene transfer of factor VIII for treatment of hemophilia A and factor IX for 
treatment of hemophilia B are currently being pursued in small and large animal models. 

5.5 Kidney 

A number of kidney diseases could be potentially treated with gene therapies. 

Hydrodynamic approaches have met with some success. Xing et al. attempted to improve on 

these results by combining hydrodynamic and UTMD approaches to naked DNA reporter 

gene delivery to surgically-exposed rat kidneys. Combined US (unspecified frequency) from 

a Sonotron 2000 hand-held diagnostic US machine and hydrodynamic therapy together 

yielded better reporter gene transfection than hydrodynamic therapy alone, producing an 

approximately 4-fold increase in reported gene expression when the estimated Pa was in the 

range of 0.3 – 0.8 MPa and no MBs were used. The effect was intensity-dependent. When 

Optison MBs were injected with the naked DNA during hydrodynamic therapy and US 

exposure, the same effect (4-fold increase in gene expression) was observed at an intensity of 

only 1 Watt/cm2   (estimated 0.2 – 0.5 MPa Pa) {Xing et al. 2009}. 

5.6 Skin (DNA vaccine) 

The failure of wounds to heal in diabetic patients is a significant clinical problem. Gene 
therapies which promote angiogenesis represent a promising approach to this problem.   
VEGF-encoding gene vectors (either minicircle naked DNA; a supercoiled form with a 
molecular weight estimated as 331 g/mol, or naked DNA borne on the gene carrier 
branched polyethylinimine) were tested for efficacy in inducing circulating VEGF 
expression and accelerating wound healing in an induced diabetic mouse model.  Wounds 
were treated by peripheral injection of gene vectors with or without exposure to US (1 MHz, 
2 W/cm2, 20% duty cycle; estimated 0.25 - 0.5 MPa). In some treatments, SonoVue MBs were 
injected with the microcircle DNA prior to sonication.  Markedly greater levels of circulating 
VEGF were observed in mice treated with [VEGF-encoding minicircle DNA + US + MBs] 
relative to controls, but not as high as those obtained using the polyethylinimine gene 
carrier. Nonetheless, the [minicircle DNA + US + MBs] treatment produced a significant 
improvement in healing rates of the treated skin wounds  {Yoon et al. 2009}. 

5.7 Other solid organs 

Brain:  Much work has been done on ‘opening’ (i.e., making more permeable) the blood-
brain barrier, which so tightly regulates traffic between the vascular space and the brain that 
chemotherapeutic agents often cannot cross the barrier {Meairs & Alonso 2007}.  Much 
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success with tracer molecules (e.g., Evans blue dye, gadolinium MRI contrast agents, etc.) 
has been achieved using UTMD methods, principally in small animal models. However, low 
energy US applied through the temporal bone of swine produced short-term 
permeabilization of the blood-brain barrier with exogenous MBs (see {Xie et al. 2008} and 
citations within).  However, we have found no reports of UTMD gene therapies attempted 
in the brain. 

5.8 Endothelium   

There are many papers which indicate that endothelial cells in vitro can express transgenes 

delivered by UTMD methods (see {Su et al. 2010} and internal references for recent 

examples). Su and colleagues found that treatment with 1 MHz US of 1 MPa Pr together 

with pGL3 pDNA and MBs yielded a 100-fold increase in luciferase expression relative to 

pDNA treatment alone.  It remains to be determined if endothelial cells in vivo can be 

’recruited’ as effective synthesizers and secretors of therapeutic gene expression products.   

5.9 Cell therapies: Ex vivo gene therapy 

In this section, we discuss several examples of US-mediated gene delivery using cell cultures 

in vitro; these may have some mechanistic relevance to the in vivo condition. However, some of 

the results obtained using in vitro cells may have direct bearing on cell therapies. 
Shock waves and MBs have been used in vitro to increase pDNA uptake in cultured HEK cells; 
the technique worked, but was associated with substantial cell killing {Bekeredjian et al. 2007} 
as might be expected (see, e.g., {Brayman et al. 1999; Hwang et al. 2006; Hwang et al. 2003}).  As 
a general rule, only a small fraction (~5 – 10%) of cells insonated with MBs in vitro undergo 
transient poration; these yields are often associated with cell killing rates of ~50%   (see, e.g. 
{AIUM 2000; AIUM 2008} and references therein).  If those cells can be sorted (e.g., by flow 
cytometry) and cultured to increase cell numbers, this may be acceptable for cell therapies – if 
the gene vector is integrated into the host genome.  An obvious problem for cell therapies 
based on this approach with naked DNA, however, is that the pDNA does not replicate with 
the host cell, and so there would be little to be gained by increasing cell numbers of the 
transfected subpopulation of cells.  However, using suspended KHT-C cells, and 3 V% 
Definity, high levels of in vitro permeabilization to 70 kDa fluorescein isothiocyanate (FITC) -
dextran  were achieved using 0.5 MHz US at a Pa of 0.57 MPa, 16 cycle pulses repeated at 3 
kHz PRF.  About 30% of the cells were permeabilized, with >95% retention of viability 
{Karshafian et al. 2009}. If similar results can be obtained with naked DNA, the prospects for 
cell therapies using cells transfected using in vitro UTMD seem much brighter. 

5.10 Gene therapies for tumoricidal activity 

Strategies currently under investigation for treatment of cancers include anti-angiogenic 
therapies, the introduction of ‘suicide genes’ which either induce apoptosis or sensitize cells 
to subsequent treatment with drugs {Aoi et al. 2008; Azuma et al. 2008; Daigeler et al. 2010; 
Kirn et al. 2002; Zhou  et al. 2010}, or down-regulate oncogenes {Wang et al. 2009}. Naked 
DNA bearing the Herpes-derived ‘suicide gene’ for thymidine kinase has been delivered to 
murine squamous cell carcinomas by UTMD methods (1.3 MHz, estimated Pr ~1.8 MPa). 
The DNA was bound to lipid shelled MBs at a rate of about 100 fg DNA/MB. With daily 
ganciclovir treatments beginning 3 d after UTMD and pDNA treatment, tumor doubling 
times were significantly reduced (by ~17%) in the UTMD-treated tumors {Carson et al. 2011}.  
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In tumors as in other systems, extravasation of gene vectors seems to be a constraint for 
delivery of antitumoral therapeutics which are delivered intravascularly.  Here, too, UTMD 
appears to aid in increasing vascular permeability.  For example, in implanted subcutaneous 
hepatomas, extravasation of Evans blue dye was 5-fold higher in the UTMD and plasmid-
treated tumors than in untreated control tumors; there was no increase in Evans blue 
extravasation when US was applied without MBs.  In this case, however, there was no 
significant transfection by the pDNA {Bekeredjian et al. 2007}.   UTMD techniques have been 
used successfully to introduce the gene for tumor suppression protein p53 into murine 
retinoblastoma xenografts; when insonated in the presence of MBs or liposomes, significant 
expression of p53 resulted; there was no expression in the plasmid-only or plasmid + US 
groups {Luo et al. 2010}.   

6. Concluding remarks 

Much exciting work on ultrasound-mediated gene delivery has already been done, but the 
field remains young and even preclinical applications involving therapeutic genes are 
relatively few.  A few generalities may be put forth: In most (but not all) cases, ultrasound-
mediated gene delivery is dependent on, or greatly facilitated by, exogenous microbubbles.  
Where this is the case, the acoustic exposures are usually such that the bubbles can be 
expected to behave in a nonlinear way.  Given the intense effort being devoted to the topic, 
we can anticipate with some confidence that successful gene therapies in large animals and 
early human trials will be achieved in the near future. 
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