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1. Introduction

Convection-diffusion equations are widely used for modeling and simulations of various
complex phenomena in science and engineering (Hundsdorfer & Verwer, 2003; Morton, 1996).
Since for most application problems it is impossible to solve convection-diffusion equations
analytically, efficient numerical algorithms are becoming increasingly important to numerical
simulations involving convection-diffusion equations.
Recently a great deal of efforts have been devoted to developing high-order compact schemes,
which utilize only the grid nodes directly adjacent to the central node. In (Noye & Tan, 1989),
Noye and Tan derived a class of high-order implicit schemes for solving the one-dimensional
unsteady convection-diffusion equations. This method is very stable and accurate (third-order
in space and second-order in time). In (Gupta et al., 1984), a fourth-order finite difference
scheme for a steady convection-diffusion equation with variable coefficients was proposed.
The scheme is defined on a single square cell of size 2∆x over a nine-point stencil. In
(Rigal, 1994), Rigal provided an extensive analysis of the properties of a class of two- and
three-level second-order difference schemes which have been proposed in (Rigal, 1989; 1990).
In (Spotz & Carey, 2001), the two-dimensional HOC (High Order Compact) scheme proposed
in (Gupta et al., 1984) was extended to solve unsteady one-dimensional convection-diffusion
equations with variable coefficients and two-dimensional diffusion equations. This method
was further extended by Kalita et al. in (Kalita et al., 2002) to a class of HOC schemes
with weighted time discretization, and successfully used to solve unsteady two-dimensional
convection-diffusion equations. In (Karaa & Zhang, 2004), Karaa and Zhang proposed a novel
high-order alternating direction implicit method, based on the technique in (Zhang et al.,
2002), for solving unsteady two-dimensional convection-diffusion problems. This new
method is second-order in time and fourth-order in space, and is computationally efficient.
In (Tian & Dai, 2007), Tian and Dai proposed a class of high-order compact exponential finite
difference methods for solving one- and two-dimensional steady-state convection-diffusion
problems. This method is nonoscillatory, fourth-order in space, and easy to implement. Some
more recent high-order ADI methods for unsteady convection-diffusion equations can be
found in (Tian & Ge, 2007; You, 2006).
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For simplicity, we will use the following one-dimensional equation to describe the new
method developed in this chapter:

ut = auxx + c(x)ux + f (u), (1)

0 < x < 1, 0 < t ≤ T,

u(0, t) = g1(t), u(1, t) = g2(t),

u(x, 0) = h(x),

where a is a constant. Extensions to more complicated equations in one-dimension(for
example when a is not a constant) are straightforward; and extensions to higher-dimensional
equations will be briefly discussed in Section 6.
The existence of the convection term in Eq. (1) creates several difficulties when the
equation is solved numerically using the finite difference schemes. It is well-known
(Hundsdorfer & Verwer, 2003; Morton, 1996) that the convection term needs to be discretized
using proper upwind finite difference schemes to avoid oscillations in convection dominated
problems. If the sign of c(x) changes over the solution domain, the direction of the upwind
scheme must also be changed accordingly. The order of accuracy of the upwind schemes is
usually lower than the central difference schemes on the same finite difference stencil.
In addition, the convection term in Eq. (1) also makes it more difficult to use the fourth-order
Padé approximations. For reaction-diffusion equations (c(x) = 0), the Padé approximation
can be used to achieve fourth-order accuracy on a 3-point stencil typically used for the
standard second-order algorithms(Gu et al., 2003):

un+1
i − un

i

∆t
= a

δ2un+1
i

∆x2(1 + δ2

12 )
+ f (un+1

i ), (2)

where i = 0, 1, · · · , M, and n = 0, 1, · · · , N are indices for spatial and temporal grid points,
respectively, un

i is the numerical approximation to the exact solution u(xi, tn), and the central

difference operator δ2 is defined as δ2un
i = un

i−1 − 2un
i + un

i+1. Applying the operator (1 + δ2

12 )
to both sides of Eq. (2), we have

(1 +
δ2

12
)

un+1
i − un

i

∆t
= a

δ2un+1
i

∆x2
+ (1 +

δ2

12
) f (un+1

i ). (3)

Eq. (3) is fourth-order accurate in space but contains only the second-order central difference
operator δ2 that requires only a 3-point stencil. This approach, however, does not work
when the convection term is present in the equation. This is because the fourth-order Padé
approximation for Eq. (1) leads to the following equation

un+1
i − un

i

∆t
= a

δ2un+1
i

∆x2(1 + δ2

12 )
+ ci

δun+1
i

2∆x(1 + δ2

6 )
+ f (un+1

i ),

where the central difference operator δ is defined as δun
i = un

i+1 − un
i−1. This equation cannot

be simplified to an equation that is defined on a 3-point stencil in the same way as Eq. (2) is
reduced to Eq. (3).
The new method discussed in this chapter eliminates the convection term ux from Eq. (1) and
solves v = ux directly along with u. This makes it possible to use central finite difference
schemes and higher-order Padé approximations for accurate and efficient numerical solutions
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A Fourth-Order Compact Finite Difference Scheme for Solving Unsteady Convection-Diffusion Equations 3

of convection-diffusion equations. It is unconditionally stable, and is particularly suitable
for problems that require the solution of both u and ux. For example, when solving the
Black-Scholes option pricing model(Seydel, 2002)

∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0, (4)

both the solution V and its derivative VS are desired. The solution V is the price of an option
and its derivative VS is called the hedge delta that represents the sensitivity of the option value
to the change of the underlining stock price.
The rest of this chapter is organized as follows: The description of the new method is given
in the next section. Proof of unconditional stability of the new method is given in Section
3. Computational complexity of this new method is analyzed and compared with upwind
and standard central finite difference schemes in Section 4. Several numerical examples are
presented in Section 5, followed by conclusions in Section 6.

2. The new method

In this section, we will first outline the new algorithm that eliminates the convection term in a
convection-diffusion equation to facilitate the use of central finite difference schemes and then
discuss how the initial and boundary conditions are handled using the new algorithm.

2.1 Description of the new method

Setting v = ux in Eq. (1), we have

ut = auxx + c(x)v + f (u) (5)

Differentiating both sides of Eq. (1) with respect to x leads to

(ux)t = a(uxx)x + cx(x)ux + c(x)(ux)x + fu(u)ux (6)

which, considering v = ux, can be written as

vt = c(x)uxx + avxx + cx(x)v + fu(u)v (7)

Eq. (5) and (7) now form a system of equations for u and v. They only involve diffusion
term uxx and vxx, which can be discretized by the standard central finite difference schemes.
If the 3-point second-order central difference scheme is used, the discretized equations will
form a block tri-diagonal algebraic equation system with 2 × 2 blocks. For nonlinear f (u),
the Newton’s method or its variations can be used to solve the nonlinear system of algebraic
equations.
If the fourth-order Padé approximation is used for Eqs. (5) and (7), we have

un+1
i − un

i

∆t
= a

δ2un+1
i

∆x2(1 + δ2

12 )
+ civi + f (un+1

i ), (8)

vn+1
i − vn

i

∆t
= ci
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∆x2(1 + δ2
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i . (9)
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Applying the operator (1 + δ2

12 ) to both sides of these two equations, we obtain

(1 +
δ2

12
)
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i − un

i

∆t
= a

δ2un+1
i

∆x2
+ (1 +

δ2

12
)[civi + f (un+1
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12
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δ2un+1
i

∆x2
+ a

δ2vn+1
i

∆x2
(11)

+(1 +
δ2

12
)[(cx)i + fu(u

n+1
i )]vn+1

i .

Eqs. (10) and (11) are fourth-order accurate in space but only contains the second-order central
difference operator δ2 that is defined on a 3-point stencil. As a result, the discretized equations
form a system of block tri-diagonal algebraic equations.

2.2 Initial and boundary conditions

The initial condition for v can be obtained by differentiating h(x), the initial condition fro u
given in Eq. (1) with respect to x, i.e.

v(x, 0) =
dh(x)

dx
.

The boundary conditions for v, or for Eq. (7), are less straight forward. In the following, we
discuss three different ways to generate boundary conditions for v at the spatial grid point
i = 0, assuming Dirichlet boundary conditions are given for u. The boundary conditions for v
at the spatial grid point i = M and other scenarios can be dealt with in similar ways.
Standard finite difference approximation: Since v = ux, we have

v0 =
u1 − u0

∆x
, (12)

which provides an equation to complement the equation obtained by discretizing Eq. (7) at
i = 1. This approximation is first-order accurate in space. If necessary, higher-order one-sided
finite difference schemes can be used to approximate v = ux.
Padé approximation: We can use the fourth-order Padé approximation at i = 1 for v = ux

v1 =
δu1

2∆x(1 + δ2

6 )
=

u2 − u0

2∆x(1 + δ2

6 )
. (13)

Applying (1 + δ2

6 ) to both sides of Eq. (13), we have

(1 +
δ2

6
)v1 =

u2 − u0

2∆x
, (14)

or
1

6
v0 +

2

3
v1 +

1

6
v2 =

u2 − u0

2∆x
. (15)

Solving v0 from Eq. (15), we obtain the boundary condition

v0 =
3(u2 − u0)

∆x
− 4v1 − v2. (16)
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Direct integration of Eq. (1): This approach is particularly convenient for special cases of
Eq. (1). For example, when dealing with steady state equation with a constant convection
coefficient and constant f (u), we have

auxx + cux + d = 0, (17)

where a, c and d are constants. Integrating this equation from x0 to x1, we have

aux|x1
x0
+ cu|x1

x0
+ d(x1 − x0) = 0, (18)

or
av1 − av0 + cu1 − cu0 + d∆x = 0. (19)

Solving v0 from Eq. (19), we obtain the boundary condition

v0 =
1

a
(av1 + cu1 − cu0 + d∆x). (20)

This boundary condition has no truncation error since the integrations are carried out exactly.
For more general cases when some of the terms in Eq. (1) cannot be integrated exactly, various
numerical integration schemes, such as the second-order Trapezoidal scheme, can be used to
generate boundary condition for v in a similar way.

3. Stability analysis

Stability is critical to numerical methods used to solve time-dependent systems. In this
section, we conduct Von Neumann stability analysis for the new method combined with
the standard second-order central difference scheme. The following one-dimensional linear
convection-diffusion equation is used in the analysis

ut = uxx + cux (21)

The new method combined with the second-order central difference for solving Eq. (21) is

un+1
i − un

i

∆t
=

1

∆x2
δ2un+1

i + cvn+1
i , (22)

vn+1
i − vn

i

∆t
=

c

∆x2
δ2un+1

i +
δ2

∆x2
vn+1

i . (23)

Taking the discrete Fourier transform of the above equations, we have

M

[

ûn+1

v̂n+1

]

= R

[

ûn

v̂n

]

. (24)

Thus
[

ûn+1

v̂n+1

]

= M−1R

[

ûn

v̂n

]

, (25)

where

M =

[

1 + 2αsin2( θ
2 ) −β

2γsin2( θ
2 ) 1 + 2αsin2( θ

2 )

]

,

85A Fourth-Order Compact Finite Difference Scheme 
for Solving Unsteady Convection-Diffusion Equations

www.intechopen.com



6 Will-be-set-by-IN-TECH

and

R =

[

1 0
0 1

]

,

with α = ∆t
∆x2 , β = c∆t, and γ = c∆t

∆x2 .

Here M−1R is the amplification matrix at each time-step. In order for the numerical algorithm
to be stable, the modulus of the eigenvalues of M−1R must be less than or equal to unity for
all possible values of θ. For the 2 × 2 matrix, it is easy to see that it has two conjugate complex
eigenvalues. If the modulus of the two eigenvalues is less than or equal to 1, then the method
is unconditionally stable.
The eigenvalues of M−1R can be calculated as

ω =
1 + 2αsin2( θ

2 )± i(c
√

2α∆t sin( θ
2 ))

1 + 4αsin2( θ
2 ) + 4α2sin4( θ

2 ) + 2c2∆tαsin2( θ
2 )

,

thus we have

|ω|2 =
1

1 + 4αsin2( θ
2 ) + 4α2sin4( θ

2 ) + 2c2∆tαsin2( θ
2 ).

Obviously, |ω|2 ≤ 1 since 0 ≤ sin2( θ
2 ) ≤ 1 and α > 0.

4. Computational complexity

In this section an estimation of computational cost of the new method is obtained, and
computation times for three methods (upwind, standard central finite difference or standard
cfd, and fourth-order new method) are compared using the following model equation

ux − uxx = 0, u(0) = 0, u(1) = 1, (26)

with exact solution u(x) = ex−1
e−1 .

If the above model equation is discretized over n subintervals with equal size, and the
numerical solution at the i-th grid point is denoted as ui, the solutions can be obtained
by solving the linear system AU = b. For both the upwind and standard central finite
difference schemes, A is an n × n tridiagonal matrix and U = (u1, u2, · · · , un). For the
fourth-order new method the matrix A is a 2n × 2n banded matrix with a bandwidth of 7,
and U = (u1, v1, u2, v2, · · · , un, vn) contains the numerical solutions for both u and v, with
v = ux.
If an efficient algorithm is used to solve the tridiagonal linear system resulted from
upwind and standard central finite difference schemes,a total of 2n − 1 divisions, 3(n − 1)
multiplications, and 3(n − 1) subtractions are needed. The computational complexity is
2(n − 1) + 1 + 3(n − 1) + 3(n − 1) = 8n − 7 = 8n + O(1) flops.
If the Gaussian elimination algorithm is used to solve the linear system resulted from the
fourth-order new method, a total of 18n − 15 divisions, 24n − 22 multiplications, and 24n − 22
subtractions are needed. The computational complexity is 66n − 59 = 66n + O(1) flops.
Table 1 clearly shows that to achieve the same accuracy the fourth-order new method is much
faster than both upwind and the standard second-order central finite difference schemes. For
instance, to obtain an error less than 1.0E-05, the upwind scheme needs 68.054 seconds, and
the standard second-order central finite difference scheme needs 0.0012 seconds, while the
fourth-order new method needs only 0.0010 seconds to obtain an error of 7.4E-07. For the
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Upwind Stand-cfd 4th-order new

Error Time Error Time Error Time
9.7E-03 .0016 4.1E-04 .0011 7.4E-07 .0010

9.9E-04 .0098 9.8E-06 .0012 9.2E-09 .0012

1.0E-04 .5155 1.0E-06 .0016 1.8E-10 .0014
1.0E-05 68.05 1.0E-08 .0101 4.7E-12 .0016

1.0E-08 ∞ 1.0E-10 .4870 2.9E-13 .0022
1.0E-09 ∞ 1.5E-11 7.059 4.1E-14 .0035

Table 1. Computational cost vs accuracy for different algorithms

first-order upwind scheme, it is almost impossible to obtain an error less than 1.0E − 08 since
a grid size of h = 1.0E − 08 is needed.
Note that the symbol ∞ in Table 1 does not really represent infinity. It just represents an
excessively large number. The computation time for each test case is the average of five runs.
The unit for computation time is second.

5. Numerical results

Several numerical examples are presented here to compare the new method with the standard
finite difference algorithms.
Example 1: In this example, we compare the accuracy of four different algorithms using
the same 3-point finite difference stencil. The following steady state convection-diffusion
equation is used in the example:

− auxx + cux = 0, u(0) = 0, u(1) = 1, (27)

where a and c are constants. The exact solution is given as

u(x) =
e

c
a x − 1

e
c
a − 1

. (28)

∆x Upwind 2nd-stand 2nd-new 4th-new

1/10 1.32E-01 3.45E-02 1.41E-02 7.41E-04
1/20 7.64E-02 7.90E-03 3.70E-03 4.74E-05

1/40 4.17E-02 1.90E-03 9.52E-04 2.98E-06

1/80 2.18E-02 4.79E-04 2.39E-04 1.87E-07
1/160 1.12E-02 1.20E-04 5.98E-05 1.17E-08

Table 2. Errors between the exact solution and the numerical solution of Eq.(27) with a = 0.1
and c = 1.

Table 2. shows the error ‖ue − uc‖∞ between the exact solution ue and the numerical solution
uc calculated using the following four finite difference schemes with a = 0.1 and c = 1:

1. Upwind: First-order upwind difference for the convection term and second-order central
finite difference for the diffusion term.

2. 2nd-stand: Second-order central difference for both the diffusion and convection terms.

3. 2nd-new: New method that uses second-order central difference for Eqs. (5) and (7).
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4. 4th-new: New method that uses fourth-order Padé approximation for Eqs. (5) and (7).

All results are obtained using a 3-point stencil. It is clear from Table 2 that the accuracies
of different schemes are as expected: when the grid size ∆x is reduced by 1

2 , the errors

are reduced by approximately 1
2 , ( 1

2 )
2 and ( 1

2 )
4 for the 1st-, 2nd- and 4th-order algorithms,

respectively.

Fig. 1. Solution curves corresponding to a = 0.1, 0.05, 0.001 and c = 1 using the 2nd-stand
algorithm with ∆x = 0.001.

Although both the 2nd-stand and 2nd-new algorithms produced comparable results for the
case of a = 0.1 and c = 1 shown in Table 2, the 2nd-new algorithm is much more robust when
the boundary layer near x = 1 becomes steeper as a decreases. Fig. 1 and Fig. 2 show the
solutions calculated using the 2nd-stand and 2nd-new central difference schemes, respectively.
The three curves in each figure correspond to the diffusion coefficient a = 0.1, 0.05, and 0.001,
respectively. It is clear from Fig. 1 that the solution calculated by the standard second-order
central difference scheme becomes highly oscillatory when a reaches 0.001, while the solution
calculated by the new second-order central difference scheme shown in Fig. 2 describes the
steep boundary layer near x = 1 very well.
Example 2: In this example, we compare the robustness of three different algorithms. The
governing equation for this example is

− auxx + (x − 1

2
)ux = 0, u(0) = 0, u(1) = 1, (29)

where a is a constant. The convection coefficient changes sign in the middle of the domain,
which makes this turning point problem difficult (Morton, 1996).
Fig. 3 shows the solution curves obtained by the new method using the second-order central
difference algorithm. The four solution curves in the figure correspond to diffusion coefficient
a = 1.0, 0.1, 0.01, 0.001, respectively, all calculated with ∆x = 0.001. It is clear that as a
decreases, the boundary layers at x = 0 and x = 1 become steeper. Also note that all four
solution curves pass the same point x = 0.5, where the convection coefficient is zero.
Fig. 4 shows the solution curves obtained by the standard finite difference schemes on
the same grid with ∆x = 0.001. The diffusion term is discretized by the second-order
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Fig. 2. Solution curves corresponding to a = 0.1, 0.05, 0.001 and c = 1 calculated using the
2nd−new algorithm with ∆x = 0.01.

Fig. 3. Solution curves corresponding to a = 1.0, 0.1, 0.01 and 0.001 calculated by the new
method using central difference scheme

central difference scheme and the convection term is discretized by the first-order upwind
scheme assuming the convection coefficient is positive. The change of sign of the convection
coefficient is not taken into consideration. The solution curves correspond to a = 1.0 and 0.1
look reasonable. But the solution curve correspond to a = 0.01 is not accurate. It does not
cross the solution curves corresponding to a = 1.0 and 0.1 at x = 0.5. The solution curve
corresponds to a = 0.001 does not resemble the correct solution at all. This is not surprising
since the convection coefficient changes sign but the upwind scheme used in the calculation
does not take this into consideration.
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Fig. 4. Solution curves corresponding to a = 1.0, 0.1, 0.01 and 0.001 calculated by the upwind
scheme without considering the change of sign of the convection coefficient.

Fig. 5. Solution curves corresponding to a = 1.0, 0.1, 0.01 and 0.001 calculated by the upwind
scheme taking into consideration the sign change of the convection coefficient.

Fig. 5 shows the solution curves obtained by the standard finite difference algorithm. The
diffusion term is discretized by the second-order central difference scheme and the convection
term is discretized by the first-order upwind scheme taking into consideration the sign change
of the convection coefficient. We can see the solution curves correspond to a = 1.0, 0.1, and
0.01 are very similar to those in Fig. 3. All three solution curves cross each other at the same
point x = 0.5. However, the solution curve corresponding to a = 0.001 does not resemble the
true solution at all. This is somewhat surprising but probably can be attributed to the difficulty
caused by the turning point at x = 0.5 where c(x) = 0. The situation does not improve even
when the grid spacing ∆x is further reduced.
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Example 3: In this example we solve a nonlinear Black-Scholes equation, which is widely
used to model option price when transaction cost is considered. It is well known that in the
area of financial mathematics, the calculations of both the solution and its first derivative are
required. The derivative is the so-called hedge delta, which actually represents the number of
shares (of stock) that one should hold or sale, in order to maximize the profit. The nonlinear
Black-Scholes equation solved in this chapter is given below. More details about this model
can be found in (Barles & Soner, 1998).

ut = (1 + Φ[e(Kt+x)a2E(uxx + ux)])(uxx + ux)− Kux,

with initial and boundary conditions

u(x, 0) = max(1 − e−x, 0), u(−∞, t) = 0, u(∞, t) = 1,

where a is transaction cost rate, E is the strike price, K =
2ρ

σ2
0

, ρ is the risk-free interest rate, σ0

is the volatility of the stock, and Φ is a function defined as the solution to the following ODE:

Φ
′
(s) =

Φ(s) + 1

2
√

sΦ(s)− s
, Φ(0) = 0, (30)

Fig. 6. Solution curves for option price corresponding to various transaction cost
rates(a = 0.0, 0.01, 0.02) and the pay-off curve.

In the numerical solution process, the infinite domain is approximated by a finite interval
of sufficient length. In financial industry, one of the widely used methods for calculating
hedge delta is to first solve the Black-Scholes equation to obtain numerical solution of u, and
then apply finite difference schemes to the numerical solution to obtain approximations to ux.
With the new method discussed in this chapter, both the solution u and the hedge delta ux are
calculated simultaneously. Fig. 6 and Fig. 7 show the option price and the hedge delta for
various transaction cost rates, respectively.
Example 4: In this example we solve a time dependent nonlinear equation, the Burgers’
Equation:

ut + uux = auxx, u(0, t) = 0, u(1, t) = 1, (31)
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Fig. 7. Solution curves of the hedge delta ∂V
∂S corresponding to various transaction cost

rate(a = 0.0, 0.01, 0.02).

where a is a constant. We first solve the equation with the initial condition u(x, 0) = x(1 − x),
for which the analytic solution is not available. Figs. 8, 9, and 10 show the solution curves for
various a values obtained by the standard central difference scheme (for both the convection
and diffusion terms), the upwind (for convection)-central difference (for diffusion) scheme,
and the new method using second-order central difference, respectively. It is clear that
as a decreases, for instance, a = 0.001 , the standard central difference scheme produces
oscillations in Fig. 8.

Fig. 8. Solution curves corresponding to a = 0.1, 0.01, 0.001, 0.0001 using the standard central
difference scheme with ∆x = 0.01.

The new method, on the other hand, produces solutions that are oscillation free as shown in
Fig. 9. These solutions are similar to those produced by the upwind-central difference scheme
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shown in Fig. 10, and agree with the results reported in other works, such as (Hassanien et al.,
2005).

Fig. 9. Solution curves corresponding to a = 0.1, 0.01, 0.001, 0.0001 using the upwind scheme
with ∆x = 0.01.

Fig. 10. Solution curves corresponding to a = 0.1, 0.01, 0.001, 0.0001 using the second-order
new algorithm with ∆x = 0.01.

Next we use the initial condition

u(x, 0) =
2aπ sin(πx)

κ + cos(πx)
, (32)

with κ > 1, for which the exact solution to Eq. (31) is known as

u(x, t) =
2aπe−π2 at sin(πx)

κ + e−π2 at cos(πx)
. (33)
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We apply both the upwind-central scheme and the second-order new method to this example
to compare the accuracy of the two algorithms. Table 3 shows the error ‖ue − uc‖∞ between
the exact solution ue and the numerical solution uc calculated using the two algorithms with
κ = 1.2, for a = 0.001 and a = 0.0001. All results are obtained using a 3-point stencil. Since the
main focus of the study is to compare spatial accuracy of the two algorithms, the first-order
explicit time integration is used for simplicity with ∆t = 0.0001 to ensure stability. It is clear
from Table 3 that the accuracies of the two schemes are as expected: When the grid size ∆x is
reduced by 1

2 , the errors are reduced by approximately 1
2 and ( 1

2 )
2 for the upwind-central and

the 2nd−new schemes, respectively.

∆x upwind 2nd-new upwind 2nd-new
a = 0.001 a = 0.001 a = 0.0001 a = 0.0001

1/20 2.69E-04 1.48E-04 3.47E-06 2.31E-06

1/40 1.67E-04 3.87E-05 2.20E-06 6.11E-07

1/80 9.40E-05 9.79E-06 1.23E-06 1.67E-07
1/160 4.98E-05 2.45E-06 6.46E-07 4.13E-08

Table 3. Errors between the exact solution and the numerical solution of Eq. (31) with
a = 0.001 and a = 0.0001.

The numerical examples presented in this chapter show that the standard central difference
scheme is second-order accurate on a 3-point stencil but produces oscillatory solutions for
convection dominated problems. The upwind scheme is more robust but is only first-order
accurate on a 3-point stencil. The new method discussed in this chapter appears to combine
the advantages of accuracy of the standard central difference algorithm with the robustness
of the upwind scheme for convection dominated equations.

6. Conclusions

The method discussed in this chapter eliminates the convection term in Eq. (1) and makes it
feasible to use central difference schemes to solve convection-diffusion equations accurately.
The new method, combined with the central difference schemes, can achieve better accuracy
than the upwind schemes on the same finite difference stencil, and is shown in the examples
presented here to be as robust as the upwind schemes for convection dominated problems. It
can also be easily combined with the Padé approximation to achieve fourth-order accuracy in
space on a 3-point finite difference stencil.
The new method does incur a modest increase in computational complexity. Instead of just
solving Eq. (1), the new method requires solving Eqs. (5) and (7). With a 3-point stencil, the
standard upwind-central difference schemes will generate a system of tri-diagonal algebraic
equations, while the new method discussed in this chapter will lead to a system of block
tri-diagonal algebraic equations with 2 × 2 blocks. This increased complexity, however, can
be compensated by the use of fewer grid points with the increased order of accuracy of the
new method. Furthermore, for problems that require calculations of both the solutions and
their derivatives, the new method eliminates the need to calculate the derivatives after solving
Eq. (1).
The discussions of the new method in this chapter are based on one-dimensional
problems. For higher-dimensional problems, a straightforward application of this method
will lead to systems of four equations for two-dimensional problems and seven equations
for three-dimensional problems. For better computational efficiency, operator splitting
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(Gustafsson et al., 1995) should be used to first decompose the original equation into a series
of one-dimensional problems. The new method discussed in this chapter can then be applied
to these one-dimensional problems to calculate numerical solutions efficiently. Details will be
presented in future papers.
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