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1. Introduction

Atmospheric optical communication has been receiving considerable attention recently for
use in high data rate wireless links (Arnon, 2003; Haas et al., 2002; Juarez et al., 2006;
Zhu & Kahn, 2002). Considering their narrow beamwidths and lack of licensing requirements
as compared to microwave systems, atmospheric optical systems are appropriate candidates
for secure, high data rate, cost-effective, wide bandwidth communications. Furthermore,
the atmospheric optical communications are less susceptible to the radio interference than
radio-wireless communications. Moreover, free space optical (FSO) communication systems
represent a promising alternative to solve the “last mile” problem, above all in densely
populated urban areas. However, even in clear sky conditions, wireless optical links may
experience fading due to the turbulent atmosphere. In this respect, inhomogeneities in the
temperature and pressure of the atmosphere lead to variations of the refractive index along
the transmission path. These random refractive index variations produce fluctuations in both
the intensity and the phase of an optical wave propagating through this medium. Such
fluctuations can lead to an increase in the link error probability limiting the performance of
communication systems. In this particular scenario, the turbulence-induced fading is called
scintillation.
If the receiving aperture size in these optical systems, D0, can be made larger than the
correlation length, d0, then the received irradiance becomes a spatial average over the aperture
area and the scintillation level measured by the detector begins to decrease. This effect is
known as aperture averaging (Andrews & Phillips, 1998). Unfortunately, it could be neither
practical nor desirable to satisfy this condition, especially in diversity receivers, so we will
assume that D0 < d0 throughout this chapter.
Finally, weather-induced attenuation caused by rain, snow and fog can also degrade
the performance of atmospheric optical communication systems in the way shown in
(Al Naboulsi & Sizun, 2004; Muhammad et al., 2005), but are not considered in this chapter.
Spatial diversity reception is a good proposal in order to mitigate the adverse effect of the
scintillation on the transmitted signal. Nevertheless, many researchers assume in a first
approach that turbulence-induced fading is uncorrelated at each of the optical receivers
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(Ibrahim & Ibrahim, 1996; Lee & Chan, 2004; Razavi & Shapiro, 2005). In order for this
assumption to hold true, the spacing between receivers should be greater than the fading
correlation length, what may be difficult to satisfy in practice because of the available physical
space or due to the fact that the receiver spacing required for uncorrelated fading may exceed
the beam diameter in power-limited links with well-collimated beams. For instance, with
a propagation path length, L, of 1 km and an optical wavelength, λ, of 830 nm, the fading
correlation length, approximated by d0 = (λL)1/2 (Zhu & Kahn, 2002), would be of 2.89 cm.
But, if λ = 1550 nm and L = 10 km, then the receiver spacing required for uncorrelated
scintillation should be greater than 12.45 cm. In this respect, the spatial correlation is studied
in detail in (Anguita et al., 2007), presenting a dependence on the turbulence parameter C2

n
and, above all, a more remarkable dependence on the propagation distance and on the receiver
aperture.
Thus, in (Jurado-Navas & Puerta-Notario, 2009), a complete model using an autorregresive
(AR) model was presented to include correlated scintillations in simulations of free space
optical links using multiple receivers. Obtained results showed a diversity gain penalty
due to the impact of the spatial coherence which should not be ignored in many practical
scenarios. Hence, the method proposed in (Jurado-Navas & Puerta-Notario, 2009) extended
the applicability of the existing techniques (Beaulieu, 1999; Ertel & Reed, 1998), including the
effect of the atmospheric dynamics in order to break the uniformity of the frozen-in hypothesis
(Zhu & Kahn, 2002). This latter effect was incorporated by defining a factor, ρl , as follows:

ρl = τ0/τe (1)

which represents the degree of randomness as effect of the dynamic evolution of the
turbulence, with

τ0 =

√
λL

u⊥
(2)

being the turbulence correlation time, where λ is the optical wavelength, L is the propagation
distance and u⊥ the component of the wind velocity transverse to the propagation direction.
Finally, τe is seen as the lifetime of turbulent eddies and it is directly depending on the
turbulent kinetic energy dissipation rate, ǫ, that represents the atmospheric dynamics. as
the rate of energy cascading from larger eddies to smaller ones.
The method is focused on a multichannel generalization of the autoregressive (AR) variate
generation method in a way similar to (Baddour & Beaulieu, 2002) in order to satisfy Taylor’s
hypothesis of frozen turbulence. Therefore, m lognormal scintillation sequences are generated
with specified second-order statistics: concretely, the cross-correlation function and the
autocorrelation function between different sequences that let spatial and temporal correlations
be interrelated.

2. Upper error bound in a simpler channel model

The AR model presented in (Jurado-Navas & Puerta-Notario, 2009) and commented above is
computationally complex due to its inherent numerically ill-conditioned covariance matrix
(Baddour & Beaulieu, 2002). In this chapter, we propose a space-time separable statistics
model, extremely simple, to avoid such a problem, providing an excellent accurate upper
burst error bound and with the advantage of a reduced computational time, for correlated
atmospheric terrestrial links operating at optical wavelengths. This limit is heuristically
corroborated after comparing the obtained performance using scintillation sequences derived
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Upper Burst Error Bound for Atmospheric Correlated Optical Communications Using an Alternative Matrix Decomposition 3

from (Jurado-Navas & Puerta-Notario, 2009) with different cross-correlation (CC) coefficient
in terms of burst error rate, for an atmospheric optical link in the following two extreme
situations: first, when a full accomplishment of the frozen turbulence hypothesis is assumed
(ρl → 0, τe → ∞); and second, when an unrealistic scenario is supposed owing to using only
a space-time separable statistics model (ρl → 1, τe → τ0), so that it can be assumed that the
frozen-in turbulence is not incorporated to the system. Naturally, this latter situation is not
corresponding to a real scenario, but it is presented in this paper as a benchmark in order to
compare the obtained performance in burst error rate. In view of the results obtained by this
latter scenario (shown through section 6 in this proposal of chapter) in comparison to the ones
derived by using the first model (incorporating the frozen turbulence), it is concluded that a
realistic upper error limit can be easily achieved with a high simplicity by using a space-time
separable statistics model.
We must remark, however, that the space-time separable statistics model proposed here
is an efficient approach that accomplishes more realistic performances when higher wind
velocities are considered. In fact, this approach is based on coloring independent Gaussian
sequences first between them and then in time in order to generate m log-normal random
processes of scintillation. Evidently, such method is restricted to have cross-correlation
functions that have the same time-dependencies as the autocorrelation functions, i.e., the
obtained sequences have statistics that are space-time separable. Due to this fact, Taylor’s
hypothesis (Tatarskii, 1971) is not fully satisfied. For such a case, we must redirect readers
to (Jurado-Navas & Puerta-Notario, 2009), where Taylor’s frozen turbulence hypothesis is
properly taken into account. Conversely, the frozen-in hypothesis is unquestionably an
approximation and must fail as distance between receivers becomes large or in especial
situations when there are both strong velocity fluctuations of the wind or long-range
spatial correlations (Burghelea et al., 2005; Moore et al., 2005), or even in urban atmospheres,
especially near or among roughness elements, where strong wind shear is expected to
create high turbulent kinetic energy (Christen et al., 2007). Furthermore, in urban canopies
and cloud streets up to 2 − 5 times the average building height of such particular
streets (Christen et al., 2007), the strong wind shear creates turbulence intensities that are
tipically near the threshold where the hypothesis of frozen turbulence becomes inapplicable
(Christen et al., 2007; Willis & Deardorff, 1976). In this fashion, difference in performance
obtained from the realistic model presented in (Jurado-Navas & Puerta-Notario, 2009) and the
upper bound performance proposed in this chapter are even closer to each other. Thus, the
separable statistics model proposed here may be seen as a highly accurate upper error bound
of the complete model detailed in (Jurado-Navas & Puerta-Notario, 2009), with the advantage
of a reduced computational complexity in comparison to an AR method.

3. Turbulent atmospheric channel model

There is an extensive literature on the subject of the theory of line-of-sight propagation
through the atmosphere (Andrews & Phillips, 1998; Andrews et al., 2000; Fante, 1975;
Ishimaru, 1997; Strohbehn, 1978; Tatarskii, 1971). One of the most important works was
developed by Tatarskii (Tatarskii, 1971). He supposed a plane wave that is incident upon the
random medium (the atmosphere in this particular case). It is assumed an atmosphere having
no free charges with a constant magnetic permeability. In addition, it is suppossed that the
electromagnetic field has a sinusoidal time dependence (a monochromatic wave). Under these
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circumstances, the vector wave equation becomes

∇2E + k2n2(r)E + 2∇
(
E · ∇ log n(r)

)
= 0, (3)

where E is the vector amplitude of the electric field, k=2π/λ is the wave number of the
electromagnetic wave with λ being the optical wavelength; whereas n is the atmospheric
refractive index whose time variations have been suppressed, and being a random function of
position, r = (x, y, z). The ∇ operator is the well-known vector derivative (∂/∂x, ∂/∂y, ∂/∂z).
Equation (3) can be simplified by imposing certain characteristics of the propagation wave. In
particular, since the wavelength λ for optical radiation is much smaller than the smallest scale
of turbulence, l0, (Strohbehn, 1968) the maximum scattering angle is roughly λ/l0 ≈ 10−4

rad. As a consequence, the last term on the left-hand side of Eq. (3) is negligible. Such a
term is related to the change in polarization of the wave as it propagates (Strohbehn, 1971;
Strohbehn & Clifford, 1967). This conclusion permit us to drop the last term and Eq. (3) then
reduces to

∇2E + k2n2(r)E = 0. (4)

Because Eq. (4) is easily decomposed into three scalar equations, one for each component of
the electric field, E, we may solve one scalar equation and ignore the vector character of the
wave until the final solution. Therefore if we let U(r) denote one of the scalar components that
is transverse to the direction of propagation along the positive x-axis (Andrews & Phillips,
1998), then Eq. (4) may be replaced by the scalar stochastic differential equation

∇2U + k2n2(r)U = 0. (5)

The index of refraction, n(r)=n0 + n1(r), fluctuates about the average value n0 = E[n(r)] ∼= 1,
whereas n1(r) ≪ 1 is the fluctuation of the refractive index from its free space value. Thus

∇2U + k2(n0 + n1(r))
2U = 0. (6)

For weak fluctuation, it is necessary to obtain an approximate solution of Eq. (6) for small
n1. Most of the literature since 1960 has followed the approach of using the so-called Rytov
method, which substitutes U in a series:

U = exp (ψ0 + ψ1 + ψ2 + ...) = exp (ψ). (7)

In Eq. (7), ψ1, ψ2 are the first and second order complex phase perturbations, respectively,
whereas ψ0 is the phase of the optical wave in free space. The Rytov solution is widely used
in line-of-sight propagation problems because it simplifies the procedure of obtaining both
amplitude and phase fluctuations. From the Rytov solution, the wave equation becomes:

∇2ψ + (∇ψ)2 + k2(n0 + n1(r))
2 = 0. (8)

This is a nonlinear first order differential equation for ∇ψ and is known as the Riccati equation.
Consider now a first order perturbation, then

ψ(L, r) = ψ0(L, r) + ψ1(L, r); (9a)

n(r) = n0 + n1(r); n0
∼= 1. (9b)
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Operating, assuming that |∇ψ1| ≪ |∇ψ0|, due to n1(r) ≪ 1, neglecting n2
1(r) in comparison

to 2n1(r), and equating the terms with the same order of perturbation, then the following
expressions are obtained:

∇2ψ0 + (∇ψ0)
2 + k2n2

0(r) = 0; (10a)

∇2ψ1 + 2∇ψ0∇ψ1 + 2k2n1(r) = 0. (10b)

The first one is the differential equation for ∇ψ in the absence of the fluctuation whereas
turbulent atmosphere induced perturbation are found in the second expression. The
resolution of Eq. (10b) is detailed in (Fante, 1975; Ishimaru, 1997). For the particular case
of a monochromatic optical plane wave propagating along the positive x-axis, i.e., U0(L, r) =
exp (jkx), this solution can be written as:

ψ1(L, r) =
k2

2π

∫∫∫

V
n1(r

′)
exp

(
jk
[
|r − r′| − |L − x′|

])

|r − r′| d3r′, (11)

where the position (L, r) denotes a position in the receiver plane (at x = L) whereas (x′, r′)
represents any position at an arbitrary plane along the propagation path. The mathematical
development needed to solve Eq. (11) can be consulted in (Andrews & Phillips, 1998;
Ishimaru, 1997). Furthermore, the statistical nature of ψ1(L, r) can be deduced in an easy way.
Equation (11) has the physical interpretation that the first-order Rytov perturbation, ψ1(L, r) is
a sum of spherical waves generated at various points r′ throughout the scattering volume V,
the strength of each sum wave being proportional to the product of the unperturbed field term
U0 and the refractive-index perturbation, n1, at the point r′ (Andrews & Phillips, 1998). Thus it
is possible to apply the central limit theorem. According to such a theorem, the distribution of
a random variable which is a sum of N independent random variables approaches normal as
N → ∞ regardless of the distribution of each random variable. Application of the central limit
theorem to this integral equation leads to the prediction of a normal probability distribution
for ψ. Since we can substitute Ψ = χ + jS, where χ and S are called the log-amplitude and
phase, respectively, of the field, then application of the central limit theorem also leads to the
prediction of a Gaussian (normal) probability distribution for both χ and S, at least up to first
order corrections (χ1 and S1).
Accordingly, under this first-order Rytov approximation, the field of a propagating optical
wave at distance L from the source is represented by:

U = exp (ψ) = U0(L, r) exp (ψ1), (12)

with U0(L, r) being the unperturbed portion of the field in the absence of turbulence. Hence,
the irradiance of the random field shown in Eq. (12) takes the form:

I = |U0(L, r)|2 exp (ψ1 + ψ∗
1 ) = I0 exp (2χ1), [w/m2] (13)

where, from now onwards, we denote χ1 as χ for simplicity in the notation. Hence,

I = I0 exp (2χ), [w/m2]. (14)

In Eq. (13), operator ∗ denotes the complex conjugate, |U0| is the amplitude of the unperturbed
field and I0 is the level of irradiance fluctuation in the absence of air turbulence that ensures
that the fading does not attenuate or amplify the average power, i.e., E[I] = |U0|2. This may be
thought of as a conservation of energy consideration and requires the choice of E[χ] = −σ2

χ,
as was explained in (Fried, 1967; Strohbehn, 1978), where E[χ] is the ensemble average of
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log-amplitude, whereas σ2
χ is its variance depending on the structure parameter, C2

n. With all
of these expressions, we have modeled the irradiance of the random field, I, in the space at a
single instant in time. Now, because the state of the atmospheric turbulence varies with time,
the intensity fluctuations is also temporally correlated. Then, Eq. (14) can be expressed as:

I = αsc(t) · I0, (15)

whereas αsc(t) = exp (2χ(t)) is the temporal behavior of the scintillation sequence and
represents the effect of the intensity fluctuations on the transmitted signal. In Eq. (15), a
space-to-time statistical conversion has been assumed by employing the well-known Taylor’s
hypothesis of frozen turbulence (Tatarskii, 1971; Taylor, 1938).
As analyzed before, and by the central limit theorem, the marginal distribution of the log-
amplitude, χ, is Gaussian. Thus,

fχ(χ) =

(
1

2πσ2
χ

)1/2

exp

[
− (χ − E[χ])2

2σ2
χ

]
. (16)

Hence, from the Jacobian statistical transformation (Papoulis, 1991),

f I(I) =
fχ(χ)

| dI
dχ |

, (17)

the probability density function of the intensity, I, can be identified to have a lognormal
distribution typical of weak turbulence regime. Then:

f I(I) =

(
1

2I

)(
1

2πσ2
χ

)1/2

exp

[
− (ln I − ln I0)

2

8σ2
χ

]
. (18)

Theoretical and experimental studies of irradiance fluctuations generally center around the
scintillation index. It was evaluated in (Mercier, 1962) and it is defined as the normalized
variance of irradiance fluctuations:

σ2
I =

E[I2]
(
E[I]

)2
− 1. (19)

Hence it is possible to define the weak turbulence regimes as those regimes for which the
scintillation index given in Eq. (19) is less than unity.
With all these considerations taken into account, an efficient channel model for FSO
communications using intensity modulation and direct detection (IM/DD) was presented in
(Jurado-Navas et al., 2007; 2011a) under the assumption of weak turbulence regime. For these
systems, the received optical power, Y(t), can be written as

Y(t) = αsc(t)X(t) + N(t), (20)

being X(t) the received optical power without scintillation; whereas αsc(t) = exp
[
2χ(t)

]
is

the temporal behavior of the scintillation sequence and represent the effect of the intensity
fluctuations on the transmitted signal. To generate αsc(t), a scheme based on a lowpass
filtering of a random Gaussian signal, z(t), is implemented as in (Jurado-Navas et al., 2007;
2011a). χ(t) is, as was explained above, the log-amplitude of the optical wave governed
by Gaussian statistics with ensemble average E[χ] and variance σ2

χ. Finally, the additive
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white Gaussian noise, N(t), is assumed to include any front-end receiver thermal noise as
well as shot noise caused by ambient light much stronger than the desired signal. In the
following section, we complete the scheme presented in (Jurado-Navas et al., 2007) to afford
the inclusion of m correlated scintillation sequences approximating to the model introduced
in (Jurado-Navas & Puerta-Notario, 2009).

4. Proposed approximation: space-time separable statistics channel model

As indicated in the last section, we can simplify the model proposed in
(Jurado-Navas & Puerta-Notario, 2009) by an unrealistic but reasonably accurate space-time
separable statistics model with a reduced computational load if it is compared with the
complete model. Through this section, we develop the space-time separable statistics model.

4.1 Spatial diversity reception

When multiple receivers are considered, then, as shown in (Zhu & Kahn, 2002), the real
symmetric auto-covariance matrix of the log-amplitude, Cχ={cχ(i,j)}m

i,j=1, at m receivers in

a plane transverse to the direction of propagation is given by:

Cχ =

⎛
⎜⎜⎝

σ2
χ σ2

χρd12
... σ2

χρd1m

σ2
χρd21

σ2
χ ... σ2

χρd2m

... ... ... ...
σ2

χρdm1
σ2

χρdn2
... σ2

χ

⎞
⎟⎟⎠

m×m

(21)

where dij and ρdij
are the distance and its normalized CC coefficient respectively between

points i and j in the receiver plane. In (Jurado-Navas & Puerta-Notario, 2009; Zhu & Kahn,
2002), a Gaussian spatial covariance function for the log-amplitude fluctuations is employed
that approximates the theoretical covariance function resulting from Rytov theory.
In order to satisfy the hypothesis of frozen turbulence, we can adopt an AR model
as in (Baddour & Beaulieu, 2002; Jurado-Navas & Puerta-Notario, 2009) as a possible
solution. By doing so, the multichannel Yule-Walker equations are expressed as
(Jurado-Navas & Puerta-Notario, 2009):

⎛
⎜⎜⎝

Cχ[0]m×m Cχ[−1]m×m ... Cχ[−p + 1]m×m

Cχ[1]m×m Cχ[0]m×m ... Cχ[−p + 2]m×m

... ... ... ...
Cχ[p − 1]m×m Cχ[p − 2]m×m ... Cχ[0]m×m

⎞
⎟⎟⎠

⎛
⎜⎜⎝

AH[1]m×m

AH[2]m×m

...

AH[p]m×m

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝

Cχ[1]m×m

Cχ[2]m×m

...
Cχ[p]m×m

⎞
⎟⎟⎠ .

(22)

where AH [k], k = 1, 2, ...p are m × m matrices containing the multichannel AR model
coefficients; whereas Cχ[j] is the covariance matrix evaluated in the ‘j’-time instant. Then, the
system of equations in Eq. (22) can be solved efficiently via the Levinson-Wiggins-Robinson
algorithm (Kay, 1988). Once the AH [k] coefficient matrices have been determined, we can
obtain the m × m covariance matrix of the driving noise vector process of the AR model from:

Cw = Cχ[0] +
p

∑
k=1

Cχ[−k]AH [k]. (23)

Thus, after obtaining Cw = E{ω[n]ω[n]T}, where the hermitian operator has been substituted
by a transpose operator due to all the samples are real; the driving noise process, ω[n],
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can be accomplished as was indicated in (Baddour & Beaulieu, 2002). But first we need to
compute the factorization Cw = LLT. If Cw is positive definite, a Cholesky decomposition
is performable using the interval Cholesky method proposed in (Alefeld & Mayer, 1993) in
order to include the desired correlation among scintillation sequences, with L being a lower
triangular matrix (Beaulieu & Merani, 2000; Ertel & Reed, 1998). So, the driving process is
then generated by the product ω[n] = Lz[n], where z[n] is an m × 1 vector of independent
zero mean Gaussian variates with unit variance and a autocorrelation function expressed as:

Rzz = E{z[n]zT[n]} = Im, (24)

where Im is the ‘m’-element identity matrix. Finally,

χ[n] = −
p

∑
k=1

A[k]χ[n − k] + w[n]. (25)

But if Cw is not positive definite, then an alternative efficient decomposition algorithm that
let the matrix be factorized was proposed in (Jurado-Navas & Puerta-Notario, 2009).
In addition, as said in the introduction, we can simplify the model proposed in
(Jurado-Navas & Puerta-Notario, 2009) by an unrealistic but reasonably accurate space-time
separable statistics model with a reduced computational load if it is compared with the
complete model. Hence, we work directly with the covariance matrix, Cχ, unlike the work
proposed in (Jurado-Navas & Puerta-Notario, 2009), where the matrix to be decomposed is
Cw .
Thus, when Cχ is positive definite, as in the Gaussian approximation employed in
(Zhu & Kahn, 2002), a Cholesky decomposition is performable using the interval Cholesky
method proposed in (Alefeld & Mayer, 1993) in order to include the desired correlation among
scintillation sequences. Hence we find a lower triangular matrix L such that Cχ = LLH in a
similar way as in (Beaulieu & Merani, 2000; Ertel & Reed, 1998).

4.2 Constructing the coloring matrix

As we have already said, the AR model presented in (Jurado-Navas & Puerta-Notario, 2009)
can be simplified by directly coloring independent Gaussian sequences first between them
and then in time (space-time separable statistical model), avoiding the realization of the AR
model. Obviously, this procedure is unrealistic because it implies that Taylor’s hypothesis
is not considered. However, numerical results obtained (and included through this chapter)
show that this simplification behaves as a good approximation in terms of burst error rate.
Thus, we can directly consider the auto-covariance matrix of the log-amplitude, Cχ. As
commented before, when Cχ is positive definite, a Cholesky decomposition is performable by
using the interval Cholesky method proposed (Alefeld & Mayer, 1993) in order to include the
desired correlation among scintillation sequences. Hence we find a lower triangular matrix,
L, as a coloring matrix such that Cχ = LLH in a similar way as in (Ertel & Reed, 1998).
Nevertheless, Cχ may not be positive definite so the Cholesky decomposition is not always
feasible. Although any theoretical covariance matrix must be positive or, at least, semipositive
definite, when such matrices are processed on a computer, small deviations from theory are
introduced by the limits of floating point computations, inducing numeric inconsistencies.
In this respect, there are no guarantees that the finite precision representation of the matrix
can ensure positive definiteness, even more when the Cholesky algorithm is unstable for
positive definite matrices that have one or more eigenvalues close to 0, as it is explained in
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(Holton, 2004). In (Abramovich et al., 2001), the particular problem of non-positive definite
matrices that arise from characterizing a realistic system is investigated in detail, showing
that in 988 outcomes of their 1000 Monte Carlo trials, gave rise to a non-positive definite
covariance matrix, although the corresponding “contracted” matrix may well be positive
definite. In addition, in most practical situations the covariance matrix must be estimated
from scintillation measurements (Monserrat et al., 2007; Moore et al., 2005) and outliers and
other special situations as urban canopies may induce that correlation matrices derived
from measurements are not always guaranteed to be positive definite, although a theoretical
correlation matrix must always be.
In such cases, a real Schur decomposition is proposed (Golub & van Loan, 1996). Since the
symmetric matrix Cχ ∈ ℜmxm, then there exists an orthogonal matrix, Q ∈ ℜmxm, such that

QTCχQ = Λ = diag(λ1, ...λm) (26)

as was shown in (Golub & van Loan, 1996), where superscript T denotes the transpose and
λi, ∀i = 1...m, are the eigenvalues of Cχ. In this case, we allow Cχ to have zero-eigenvalues.
But however, as we will explain later, all the eigenvalues must be either zeros or positives.
Unluckily, there will exist particular cases where Cχ might have any negative eigenvalue,
as was indicated above. When this circumstance occurs, an adjustment of the Schur
decomposition will be accomplished in order to obtain a positive semi-definite approximation,

C̃χ={c̃χ(i,j)}, to the original auto-covariance matrix of the log-amplitude, Cχ, by minimizing
the distance (Halmos, 1972):

δ(Cχ) = min
C̃χ=C̃T

χ
≥0

‖Cχ − C̃χ‖, (27)

where ‖ · ‖ represents the norm of the matrix Cχ − C̃χ . We distinguish two main
situations (Jurado-Navas & Puerta-Notario, 2009) corresponding to minimize the Frobenius
norm (Golub & van Loan, 1996) or the the p-norms (with p = 1, 2, ∞), respectively. In
both cases, we can substitute the diagonal matrix Λ by a resulting matrix written as R =
Λ + Υ, where Υ is a perturbation matrix obtained after minimizing Eq. (27) in any of the
two situations mentioned above. After that, and for any of these two scenarios, we can
form the coloring matrix, K, as K = Q(R)1/2 in order to generate the correlated log-normal
scintillation samples. Here it is shown why we need that Cχ were approximated by a positive
semi-definite matrix if any eigenvalue of Cχ is negative. In this case,

C̃χ = KKT =
(

Q (Λ + Υ)1/2
) (

Q (Λ + Υ)1/2
)T

= QRQT ; (28)

however, if all eigenvalues of Cχ are positive, then

Cχ = KKT =
(

QΛ
1/2

) (
QΛ

1/2
)T

= QΛQT. (29)

Let us see these two scenarios in detail:

4.2.1 General scenario

If any λi in Λ is negative, then we can approximate the matrix Λ substituting every negative
eigenvalue for 0. The resulting matrix may be written as

R = Λ + Υ, (30)
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where Υ is a diagonal perturbation matrix with diagonal elements, {υi}m
i=1, of

υi =

{
−λi, if λi < 0;

0, if λi ≥ 0;
∀i = 1, 2...m. (31)

In this case, the approximation C̃χ = QRQT is proven to optimize the Frobenius norm if

(vi + λi) → 0, and with the constraint of having a positive semi-definite solution matrix, C̃χ;
where the Frobenius norm is detailed in (Golub & van Loan, 1996) and represented by

‖A‖F =

√√√√
m

∑
i=1

m

∑
j=1

|cχ(i,j)− c̃χ(i,j)|2. (32)

4.2.2 Specific scenario

If instead of employing the Frobenius norm, the expression (27) is optimized for the relevant
2−norm matrix defined as:

‖Cχ − C̃χ‖2 =

√
ρ
{(

Cχ − C̃χ

)H(
Cχ − C̃χ

)}
, (33)

then we can obtain a new and different solution for the same problem. In equation (33),

ρ
{(

Cχ − C̃χ

)H(
Cχ − C̃χ

)}
is the spectral radius of the matrix

(
Cχ − C̃χ

)H(
Cχ − C̃χ

)
,

defined as the supremum among the absolute values of its eigenvalues. Obviously, the
hermitian operator can be substituted by a transpose operator since the samples are all real.
As a characteristic feature, optimizing the 2−norm entails, in general, multiple solutions for

C̃χ, as a main difference with respect to the previous situation.
Again, we define R = Λ + Υ, being Υ the perturbation matrix. One of the possible solutions
for Υ that let R be a semi-definite positive matrix is obtained by constructing Υ as a diagonal
matrix whose elements are defined as {υi = −λ ∀ i = 1...m}, being λ the highest among the
absolute values of the negative eigenvalues of the matrix Cχ. Obviously, as in the above
scenario, we obtain greater accuracies when smaller magnitudes were summed to Λ. The
limit, again, is the necessary magnitude that let the negative eigenvalue be canceled and so,
Cχ were approximated to the closest positive semi-definite matrix. In this way, this second
scenario is proven to minimize the p-norms (with p = 1, 2, ∞) since Υ is a diagonal matrix in
which all its entries have the same value. These norms can be consulted in (Golub & van Loan,
1996).
As final comment to this second scenario, we can remark that the great resemblance obtained

between Cχ and C̃χ is based on the orthogonality of the rows of the matrix Q. For example,
suppose that the covariance matrix is non-positive definite expressed as

Cχ =

⎛
⎝

0.100 0.079 0.010
0.079 0.100 0.079
0.010 0.079 0.100

⎞
⎠

3×3

. (34)

Hence, applying the decomposition shown in scenario 2, we obtain that C̃χ = Cχ, except for
the principal diagonal, that now is c̃χ(i, i) = 0.106 ∀i = 1...3, i.e.:

Cχ =

⎛
⎝

0.106 0.079 0.010
0.079 0.106 0.079
0.010 0.079 0.106

⎞
⎠

3×3

. (35)
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Finally, if the original auto-covariance matrix is not symmetric, then the Schur decomposition
is written as

Cχ = QUQT , (36)

where U ∈ ℜnxn is upper triangular as was shown in (Golub & van Loan, 1996). In these
circumstances, we can form the matrix Λ taking into account solely the diagonal elements of
U before applying any of the two approximations proposed in this paper.

4.3 Generation of turbulent spatially-correlated channels

Now we can form the coloring matrix, K ∈ ℜmxm

K = Q (Λ + Υ)1/2 , (37)

in order to generate the correlated log-normal scintillation samples. Then, it follows that
(Jurado-Navas & Puerta-Notario, 2009)

KKT =
(
Q (Λ + Υ)

1
2
)(

Q (Λ + Υ)
1
2
)T
= Q (Λ + Υ)

1
2
(
(Λ + Υ)

1
2
)T

QT = Q(Λ + Υ)QT = C̃χ,

(38)

as was shown in Eq. (28), where C̃χ = Cχ if there does not exist any negative element
in diagonal matrix Λ written in (26). Equation (37) shows why we need that Cχ were
approximated by a positive semi-definite matrix if any eigenvalue of Cχ is negative even
when a Schur decomposition could be always accomplished if the starting matrix is squared.

Next, define Z =
[
z(1)[n], z(2)[n], ... z(m)[n]

]T
as a set of uncorrelated white Gaussian signals.

Its correlation matrix, RZZ, is given by

RZZ = E{z[n]zT[n]} = Im, (39)

where Im is the ‘m’-element identity matrix. By calculating w[n] = Kz[n], being

w[n] =
[
w(1)[n], w(2)[n], ... w(m)[n]

]T
, (40)

the desired auto-covariance matrix of the log-amplitude fluctuations is obtained since

E{w[n] · wT [n]} = E{K · z[n]·z[n]T · KT} = KKT = C̃χ. (41)

Furthermore, every w(i)[n], ∀i = 1...m in Eq. (40) remains statistically Gaussian so it is possible

to filter them in the way proposed in (Jurado-Navas et al., 2007) in order to obtain α
(i)
sc (t) for

each of the m receivers. The filter employed in each branch is the Gaussian filter shown in
(Jurado-Navas et al., 2007). Therefore, the output signal of these filters is the log-amplitude

fluctuations, χ(i)(t) ∀i = 1...m, for each receiver. These outputs exhibit a Gaussian probability
density function and have the desired covariance matrix, Cχ, among sequences but without
its inherent time-dependencies that would be enforced by the frozen-in hypothesis, according
to the space-time separable statistics approximation imposed in this chapter. Next, its
probability density function is converted from Gaussian to lognormally distributed, generally
accepted for the irradiance fluctuations under weak turbulence conditions. Figure 1 shows
clearly the overall process.
In this respect, it is possible to employ the same procedure explained in this paper but
knowing that, instead of the log-normal employed here, a Beckman probability density much
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sc

sc

sc

Fig. 1. Block diagram representing the generation of ‘m’ equal power log-normal scintillation
sequences with a space-time separable statistics approximation.

more accurately reflects the statistics of the intensity scintillations (Hill & Frehlich, 1997) if
Rytov variance increases even beyond the limits of the weak turbulence regime; or even
the recently discovered Málaga probability density function (Jurado-Navas et al., 2011b), also
very accurate with the statistics of the intensity scintillations.

5. System model

To study the performance of different values of spatial CC coefficients, ρij, between points
i and j in the receiver plane, intensity modulation and direct detection (IM/DD) links are
assumed operating at a laser wavelength of 830 nm through a 250 m horizontal path at a
bit rate of 50 Mbps. Assume three receivers in the system, where a conventional equal-gain
combining (EGC) of diversity branches is implemented. Figure 2 shows the temporal
behavior of correlated scintillation sequences for these three different receivers with a CC
coefficient of ρ12 = 0.56 and ρ13 = 0.1 respectively, for this two extreme scenarios: an AR
model, as in (Jurado-Navas & Puerta-Notario, 2009), and the space-time separable statistics
approximation employed in this chapter. The component of the wind velocity, u⊥, transverse
to the propagation direction is fixed to u⊥ = 20 m/s, where ρij is the normalized CC
coefficient between points i and j in the receiver plane. Clearly, the election of a 20 m/s
wind speed in this chapter will not be by far the typical operational scenario unless one of
the terminals is in motion or the optical link is settled in particular geographical locations
specifically affected by strong wind (Campins et al., 2007); but, however, such value is selected
for numerical convenience so that we can work with a lower computational cost, because the
total amount of samples needed to obtain a scintillation sequence with the desired lognormal
statistics is smaller than using more conventional values for u⊥, but letting us extract the same
conclusions than employing a standard velocity.
Hence, a different temporal variability is shown in Figure 2 (a) and (b) for the EGC-combined
scintillation sequence, being faster for the obtained sequence from a space-time separable
statistics model. This different variability must have a different repercussion in the
associated burst error rate curves, as shown below, where we followed Deutsch and Miller’s
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Fig. 2. Scintillation sequences generated from (a) an AR model; (b) a space-time separable
statistics model, for a 3-receivers system. The EGC sequence is displayed in thicker solid line.

(Deutsch & Miller, 1981) definition of a burst error with lengths of 192, and 64 bits, not
containing more than 4 consecutive correct bits (Lb = 5, as explained in (Deutsch & Miller,
1981)) any sequence of burst error.
Then, pulses with on-off keying format (OOK) and Gaussian shape (OOK-GS) with a duty
cycle (d.c.) of 100% are adopted, where identical average optical power is transmitted
for every simulated case representing the reference condition to establish the comparative
analysis (Jurado-Navas et al., 2010). All these features are included in the system model,
where its remarkable elements are: first, the channel model presented in (Jurado-Navas et al.,
2007) corresponding to a turbulent atmospheric environment, but included in a m-branch
reception as in (Jurado-Navas & Puerta-Notario, 2009), which represent the m different
correlated turbulence-induced fadings at each of the optical receivers; secondly, a 500 kHz
three-pole Bessel highpass filter for natural and artificial light adverse effects suppression;
and, thirdly, a five-pole, Bessel, lowpass filter employed as a matched filter. As said
above, a conventional EGC is implemented whereas the detection procedure considered is a
maximum likelihood (ML) detection. The receivers employed in this paper are point receivers
whereas the weather-induced attenuation is neglected so that we concentrate our attention
on turbulence effects. Furthermore, the atmospheric-induced beam spreading that causes
a power reduction at the receiver is also neglected because, in our specific case, we are
considering a terrestrial link where beam divergence is typically on the order of 10 μRad. This
temporal spreading may be considered at high data rate, as in (Jurado-Navas et al., 2009),
particularly when operating in special scenarios where dust particles are likely present.

6. Numerical results

The first set of results are displayed in Figure 3 for a three-receivers system and for σ2
χ = 0.25

and σ2
χ = 0.1, where the CC coefficients between scintillation sequences are:

• ρ12=ρ21=ρ23=ρ32=0.30 and ρ13=ρ31=0.008

• ρ12=ρ21=ρ23=ρ32=0.56 and ρ13=ρ31=0.1

• ρ12=ρ21=ρ23=ρ32=0.79 and ρ13=ρ31=0.1
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Fig. 3. Burst error rate of a system with 3 receivers versus normalized average optical power
using OOK and ML detection, for different values of ρij and σ2

χ, with a wind velocity of
u⊥ = 20 m/s. The burst error length is established to (a) 192 bits, (b) 64 bits.

where, for the last case, we need to calculate the positive semidefinite approximation to the
original autocovariance matrix of the log-amplitude, as was explained in this chapter for a
space-time separable statistics model and in (Jurado-Navas & Puerta-Notario, 2009) for an
AR model, because the original autocovariance matrix is not positive definite and can not be
factorized by a classical Cholesky decomposition method. Anyway, the obtainment of the
covariance matrix involving the process in both scenarios must be factored to finally build the
set of Gaussian log-amplitude sequences measured at the different receivers in the system. As
shown in Figure 3, there only exists a slight difference (approx. 1–2 optical dB at a burst error
rate of 10−6 for a length of burst of 192 bits) between the obtained performance from the AR
model (ρl → 0) and the one obtained from the space-time separable statistics model (ρl → 1)
proposed in this paper. In fact, this latter model offers an accurate upper error bound for the
link performance in terms of burst error rate. Similar conclusions may be deduced from the
curves simulated with a length of burst of 64 bits. Nevertheless, from this Figure 3, we can
observe that diversity reception can improve the performance of the link, but a gain penalty is
shown when the CC coefficient between two receivers is high, especially if the log-amplitude
variance, σ2

χ, is larger. This fact can be a plausible reason to include the consideration of the
spatial channel coherence as a key factor to fully evaluate the performance of atmospheric
optical communication systems.
Furthermore, Figure 4 shows some obtained results when the CC coefficient has been
established to ρ12=ρ21=ρ23=ρ32=0.56 and ρ13=ρ31=0.1, for a length of burst of 192 bits. Figure
4 (a) represents the behavior of an OOK-GS format with a 100% d.c. for different intensities
of turbulence. As in Figure 3, the difference in performance is not significant for the two
extreme scenarios studied in this chapter. Only when the log-amplitude variance, σ2

χ, is getting
stronger, such difference between scenarios gets higher, for instance, from 0.17 to 1.2 optical
dB for σ2

χ = 0.01 and σ2
χ = 0.5 respectively at a burst error rate of 10−6.

Next, the pair of curves displayed for σ2
χ = 0.15 are taken as a reference in Figure 4 (b).

To show the superiority of the different pulse, we analyze the performance of Gaussian
pulse shapes in terms of the peak-to-average optical power ratio (PAOPR) and burst error
rate. Note that the PAOPR is a favorable characteristic in IM/DD infrared links due to
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Fig. 4. Burst error rate of a system with 3 receivers versus normalized average optical power
using OOK format, EGC and ML detection, assuming ρ12 = 0.56 and ρ13 = 0.1, being
u⊥ = 20 m/s, whereas the burst error length is established to 192 bits. An OOK-GS format
with d.c. of 100% is represented in (a), for different values of σ2

χ. Different transmission

formats have been displayed in (b) for σ2
χ = 0.15.

the inherent cuadratic response of the optical detector and the average power constraints
previously mentioned (Jurado-Navas et al., 2010). For this reason, we use the increase in
PAOPR as a figure of merit to compare the different pulses performance, taking into account
that a burst error rate analysis must be performed to take into account the temporal variability
of different combined sequences and verify that the increase in distortion of shorter pulses
does not counteract the PAOPR benefits. In this sense, pulses have been modified by varying
their statistics of the amplitude sequence with the purpose of increasing this PAOPR, for
example with a reduced d.c. of 25%; or even using OOK-GS formats with memory to avoid
the appearance of more than one pulse in sets of two (OOK-GSc) and three (OOK-GScc)
consecutive symbol periods (Jurado-Navas et al., 2010) but maintaining the average optical
power at the same constant level in all cases. The inclusion of memory on OOK formats
allows to increase the separation in burst error rate between the AR model and space-time
separable statistics one. The same conclusion may be deduced when different combining
techniques are employed (an EGC technique offers more distant results than a select best
scheme); or when a different number of receivers make part of the system, or even when
the definition of a burst error is modified allowing to contain, for instance, up to 9 consecutive
correct bits any sequence of burst error, as displayed in Figure 4 (b). Thus, when we get more
complicated the transmission format with the aim of obtaining a better performance, then
the difference in burst error rate between considering (AR model) or not (separable statistics
model) the frozen-in hypothesis is getting increased in a more meaningful way, but offering
this separable statistics model a reasonably accurate upper error limit in terms of burst error
rate in all simulated cases with a reduced computational load.

7. Concluding remarks

When technical specifications may not permit sufficient receiver spacing, scintillation
sequences may be spatially correlated. For these cases, an efficient method for generating an
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accurate approximation of ‘m’ equal power log-normal scintillation sequences with any CC
coefficient is proposed in this paper, overcoming the restrictions of a Cholesky decomposition.
Hence, the AR-model proposed in (Jurado-Navas & Puerta-Notario, 2009) and its inherent
numerically ill-conditioned covariance matrix (Baddour & Beaulieu, 2002) may be avoided in
many cases when calculating burst error rate curves due to the difference between the two
extreme scenarios studied in this chapter is usually limited to approximately 2 dB at a burst
rate of 10−6. In this sense, the space-time separable statistics model proposed here can be
used to consider spatial correlations among scintillation sequences without fear of making
big mistakes and with the advantage of a reduced computational time. Thus, such separable
statistics model may be seen as a highly accurate upper error bound of the whole model
detailed in (Jurado-Navas & Puerta-Notario, 2009).
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9. Nomenclature

A[k] m × m matrices containing the multichannel AR model coefficients.
C2

n Refractive-index structure parameter.
Cw Covariance matrix of the driving noise vector process of an AR model.
Cχ Covariance matrix of the log-amplitude scintillation.
Cχ[j] Covariance matrix of the log-amplitude scintillation evaluated in the j-time

instant.

C̃χ Positive semi-definite approximation of Cχ.
d0 Correlation length of intensity fluctuations.
dij Distance between points i and j in the receiver plane (m).

E Vector amplitude of the electric field.
fχ(χ) Probability density function of random log-amplitude scintillation.
f I(I) Probability density function of intensity fluctuations (= fαsc(αsc)).
I Irradiance of the random field.
I0 Level of irradiance fluctuation in the absence of air turbulence.
Im m-element identity matrix.
k Wave number of beam wave (=2π/λ).
K Coloring matrix.
L Propagation path length.
L Lower triangular matrix obtained after applying a Cholesky decomposition.
l0 Inner scale of turbulence.
n(r) Index of refraction.
n0 Average value of index of refraction.
n1 Fluctuations of the refractive index.
Q Orthogonal matrix.
r Transverse position of observation point.
U(r, z) Complex amplitude of the field in random medium.
u⊥ Component of the wind velocity transverse to the propagation direction.
w[n] Coloring Gaussian vector (= Kz[n]).
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z[n] Vector of independent zero mean Gaussian variates with unit variance.
αsc(t) Time-varying atmospheric scintillation sequence.
χ(t) Log-amplitude fluctuation of scintillation.
Λ Diagonal matrix containing the eigenvalues of Cχ.
ǫ Turbulent kinetic energy dissipation rate (m2/s3).
λ Wavelength.
ψ(r, L) Phase perturbations of Rytov approximation.
ρij Normalized cross-correlation coefficient between points i and j in the receiver

plane (m).
ρl Degree of randomness as effect of the dynamic evolution of the turbulence

(=ρl = τ0/τe).
σ2

I Scintillation index (normalized irradiance variance).
σ2

χ Log-amplitude variance.

τ0 Turbulence correlation time.
τe Lifetime of turbulent eddies.
ω[n] Driving noise vector process of an AR model.

Υ Perturbation matrix employed to obtain C̃χ.
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