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1. Introduction 

The radiation of internal gravity waves by stratified turbulent shear flows is encountered in 
many geophysical flows. Numerous applications include jet flows (Sutherland & Peltier 
1994), grid-generated turbulence (Dohan & Sutherland 2003), boundary layers (Taylor & 
Sarkar 2007), collapse of mixed patches (Sutherland et al. 2007), wakes behind towed and 
self-propelled bodies (Lin & Pao 1979), and many others. The present paper deals with 
internal waves radiated by a jet flow that is created in the far wake of a sphere towed in a 
stratified fluid at large Froude and Reynolds numbers.  
Experimental studies of internal gravity waves (IW) radiated by a towed sphere and its 
wake were performed both in a linearly stratified fluid by Bonneton, Chomaz & Hopfinger 
(1993) (further referred to as BCH) and in the presence of a thermocline by Robey (1996).  
The results show that internal waves radiated by the sphere (i.e. the lee waves) are 
stationary with respect to the sphere, and their amplitude is inversely proportional to the 
sphere Froude number, defined as 2 /Fr V ND  (where N is the buoyancy frequency, and 

V and D are the towing speed and the sphere diameter). On the other hand, internal waves, 
radiated by the turbulent wake are not stationary with respect to the sphere, and their 
amplitude grows as Fr increases. Experimental results obtained by BCH and Robey (1996) 
show that if the Froude number is sufficiently large (Fr > 10), non-stationary IW supercede 
the lee waves.  
Experimental results obtained by BCH show that at early times (Nt = O(10)) internal waves 
are radiated due to the collapse of the vortex coherent structures developing in the near 
wake (Chomaz, Bonnet & Hopfinger (1993), further referred to as CBH). The wavelength of 
these waves (also called “random” waves) is of the order of the sphere diameter, and their 
dynamics is well described theoretically under an assumption that each collapsing coherent 
structure can be regarded as an impulsive source of IW. Visualization of the density 
distribution in a horizontal plane at a distance of three sphere radii below the towing axis at 
times Nt < 40 gives a rather complicated, irregular isophase pattern of these random internal 
waves.      
The results of BCH show also that at later times (Nt > 40) random internal waves are 
superceded by waves whose initial spatial period is of the order of five sphere diameters. 
The isophase distribution of these waves, although being non-stationary with respect to the 
sphere, is reminiscent of the regular iso-phase pattern of the lee-waves. At sufficiently late 
times (Nt > 50), the random waves disappear, and there remain only coherent IW. BCH give 
no explanation of the observed dynamics of these coherent internal waves.       
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The experimental study of internal waves produced by a sphere towed under a thermocline 
at large Froude and Reynolds numbers was performed by Robey (1996). The results also 
show that the turbulent wake generates coherent internal waves which are non-stationary 
with respect to the sphere and whose amplitude grows linearly with Fr. In order to explain 
these experimental observations Robey (1996) considers a physical model of the IW 
radiation by the wake. According to this model, internal waves are emitted by vortices shed 
by the sphere, and each vortex can be regarded as a stationary source moving at a 
“resonance” speed, such that its effective Froude number is of order unity. Note however, 
that experimental results obtained by CBH do not support the assumption that such 
stationary vortices are present in the near wake.    
Another theoretical model of IW radiation by the wake flow has been developed by Dupont 
& Voisin (1996). According to this model, internal waves are emitted by an oscillating source 
moving with the speed of a sphere. It is assumed that such a source adequately represents 
coherent vortex structures which are shed by the sphere at the frequency of a spiral 
instability mode of the near-wake flow (observed experimentally by CBH) and collapse 
under gravity. Dupont & Voisin (1996) performed numerical calculations based on the 
Green’s function formalism developed by Voisin (1994). However, numerical results of 
Dupont & Voisin (1996) show that the IW phase pattern predicted by the model is rather 
complicated and does not reproduce the regular phase distribution related to the coherent 
internal waves observed experimentally by BCH. 
Recently there have been successful attempts to perform DNS and LES of stratified wakes 
by Gourlay et al. (2001), Dommermuth et al. (2002) and Brucker & Sarkar (2010). Since the 
mean streamwise fluid velocity in the wake is much smaller than the sphere towing speed, 
the variation of the flow statistical properties along the streamwise (x) axis can be neglected 
in DNS in the considered flow region. Thus the flow in DNS/LES is initialized as a sum of a 
circular, mean streamwise velocity profile and an x-periodic, random velocity component 
accounting for the turbulent fluctuations. This turbulent component is prescribed as a sum 
of Fourier harmonics with independent random phases and given amplitude power 
spectrum. Numerical results of Gourlay et al. (2001) (such as the temporal development of 
the wake axis mean velocity, width and height and the instantaneous vorticity distribution) 
are in good qualitative agreement with the experimental data obtained by Spedding et al. 
(1996) and Spedding (2001). Dommermuth et al. (2002) performed the LES study of the 
stratified wake and used a relaxation procedure to bring to equilibrium the initially 
unrelated turbulent production and dissipation. Their results are similar to the results of 
Gourlay et al. (2001) and show that the relaxation procedure is essential for accurately 
simulating the near wake but is not important if only far wake is of interest. DNS of the 
turbulent wake flow at high Reynolds number (Re=50000) was performed recently by 
Brucker & Sarkar (2010) using the same flow initialization procedure. Both Gourlay et al. 
(2001) and Dommermuth et al. (2002)  and  Brucker & Sarkar (2010) conclude that startified 
wakes are capable of radiating internal waves, but do not  examine in detail the physical 
mechanism of the IW radiation and the properties of waves kinematics and dynamics. The 
radiation of internal waves by a turbulent jet flow in a linearly stratified fluid was studied 
recently by performing DNS by Druzhinin (2009). The results show that IW radiation occurs 
at times 10 30Nt  and can be described as a result of an impulsive collapse of the vertical 
velocity fluctuation of the initially 3D turbulent flow.  
The objective of the present paper is to study in more details the process of internal waves 
radiation by a temporally developing turbulent jet flow in a stratified fluid by direct 
numerical simulation. An initially circular, turbulent jet flow is considered with parameters 
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that match parameters of a far wake of a sphere towed in a stratified  fluid at large Froude 

and Reynolds numbers (of order (10)O  and 4(10O ), respectively). The mathematical 

formulation and description of the numerical procedure are provided is Section 2. In Section 
3 the properties of the jet flow and radiated internal waves obtained in DNS are described. 
In Section 4 a linear impulsive source theory is applied to explain the observed IW 
kinematics and dynamics, and final conclusions are found in Section 5. 

2. Governing equations and numerical method 

A circular jet flow with the initial (reference) Gaussian profile of the streamwise (x) velocity   
component is considered in the form: 

  2 2exp 4[ ]refU y z   ,  (2.1)  

where у and z are the spanwise and vertical coordinates, respectively. Hereafter, all the 

variables are made dimensionless via normalizing by the velocity and length scales defined 

by the initial jet axis mean velocity and diameter, 0U  and 0L . For example, in the case of a 

wake created by a towed sphere, 0L  is close to the sphere diameter ( 0 / 0.8L D  ) and 0U  is 

defined by the towing speed V and the velocity deficit at the wake central axis at a given 

distance behind the sphere., e.g. 0 / 0.1U V   at / 6x D    (cf. Bevilaqua & Likoudis 1978). 

An initial linear, stable stratification of the fluid density is considered ( ref z   ).  
The Navier – Stokes equations for the fluid velocity are written under the Boussinesq 
approximation in the dimensionless form: 

 
 

 
Re Re

2 2 21 1
,

t i j j i ref x i ix y y ref z z ref

i i ix yy ref zz ref iz

U U U U U U U U U

P U U U Ri

          

          
  (2.2)   

 0.j jU    (2.3)  

The equation for the fluid density is written as: 

 21

RePr
t j j ref x zU U U            .  (2.4)  

In Eqs. (2.2) – (2.4), iU   ( , ,i x y z ) and   are the instantaneous deviations of the fluid 

velocity and density from their respective reference profiles, and ij  is the Kroneker’s 

symbol. The Reynolds number and the global Richardson number of the flow are defined as:  

 0 0Re
U L




,  (2.5)  

and 

 0 0
2

0 0

g L
Ri

U





,  (2.6) 
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where   is the fluid kinematic viscosity, g  the acceleration due to gravity, and ( 0 0/  ) 

the absolute relative density variation in the vertical direction on scale 0L . (Note that since 

0 / 0.1U V  , the Reynolds and Froude numbers of the sphere are about 10 times larger than 

Re and 1/2Fr Ri , respectively.) As follows from eqs. (2.2) - (2.6), the dimensionless 

buoyancy frequency equals 1/2 1 /N Ri Fr  . The Prandtl number is set equal to unity. The 

results of DNS by Stadler et al. (2010) performed recently show that that Pr = 1 is a 

reasonable approximation for Pr = 7 which is the case of the thermal stratification in the 

ocean.  
In order to perform numerical simulation in a region finite over the vertical coordinate and 
provide a sufficient resolution of the flow field, a mapping for the z-coordinate is employed 
in the form: 

 tanh
9

z
  ,  (2.7)  

so that   

 
1

4.5ln
1

z
  

    
,  (2.8)  

and  1 1     for z    . The derivatives over z-coordinate in Eqs. (2.2)-(2.4) are 

rewritten as:  

 
21

9z

    
     

.  (2.9)  

Equations (2.2) - (2.4) are discretized in a parallelepiped domain with sizes 
0 36x  , 9 9y    and 1 1     by employing a finite difference method of the second-

order accuracy on a uniform rectangular staggered grid consisting of 480 × 240 × 240 nodes 
in x, y, and ξ(z) directions, respectively. The terms on the left hand side of equations (2.2) 
and (2.4), ref x iU U  and ref xU   , that are responsible for the advection by the reference 

velocity ( , )refU y z , are evaluated at each time step by Fourier interpolation which is a more 

accurate method to compute these terms as compared to a pure finite difference scheme 
(Gerz et al. (1989)). The integration is advanced in time using the Adams-Bashforth method 
with time step t  = 0.0075. The shear-free (Neumann) boundary condition is prescribed in 

the spanwise and vertical directions (at y = ± 9 and  = ± 1), and x-periodic boundary 

condition is prescribed in the streamwise direction. The Poisson equation for the pressure is 
solved by fast Fourier transform over x-coordinate, cosine transform over y-coordinate, and 
Gauss elimination method over z-coordinate.  
As it was observed by Gourlay et al. (2001) in their DNS study, internal waves radiated by 
the jet turbulence propagate away from the jet core toward the boundaries of the 
computational domain in the y and z directions. Thus one needs to avoid reflection of the 
waves from the boundaries and their coming back into the flow region. One way to do this 
is to prescribe the Sommerfeld radiation boundary condition (cf. e.g. Javam et al. 2000). In 
the present study we adopt a less computationally expensive approach analogous to that 
employed by Sutherland & Peltier (1994) in their numerical study of the instability 
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development and IW radiation in a two-dimensional jet flow. In this approach, the 
absorption of internal waves radiated from the jet core is ensured by increasing the fluid 
kinematic viscosity in a layer near the boundaries of the computational domain. A similar 
viscous-sponge boundary condition was successfully employed recently by Taylor & Sarkar 
(2007) in their LES study of internal waves radiated by a turbulent boundary layer. Thus, in 

our DNS procedure the viscosity is increased by a factor of 20 in the region 
1/22 2 7y z  , 

as compared to the viscosity in the rest of the computational domain (where it is constant 
and equals 1/Re). Our DNS results show that such artificial viscosity enhancement does not 
affect the jet flow dynamics and ensures complete absorption of internal waves radiated 
from the jet core region toward the boundaries.  
In order to define the flow statistical characteristics at a given time moment (t), the x – 
averaged velocity and density fields are evaluated as: 

 
0

1
( , , ) ( , , , ) ( , )

xL

i i ix ref
x

U y z t U x y z t dx U y z
L

     ,  (2.10) 

 
0

1
( , , ) ( , , , )

xL

x

y z t x y z t dx
L

     ,  (2.11) 

where , ,i x y z , and 36xL  . The jet maximum mean velocity ( mU ) and its width and 

height ( ,y zL ) are further evaluated as: 

  ( ) max ( , , )m xU t U y z t   , (2.12)  

 
1

( ) ( , 0, )y x
m

L t U y z t dy
U





    ,  (2.13) 

 
1

( ) ( 0, , )z x
m

L t U y z t dz
U





    . (2.14) 

The instantaneous r.m.s. fluctuations of the velocity and density fields, 

 2 2 1/2' ( , , )i i iU y z t U U       (2.15) 

and 

 2 2 1/2'( , , )y z t        ,  (2.16) 

and their amplitudes (the respective absolute maxima) are also evaluated.  
The initial, random component of the fluid velocity is prescribed as a 3D homogeneous 

isotropic turbulence field consisting of a sum of Fourier harmonics with independent 

random phases and an isotropic amplitude power spectrum (Gourlay et al. 2001). We 

prescribe the initial turbulence spectrum to be uniform over the wavenumber range 

0.5 5k   and equal to zero for other k’s (Fig. 1). Thus, the initial spectrum includes the 

www.intechopen.com



 
Computational Simulations and Applications 

 

102 

most unstable (spiral) mode with  k = 1.46 of an inviscid non-stratified circular jet flow 

(Batchelor and Gill 1962), as well as a higher-k axisymmetrical Kelvin-Helmholtz instability 

mode similar to that observed in the near wake flow (CBH 1993).  

At present it is an open question whether the spiral shedding mode observed in the near 
wake (CBH 1993) is related to the spiral instability mode of the x-periodic circular jet, 
although the Strouhal numbers of the two modes are close (for the spiral mode St = k/2  = 

0.2 whereas for the shedding spiral mode St = 0.175, CBH 1993). It is possible that the two 
modes are related due to some correlation between the development of the instability of the 
near-wake flow and the location of the separation point of the boundary layer at the sphere 
and the development of the spiral shedding mode. It is important to note however that the 
development of the spiral instability mode is an intrinsic property of the circular jet/wake 
flow itself and not related to presence of the sphere. 
Since at present there is no knowledge concerning the shape of the spectrum in the 
homogeneous near wake, we prescribe an initial uniform-amplitude spectrum. The initial 
amplitude of the random velocity component is prescribed to be about 40% of the mean 
velocity maximum. This value is close to the turbulence intensity measured by Bevilaqua 

and Lykoudis (1978) in a homogeneous turbulent wake at the distance / 6x D   behind the 

sphere. The initial velocity field is further windowed with the reference profile ),( zyU ref
 

(2.1) and made divergence-free , similarly to the initialization procedure employed by 
Gourlay et al. (2001). 
The initial deviation of the density from the reference linear profile is prescribed to be zero. 
This is in agreement with the experimental observations of BCH showing that the effect of 
the turbulent mixing in the near wake of a towed sphere is weak and its contribution to the 
radiated IW field is negligible.   
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Fig. 1. The initial velocity spectrum. 
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Fig. 2. Temporal development of the velocity and length scales of the non-stratified jet flow. 

3. Numerical results 

3.1 Jet flow properties 
In order to verify the performance of our numerical procedure we performed DNS with Re 
= 700 of a homogeneous jet flow (where Ri = 0) and a stratified jet flow with two different 
Richardson numbers (Ri = 1 and Ri = 3) and compared our numerical results with well-
known asymptotics of homogeneous and stratified far wakes. 
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Fig. 3. Temporal development of the jet mean velocity maximum  mU  (left) and its width yL  

and height zL  (in dashed line)  (right). Asymptotics  0.75~mU t  and 0.33
, ~y zL t  are shown 

in dotted line. 
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Figures 2 and 3 compare the temporal development of the flow integral scales, such as the 

mean velocity maximum, and jet width and height obtained in our DNS, with the 

asymptotics 2/3~mU t  and 0.75~mU t  and 0.33
, ~y zL t , observed in homogeneous and 

stratified wakes in laboratory experiments (Bevilaqua & Lykoudis 1978, Spedding 1997). In 

the case of a homogeneous wake, the agreement is very good for the considered  times 

20t   (cf. Fig. 2). (It is important to note that since we normalize by the velocity deficit 

0 / 0.1U V  , time moment t = 20 corresponds to the distance 0/ / 200x D tV U   behind 

the sphere.)  In the stratified case, the agreement with the asymptotics 0.75~mU t  and 
0.33

, ~y zL t   is also quite satisfactory.  

Figure 4 presents the temporal development of the velocity and density fluctuations 

amplitudes for Ri = 1 and 3. The figure shows that at early times ( 10Nt  ) the velocity 

fluctuations amplitudes are of the same order, i.e. the flow remains nearly isotropic. At later 

times, the vertical velocity decreases much faster as compared to the horizontal velocity 

components and at  times 30Nt   the amplitude 'zU  becomes almost by two orders of 

magnitude smaller than the horizontal velocity amplitudes 'xU  and 'yU .  Thus, at that 

stage, the flow becomes quasi-two-dimensional. 
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Fig. 4. Temporal development of the velocity and density fluctuations amplitudes for Ri = 1 
(left) and Ri = 3 (right). 
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The density fluctuations amplitude '  increases and reaches its maximum at 2Nt   due to 

the transfer of the initial turbulence kinetic energy into the potential energy of the displaced 

isopycnals. Then '   decreases, and this reduction is accompanied by the growth of the 

vertical velocity fluctuations until  3.5Nt  . At later times the anti-phase oscillations of '  

and 'zU  are smeared out due to their decay.  Similar behavior was observed by 

Dommermuth et al. (2002) and  interpreted as the radiation of internal waves by collapsing 

vertical velocity fluctuations in the wake.  
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Fig. 5. Velocity  fluctuations spatial spectra at different time moments. Asymptotics 3/5
k  is 

shown in dotted line. Here and below in Figs. 6, 7 Ri = 1. 

Figure 5 shows the velocity wavenumber spectra ( )iU k of the i = x, y, z velocity components  

obtained in DNS for Ri = 1 at different time moments. Each spectrum is evaluated by a 
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Fourier transform of the velocity i-component ( , , )iU x y z  over the streamwise (x) coordinate 

and averaging over 9 x-realizations located in the jet core region 2 2 0.15y z  . The figure 

shows that at early time moments Nt = 3, 6 the spectra ( )iU k  are of the same magnitude, i.e. 

the velocity field remains isotropic. It is important to note that at these early times the 

spectra are characterized by distinctive peaks at sk k (for y-component) and 0.5 sk k  (for 

x-component) where 1.46sk   is the wavenumber of the spiral instability mode of the non-

stratified jet flow (Batchelor & Gill 1962). At later times (Nt =30, 90) most of the energy 

becomes accumulated in the horizontal velocity components ( )xU k  and ( )yU k  with 

pronounced peaks at 0.5 sk k . 
The dynamics of the spectrum in Fig. 5 can be interpreted as follows. At early times (Nt < 

10) there occurs a preferential growth of the most unstable mode which, in a certain sense, is 

analogous to the spiral instability mode of the non-stratified jet flow (Batchelor & Gill 1962). 

(This is in agreement with numerous experimental observations (cf. e.g. Spedding et al. 

(1996)) showing that at early times the stratified wake flow develops similarly to the 

homogeneous wake flow.) It is important to note that this instability mode is an intrinsic 

property of the jet flow itself and is not directly related to the shedding instability mode of 

the near-wake flow observed experimentally by CBH (1993). It is important to note also that, 

in our DNS, no selected modes are initially present (cf. Fig. 1). At later times (Nt > 30) the 

flow is governed by the non-linear interaction and competition between the most developed 

flow modes which leads to the preferential growth of a quasi-2D mode with 

wavenumber 0.5 sk .  

Figure 5 shows also that the fluid kinetic energy is negligible for wavenumbers larger than 

max 20k   (the corresponding spatial scale is min max2 / 0.3l k   ). Thus, for the considered 

spatial resolution (Δx = 0.075) the flow, including the smallest scales, is well-resolved in 

DNS.  

Figure 6 presents the instantaneous distribution of the flow vorticity z-component, 

( )z x y y x refU U U       in the plane (x, y) at z = 0 obtained in DNS for Ri = 1 at time 

moments Nt = 6 and Nt = 90. The figure shows that at late times the vorticity distribution is 

characterized by the development of large-scale vortices of alternating polarity arranged in 

the horizontal plane (x, y) in the vicinity of the jet streamwise axis. Similar vortex structures 

(also called the “pancake” eddies) are known to be the common feature of stratified far 

wakes and observed both in laboratory experiments (cf. e.g. Spedding et al. (1996)) and in 

numerical simulations (Gourlay et al. (2001), Dommermuth et al. (2002)).  

It is of interest to note that at times 30 < Nt < 90 the amplitude 'yU  of the spanwise 

fluctuation velocity component remains almost constant whereas the streamwise velocity 

amplitude, 'xU , decreases with time, so that at sufficiently late times (Nt > 60) the spanwise 

velocity fluctuations prevail over the streamwise fluctuations (cf. Fig. 4). This behavior of 

'yU  and  'xU  is more pronounced for a larger Richardson number (cf. cases Ri= 1 and Ri = 

3 in Fig. 4). Figure 5 shows also that at that stage a distinct peak develops in the horizontal 

velocity spectra , ( )x yU k  at wavenumber 0.5 sk k . This behavior of the spanwise velocity 

amplitude and the spectrum is in general agreement with the hypothesis put forward by 

Spedding (2001) who pointed out that an intrinsic mean flow sinuous instability may be 

responsible for the development of the large-scale coherent vortex structures in late 

stratified wakes.   
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Fig. 6. Instantaneous contours of the vertical vorticity component z  in the horizontal 

central (x,y) plane at time moments Nt  =  6 (top frame) and  Nt = 90 (bottom frame). The 
mean flow is from left to right along the x-axis. 

3.2 Internal waves radiation 

Figure 7 shows the instantaneous distributions of the r.m.s. of the density and horizontal 

and vertical velocity fields, '( , )y z ,  1/22 2' ( , ) ' 'h x yU y z U U   and ' ( , )zU y z , evaluated from 

(2.15) and (2.16) at different time moments. The figure shows that at sufficiently late times 

(Nt > 10) the vertical velocity fluctuations, ' ( , )zU y z , are mostly  present in the region | | 1z   

whereas the horizontal component, ' ( , )hU y z , is most pronounced in a horizontal layer 

| | 1z   in the region | | yy L . At times Nt = 15, 30 the vertical velocity fluctuations are most 

pronounced in the elongated regions oriented at the angle θ  with respect to the vertical axis 

in the range 0 040 60   . It is a well-known property of stratified turbulence that at 

sufficiently late times, after the initial collapse of 3D turbulence under the action of 

buoyancy force, the vertical velocity is associated mostly with propagating internal waves 

(IW) whereas the horizontal velocity is associated with quasi-2D fluid motions. Fig. 7 shows 

that at later times (Nt = 60, 90) amplitude 'zU  decreases by the order of magnitude as 

compared to the time moment Nt = 15, and the regions of local maxima of ' ( , )zU y z are 

getting aligned with the vertical axis. This picture is similar to the one predicted by a linear 

theory for the IW radiated by an impulsive point source (Zavolski & Zaytsev 1984, Voisin 

1991). According to this theory, amplitude of IW emitted impulsively by a point source has 

its maximum along the iso-phase line oriented at 0arctan 2 55   with respect to the 
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vertical. At later times, at a given point, IW cancel out due to their mutual destructive 

interference and are superceded by small-amplitude, non-propagating buoyancy 

oscillations. (Below we discuss the application of the impulsive point theory in the 

considered case in more detail.) 

Figure 7 shows also that the distribution of the density fluctuation in the vicinity of the jet 

core has a two-layer structure with local maxima of '  at 0.5z  , 2y   . Now it is well 

known that the fluid density variations in a pancake vortex arise as a result of the 

cyclostrophic balance, where the centrifugal force inside the vortex is balanced by a vertical 

pressure gradient force that is provided by a perturbation of the local density (cf. Beckers et 

al. (2001)). This balance inside the individual vortex deflects isopycnals toward the vortex 

center and thus creates a two-layer distribution of the local density perturbation. Figure 6 

shows that the centers of pancake vortices are located in the horizontal central plane at 

2y   . Thus it is plausible to assume that the local maxima of '  at 0.5z  , 2y    in the 

distribution of the density fluctuation (cf. Fig. 7, Nt = 60, 90) are due to the cyclostrophic 

balance inside the pancake eddies.  
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Fig. 7. Contours of the x-averaged density fluctuation   (left column), and horizontal 

(centre column) and vertical (right column) velocity fluctuations, 'hU  and 'zU , obtained at 

time moments Nt = 15, 30, 60, 90 (from top to bottom). The respective maximum values are:  

0.06, 0.12, 0.028 (Nt = 15); 0.03, 0.1, 0.0085 (Nt = 30); 0.016, 0.09, 0.0028 (Nt = 60); 0.0095, 0.07, 

0.0012 (Nt = 90). 
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Figure 8 shows the instantaneous distribution of the vertical velocity component, zU ,  in the 

vertical (x, z) planes at y = 0 and y = 1.5 obtained in DNS at time moments Nt  =  15 and Nt = 

90. The figure shows that at time moment  Nt = 15, in the region sufficiently far away from 

the jet streamwise axis (for 1z  ), IW isophase lines, which are associated with the regions 

of maxima and minima of zU , are mostly in the direction of the mean flow and oriented at 

the angle of 050   with respect to the vertical. The velocity distribution has a nearly 

periodical spatial structure with a period of about 5 dimensionless units along the x-

coordinate. The figure shows also that at time Nt = 90 the vertical velocity amplitude is 

diminished by the order of magnitude and its maxima and minima are arranged in columns 

with the same spatial periodicity. These maxima and minima can be associated with small-

amplitude buoyancy oscillations which supercede impulsively radiated IW at that stage of 

the flow development (Voisin 1991). 
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Fig. 8. Instantaneous contours of the vertical velocity 
zU  in the vertical (x,z) plane at y = 0 

(left column) and y = 1.5 (right column) at time moments Nt  =  15 (top frame) and Nt = 90 

(bottom frame).  

Figure 9 presents the distribution of the vertical velocity, zU , in the horizontal (x, y)-plane at 

the distance  z = 3 above the jet streamwise axis obtained in DNS at time moments  Nt = 12, 

15, 18. The figure shows that the IW patterns in that plane are similar to the IW patterns of 

stationary lee-waves and characterized by a well-defined streamwise spatial period of about 

5 dimensionless units (or about 4-5 sphere diameters in the dimensional form). A similar 

isophase pattern was observed by BCH in the laboratory experiment in a horizontal plane at 

a distance of three sphere radii away from the towing axis. Note also that this spatial period 

is close to the wavelength of the spiral instability mode of the non-stratified jet flow 

2 / 4.3s sk     for 1.46sk   (Batchelor and Gill 1962). 

Figure 10 shows the temporal development of the vertical velocity and density, zU  and ρ, 
obtained in DNS at the point located at x = 18, with the angle with respect to the vertical θ = 
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040  at the distance of 2 2 3y z   from the jet streamwise axis for Richardson numbers Ri = 

1 and Ri = 3. The figure shows that in both cases IW packet arrives at the observation point 

at time moment 10Nt   which is independent of the Richardson number. At the given 

point, the IW paket amplitude grows at times 20Nt   whereas the velocity zU  and density 

ρ oscillate with a phase shift / 2  typical of a monochromatic, linear internal wave (Phillips 

1977). At times Nt > 30 the oscillations of  zU  and ρ become incoherent and IW packet 

amplitude decreases. At sufficiently late times (Nt > 60) there remain only small-amplitude 

oscillations of the velocity and density with the buoyancy frequency N. These small-

amplitude oscillations are similar to the buoyancy oscillations which supercede  internal 

waves, which are mutually cancelled due to the destructive interference as their 

wavelengths become of the order of the source diameter (i.e. of order one in the considered 

case)  (Voisin 1991).    

Figure 11 presents spatially averaged frequency spectra of the vertical velocity obtained in 

DNS for Richardson numbers Ri = 1 and 3. Each spectrum was obtained by Fourier 

transform of time series ( )zU t  and averaged over 100 points located uniformly at a 

cylindrical surface with radius 2 2 3y z   in the range 0 00 90   . The figure shows that 

the velocity spectra are characterized by a well pronounced peak at the frequency 

/ 0.7N  which corresponds to the IW propagation angle 0arccos / 45N  . This value is 

close to the prediction of the linear theory stating that the amplitude of the waves radiated 

impulsively by a small-size source has a maximum at 0arctan 2 55   . This is also in 

general agreement with the data in Figs. 7 and 8 discussed above. 

Figure 12 presents the dependence of the internal waves amplitude ( iw ) vs. the inverse 

Richardson number ( 1Ri ) obtained in DNS for two different values of the Reynolds 

number, Re = 400 and 700. The IW amplitude was evaluated in each DNS run as a 

maximum of the r.m.s. density fluctuation  '( , , )y z t  (2.16) at the distance 2 2 3y z   from 

the jet streamwise axis. (Note that since we consider the linear reference density profile, 

'( , , )y z t  is also equivalent to the average fluid particle vertical displacement amplitude i.e. 

the average IW amplitude.). The DNS results show that, for all considered Ri, the maximum 

of '  is observed at time moment Nt ≈ 15 in the range 0 040 60   . Figure 12 shows that 

IW amplitude decreases with increasing Ri. The figure also shows an asymptotic estimate 

for the amplitude of the impulsively emitted internal waves (in dotted line).  
Below in Section 4 the application of the impulsive source theory to explain the observed  

IW kinematics and dynamics is discussed. 

4. Impulsive source model 

Radiation of internal waves by the jet turbulence occurs due to the transfer of the kinetic 

energy of the vertical velocity fluctuations into the initial potential energy of isopycnal 

displacement and its further redistribution between the kinetic and potential energy of 

waves and turbulence. This transfer is most pronounced at the early stage of the jet flow 

evolution when the vertical velocity fluctuations are significant (i.e. for Nt < 10, cf. Fig. 4). 

The results in the previous section show that the properties of IW radiated by the jet flow 

turbulence are to some degree analogous to the properties of the internal waves radiated by 

an impulsive source.  Let us consider this analogy in more detail.   
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Fig. 9. Instantaneous contours of the vertical velocity 
zU  in the horizontal (x,y) plane above 

the jet streamwise axis at  z = 3 at time moments Nt =  12, 15, 18 (from top to bottom). 

In the considered case, an IW radiation source function can be evaluated from the equation 
for the vertical velocity derived by Phillips (1977). In this equation, the non-linear terms are 
not discarded but can be regarded as an effective source of IW. This equation is derived in 
the inviscid case in the form: 

  
2

2 2 2
2

( , , , )z h zU N U Q x y z t
t


   


 (4.1) 

where the IW source function is 

 
3

2( , , , ) z
j h j j

j j j

U Ub
Q x y z t U U U

x z t x x t x




                            
  (4.2) 

In (4.1) and (4.2) the notations  are as follows: 
2 2 2

2
2 2 2x y z

  
   

  
 , 

2 2
2

2 2h
x y

 
  

 
  are the 

full and horizontal Laplasian operators, respectively; summation over the repeated indexes 
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1,2   and j = 1, 2, 3 is performed; 1 2 3( , , ) ( , , )x x x x y z  are the Cartesian coordinates;  

1 2 3( , , ) ( , , )x y zU U U U U U  are the fluid velocity components; and b Ri    is the buoyancy. 
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Fig. 10. Temporal development of the vertical velocity and density, zU   and ρ, obtained in 

DNS at x = 18 and θ = 040  (the angle with respect to the vertical) at the distance 2 2 3y z   

from the jet streamwise axis for Richardson numbers Ri =1 (top frame) and Ri = 3 (bottom 

frame). 

Figure 13 shows an instantaneous distribution of the source function Q(x, z, y = 0) evaluated 
in DNS in the central vertical plane at time moments Nt = 3 and 6. The figure shows that the 
distribution of Q is quite inhomogeneous and confined to the jet core region. Therefore, the 
effective source diameter is of the order of the initial jet flow diameter. The figure indicates 

also that the growth of the modes with wavenumbers sk k  and 0.5 sk k in the velocity 

spectra at time moments Nt < 10 (Fig. 5) leads to a modulation of the source function 
amplitude along the streamwise coordinate . (In Fig. 13 this modulation is more pronounced 
at time moment Nt = 6.)  

Figure 14 presents the temporal development of the volume-averaged dispersion of the IW 

source function, 2/12
),,,(  tzyxQ , obtained in DNS for Ri = 1 and Ri = 3. The figure shows 

that, for all Ri, the dispersion increases by  t = 2.5 by the order of magnitude. The figure 

shows also that at later times 2/12
),,,(  tzyxQ  decays, so that its amplitude is reduced by 

more than half by t = 5 and becomes negligible at Nt > 10. From the spectra in Fig. 11 the 

period of internal waves having the maximum amplitude can be evaluated as 

8/2  NNTIW
 (cf. Fig. 11) and is almost twice as large as compared to the period of the 

IW source function half-decay.        
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Fig. 11. Spatially averaged frequency spectra of the vertical velocity obtained in DNS for 
different Richardson numbers. 

Thus Q in (4.1) can be regarded as an impulsive source function which brings about IW 
radiation by the jet flow turbulence. The temporal growth and maximum amplitude of this 
source function is controlled by the non-linear flow dynamics, not by buoyancy. Let us now 
make some estimates provided by the impulsive source theory (Zavolskii & Zaytsev 1984, 
Voisin 1991, BCH 1993) concerning the kinematics and dynamics of the radiated internal 
waves. 

The time interval during which the IW packet, emitted impulsively by the source (S) at the 

angle θ with respect to the vertical  (cf. Fig. 15), comes to the observation point (O) located at 

the distance 2 2r y z  , can be estimated with the use of the linear theory as follows. The 

group velocity ( gc ) of internal waves with streamwise wavenumber k and the isophase line 

at the angle θ with respect to the vertical is evaluated as: 

 sin 2
2

g

N
c

k
  .  (4.3)  

Thus the time interval, 1Nt ,  during which the IW wave packet comes from the source (S) to 

the observation point (O), is evaluated as: 

 1

2

sin 2

kr
Nt 


.  (4.4) 

Eq. (4.4) shows that time interval 1Nt  does not depend on N in agreement with the DNS 

results in Fig. 10. Substitution of r = 3, arctan 2  , and 1.3sk k   into (4.4) gives the 

estimate 1 8Nt  , which is also in good agreement with the DNS results in Fig. 10. 
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Fig. 12. The internal waves amplitude ( iw ) vs. inverse Richardson number obtained in DNS 

for different Reynolds numbers. The dotted line shows the asymptotic solution for the 
amplitude derived from the linear theory for an impulsive point source. 

Figure 10 shows that at sufficiently late times (Nt > 40) the density oscillations at the 

considered distance from the jet streamwise axis (r = 3) are damped. The time moment 

( 2Nt ) after which the IW amplitude decays at a given location can be estimated as follows. 

The wavelength λ of IW emitted impulsively by a source (S) at the angle θ with respect to 

the vertical at the distance r and coming to the observation point (O) at time t (cf. Fig. 15) 

can be evaluated as: 

 
2

sin

r

Nt


 

 . (4.5) 

The theoretical analysis of the internal waves field generated by a sphere performed by 

Voisin (1994) shows that if λ becomes of the order of the sphere radius, the destructive 

interference of the waves emitted from different locations on the sphere leads to a decay of 

the wave amplitude. In the considered case, the cutoff wavelength is of the order of the jet 

initial diameter, i.e. 1c  . Substitution of c    in (4.5) gives 

 2

2

sin

r
Nt




 .  (4.6) 

For r = 3 and arctan 2   we obtain from (4.6) an estimate 2 30Nt  , which is also in good 

agreement with the DNS results (Fig. 10).  The linear theory also predicts that at times 

2Nt Nt , the incoming waves are mutually cancelled, and there remain only buoyancy 
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oscillations of the density with the frequency N whose group velocity is identically zero. 

These buoyancy oscillations are present in Fig. 10 (for Nt > 40) and in the distributions of the 

vertical velocity in the form of columnar disturbances at time moment Nt =  90 in Figs. 7, 8. 
The asymptotics for the IW amplitude in Fig. 12 is derived as follows. Using the same 
schematic in Fig. 15 the following estimate can be obtained for the amplitude of internal 

waves ( iw ) emitted impulsively by the source (S) and coming to the observation point  (O) 

at time t (cf. e.g. BCH): 
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Fig. 13. Instantaneous contours of the IW source function IWQ  in the vertical central plane 

at time moments Nt =  3 (top frame) and Nt = 6 (bottom frame).  

 
1/2sin cos

~iw

Nt

Nr

    .  (4.7)  

Eq. (4.7) shows that iw  increases with time. As it was discussed above, the IW amplitude  

increases until time when the wavelength of incoming waves becomes of the order of the 

source size, i.e. for 2Nt Nt . Thus, the maximum amplitude ( max
iw ) can be evaluated from 

(4.6) and (4.7) as: 

 
1/2

max
1/2

sin 2
~iw

Nr

    .  (4.8) 

Eq. (4.8) shows that IW amplitude is inversely proportional to N, so that max 0.5~iw Ri . (Note 

that the jet flow Froude number equals 1 /jFr Ri , so that  max ~iw jFr .) This estimate is in 

good agreement with the results in Fig. 12 for sufficiently small amplitudes (for iw < 0.03). 

The growth of iw  saturates for larger amplitudes, probably due to nonlinear effects, and 

increases for larger Reynolds number.  

5. Conclusions and discussion 

In the present paper, direct numerical simulation (DNS) has been performed in order to 
study the process of internal waves radiation by a stratified turbulent jet flow. An initially 
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circular, turbulent jet flow with a Gaussian profile of the mean streamwise velocity 
component in a fluid with stable, linear density stratification is considered which models the 
flow created in the far wake of a sphere towed in a stratified fluid at large Froude and 
Reynolds numbers. The DNS results show that at early times ( 30Nt , where N is the 

buoyancy frequency) there occurs a collapse of the vertical velocity fluctuations which 
brings about the radiation of internal waves (IW). The characteristic spatial period of these 
waves is found to be close to the wavelength of the spiral instability mode of a non-stratified 
jet flow. The IW amplitude decreases with increasing the flow global Richardson number 

and is well described by the asymptotics 5.0
~


Riiw . At late times (Nt > 60) the jet flow 

becomes quasi-two-dimensional and is dominated by large-scale pancake vortices. At that 
stage, internal waves are superseded by non-propagating, columnar, small-amplitude 
buoyancy oscillations confined to a central vertical layer with a thickness of the order of the 
jet width. A linear model is proposed where the jet turbulence collapsing under the 
stabilizing effect of the buoyancy forces, is regarded as an impulsive source of IW radiation. 
The kinematics and dynamics of the internal waves observed in DNS are found to be in 
good agreement with the model prediction. 

Note that a relatively narrow IW frequency range ( 0 040 arccos / 60N   ), similar to the 

one observed in our DNS, has been also observed in mixing-box experiments (Dohan & 
Sutherland 2003), in a flow over a vertical obstacle (Sutherland & Linden 1998), during the 
collapse of a mixed patch (Sutherland et al. 2007) and in LES of a density-stratified 
boundary layer (Taylor & Sarkar 2007). In these works, several models were proposed to 
explain the observed IW frequency range, and among them, perhaps, two pertain to the 
considered case of IW radiation by a temporally developing turbulent jet flow. Dohan and 
Sutherland (2003) employed stability criteria derived by Sutherland (2001) for low- and 
high-frequency waves which show that the largest critical IW amplitude corresponds to the 

waves propagating at 045  .   
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Fig. 14. Temporal development of the volume-averaged dispersion of the IW source function 
normalized by its initial value for different Richardson numbers. Note that the graph on the 
right is scaled with the buoyancy frequency. 
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Other waves become unstable at a lower amplitude and their breaking would explain the 

observed frequency selection. However, in our case the wave amplitude is much smaller 

than the critical value / 0.07IW xA    (cf. Fig. 4 where max 0.05IW   and   max / 0.01IW
x    for 

5x  ) and this mechanism is not applicable. Taylor and Sarkar (2007) developed a linear 

viscous model to estimate the decay in wave amplitude. Waves with high and low 

frequencies have smaller vertical group velocities and dissipate more as compared to the 

waves with propagation angle in the vicinity of 027  . Thus the viscous dissipation may 

cause the observed selected IW frequency range. However, our DNS results show that the 

selection of the IW propagation angle occurs in the close vicinity of the jet core region 

( 1z  ) where viscous diffusion effects have not yet accumulated and are negligible as far 

as the frequency selection is concerned. Therefore, the impulsive source model considered in 

the present paper provides the most plausible explanation of the IW kinematics and 

dynamics observed in DNS. 
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Fig. 15. Schematic of the radiation of the IW packet by an impulsive point source (S) with the 

group velocity gc  at the angle θ with respect to the vertical axis at the distance r from the 

observation point (O). 
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