
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



2 

Study of Some Key Issues for Applying LES  
to Real Engineering Problems 

Xiaolong Yang 
Hunan University 

China 

1. Introduction  

Most of nature and industry flows are turbulence. There are three kinds of numerical 

simulation methods for turbulent flows (Lesieur 1990; Pope 2000; Sagaut 2000, 2006): direct 

numerical simulation (DNS), Reynolds-averaged Navier-Stokes equations (RANS) and large 

eddy simulation (LES). DNS is a straightforward way to simulate turbulent flows. Full 

Navier-Stokes equations are discretized and solved numerically without any model, 

empirical parameter or approximation. Theoretically speaking, results of DNS exactly reflect 

the real flow and the whole range of turbulence scales are computed. With DNS, people can 

compute and visualize any quantity of interest, including some that are too difficult or 

impossible to be measured by experiments. But as we all know the computation cost is very 

high. For high Reynolds number flow, even modern computer technology can not satisfy the 

computation requirement.  

In RANS, the flow quantities are decomposed into two parts: the average or mean term and 

the fluctuating term by applying Reynolds averaging. The effect of the fluctuating quantities 

on the mean flow quantities is described by the so called Reynolds stress tensor, which is 

must be modelled in terms of the mean velocities. Typical models can be grouped loosely 

into three categories: algebraic models, one-equation models and two-equation models. 

RANS is simple and robust. It is widely used in engineering problem. The general limitation 

of RANS is the fact that the model must represent a very wide range of scales. While the 

small scales tend to be universal, and depend on viscosity, the larger scales depend largely 

on flow condition and boundaries. So there is no one universal model for all flows. For 

different flows, the model must be modified to obtain good results. Another issue is that 

usually a time averaging is adopted in RANS. So RANS has difficult to handle unsteady 

flows. 
In LES, a filter is applied to separate the large scales from small scales. Then only the large, 

energy carrying scales (or called resolved scales) of turbulence are computed exactly by 

solving the governing equations. While the small, fluctuating scales are modelled, which is 

also called subgrid scales (SGS). Compared to RANS, LES has several advantages: 1) LES 

can capture the large scales directly which are the main energy container of turbulence and 

response for the momentum and energy transfer. 2) The dissipation of turbulence energy is 

believed to be done by small scales. Since small scales are thought to be homogenous, 
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universal, and less affected by flow and boundary conditions, the SGS model can be simple 

and requires fewer ad hoc parameters when it is applied to different flows. This is the big 

advantage of LES over RANS. That also is the reason why simple Smagrinsky model can 

obtain reasonable results in different flows. 3) LES can solve the unsteady flow directly. In 

additional, LES requires much less computation resource when compared to DNS because 

only large scales are computed.  

Although LES has some advantages, for a long time RANS methods were used almost 
exclusively for the analysis of turbulent flows for practical engineering problems. LES has 
largely been used to study simple turbulent flows(Mahesh et al 2004; Georgiadis 2008; 
Bouffanais 2010). The primary reason is the computational cost. Until recently, the field of 
LES is attracting more and more people’s attention. Not only its own scientific researcher 
who is applying LES to study the turbulence, but more industrial partners and engineers 
have started implementing LES to study real complex flows. There are two main reasons: 1) 
the urgent requirements from industry. the characteristics of lots nature or real engineering 
flows are determined by unsteady large scale motion, such as the external flow around 
ground vehicle, high attack angle airfoil flow etc. RANS models usually have difficult to 
handle such flows. But in order to improve the performance of airplane, to reduce the drag 
and noise around vehicle, we have to investigate such flow in depth. (2) rapid increases in 
computing power, memory, and storage, plus high efficient and high order computation 
algorithm. Indeed in the past few years applying LES to real engineering flows has becomes 
a research hot spot, such as LES of airfoil (Mary&Sagaut 2001; Dahlstrom&Davidson 2003; 
Mellen et al 2003), ground vehicle (McCallen  et al. 2006; Kitoh  et al. 2009; 
Krajnovic&Davidson 2005; Rodi 2006; Tsubokura  et al. 2009; Minguez  et al. 2008), 
combustion and reacting flows (Moin 2002), weather forecasting etc. But the application of 
LES is still limited. There are some key issues needed to solved before LES can be 
successfully applied to real engineering turbulence(Georgiadis 2008; Bouffanais 2010), such 
as the suitable SGS model, the choice of filter, the wall model, the transition model, the effect 
of numerical errors and the interactions between these issues. However as Bouffanais 
(Bouffanais 2010) pointed out that despite the numerous challenges still facing LES, one can 
fairly admit that LES has become one of the most promising and successful methodology 
available to simulate industrial turbulent flows. 
In this chapter, three key issues of LES are discussed briefly: the SGS model, the filter and the 
numerical errors. First, the SGS model is the most important item in LES and has been 
extensive studied. There are thousand of different models which have been proposed during 
the past. But most of them are limited to simple geometry and have difficult to be applied to 
engineering problems. Right now the most widely used SGS models in complicated turbulence 
are still the simple Smagrinsky model (Smagorinsky 1963) and the so called the monotone 
integrated LES (MILES) model. So a simple, robust, efficient and can handling complicated 
geometry SGS model is what we need. The second problem is the choice of filter. In simple 
geometry, usually a smooth filter is adopted which is defined continuous in the whole domain. 
But in complicated geometry, only local discrete filter can be used. Obvious the order of 
filtering will be decreased. Its effect on SGS model and final simulation result need to be 
investigated. The third is the numerical errors of different discretization schemes. The effect of 
numerical errors on LES is a delicate issue and has been ignored for a long time because in 
simple geometry very high order can be achieved by pseudo-spectral mothod or other 
algorithm. But for complex problem, usually only second order can be achieved. The 
interaction between numerical scheme and SGS model is complicated. A first extensive 
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theoretical analysis of numerical errors in LES has been proposed by Ghosal (Ghosal 1996) and 
later Chow and Moin (Chow and Moin 2003). They believed that 2nd order discretization 
scheme is not suitable for LES because it introduces errors larger than the SGS term. High 
order schemes are necessary. By applying the eddy-damped quasi-normal Markovian 
(EDQNM) theory to LES, a so called dynamic error analysis has been performed by Park and 
Mahesh (Park and Mahesh 2007) Their results show that low order scheme is acceptable for 
LES. The study of Yang and Fu (Yang and Fu 2008) show that there are complicated 
interactions between SGS model and numerical errors. A good SGS model can not only 
represent the effect of small scales to large scales, but also can dump the unphysical energy 
introduced by numerical scheme. So by careful designed SGS model, low order discretization 
scheme can also obtain reasonable result. Fauconnier et al (Fauconnier et al 2009) also point out 
that low-order methods may have advantages over high order scheme because the dissipation 
error of SGS model can cancel part of the numerical errors resulting in a reduction of the total 
errors on some quantities. Of course the disadvantage is that the accuracy of small scales is not 
controlled. So the best is high order scheme plus high accurate SGS model. 

2. Governing equations and numerical methods 

In Large Eddy Simulation (LES) a filtering operation is applied to separate the large scales 

from the small scales (Leonard 1974). In general, a filtered variable can be written as 

 ( ) ( ') ( , '; ) '
D

f x f x G x x dx   (2.1) 

where G is the filter kernel and D is the filtering domain. The filter is characterized by a filter 

width  . The corresponding wave number ck 


 is called as the filter cut-off wave 

number.  
For our study, the fluid is assumed to be incompressible; the viscosity is constant; there are 

no body forces; and the flow is initially homogenous, isotropic, i.e. there are no mean 

velocity gradients. So the incompressible Navier-Stokes equations after applying a low-pass 

filter can be written as  

 1i j j iji i

j i j j i j

u u uu uP

t x x x x x x






              
          

i

i

u

x




. (2.2) 

Above equations are also called the incompressible LES equations. The u, P,  ,  are the 

velocity, pressure, density and kinematic viscosity, respectively. ij  is the subgrid stress 

(SGS) tensor 

 ij i j i ju u u u   . (2.3) 

It represents the effect of the unresolved (small) scales. It is the only unclosed term in the 

above LES equations (2.2) and should be parameterized in terms of the resolved (large) 

scales. 

In order to isolate other effects, the simplest homogenous, isotropic turbulence is chose as 

our simulation case. The advantage is that we can obtain the statistical quantities of this 

turbulence easily in spectral space, such s energy spectrum, total kinetic energy etc. So in 
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such case it is convenience to write the governing equations in spectral space. Note the 

continuity equation can be combined with the pressure term through the projecting 

operation (Lesieur 1990). So the governing equation in spectral space can be simplified as 

 2 ˆ ( , ) ( ) ( )i im j j m
k u t P ik u u

t
     

k k k . (2.4) 

where ' '  means the Fourier transform, the tensor 2( )im im i mP k k k k  is called the 

projection operator, which ensures the continuity equation automatically satisfied. And the 

k  k . 

For spatial discretization, a computation method similar to Rogallo’s (Rogallo 1981) is 
adapted here. For the viscous term in the left hand side of equation (2.4), Rogallo proposed 
an integrated factor method which can solve it analytically.  

 
2 2

ˆ ( , ) ( ) ( )k t k t
i im me u t e P N

t
       

k k k . (2.5) 

So the only term needed to be discretized is the nonlinear term in the right hand side, 

( ) ( )m j j m
N ik u uk k , which usually is solved by high order spectral scheme. But for 

engineering problem, spectral method is not available at most cases. Finite difference 
scheme or finite volume scheme is used instead. Among them, Padé compact scheme is 
widely adapted due to its flexibility in handling complex geometry and to obtaining high 
order. For one dimensional derivative, the Padé scheme proposed by Lele (Lele 1992) can be 
expressed as  

 ' ' ' 1 1 2 2
1 1

2 4
i i i i

i i i

f f f f
f f f a b     
 

 
   

 
. (2.6) 

Different coefficient defines different order of compact scheme. The highest order is 6th for 3 

point stencil. The parameters of Lele (Lele 1992) are shown in Table 2.1. 
 

Scheme  a  b  Order 

Padé2 0 1 0 2 

Padé4 1/4 3/2 0 4 

Padé6 1/3 14/9 1/9 6 

Table 2.1. Parameters for Padé compact scheme. 

For the temporal advancement of the nonlinear term, an explicit second-order Runge-Kutta 

scheme, also known as predictor-corrector scheme, is used. It’s simple and efficient. Briefly, 

equation (2.5) with only nonlinear term on the right hand side can be seen as the following 

form 

 u N
t





 (2.7) 

where N represents the nonlinear term. By applying second-order R-K scheme to above 
equations, we get 
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N N
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 (2.9) 

where n and n+1 represent the different time steps, and * represent the middle step variable. 
Eq. (2.8) is also called the predictor step and Eq. (2.9) is called the corrector step. 

3. SGS model 

In LES, only the large, energy carrying scales of turbulence are computed exactly. Specify in 

LES equation (2.2), the large scales are the filtered velocities, iu , which are also called the 

resolved scales. The small ones, iu , (unresolved, or subgrid scales) have been removed from 

the equation and needed to be modelled, i.e. ij  in equation (2.2).  
The SGS model is the key issue in LES. Since only large scales are resolved in LES, the 
energy transfer from large scales to small scales is cut off. The energy will accumulate at the 
cut-off wave number and lead to the unphysical solution. So the main role of SGS model is 
to provide necessary small scales dissipation and thus remove the accumulated energy. 
There are many different approaches for the modelling of the SGS stress tensor. 
Traditionally they are divided into three main categories: eddy viscosity models, similarity 
models and mixed models. Discussion of standard LES models can be found in some review 
paper, such as Piomelli (Piomelli 1999), Mathew (Mathew 2010) etc. Below we only discuss 
the eddy viscosity model briefly. 
The eddy viscosity models assume: 

 2 1 3ij i j i j t ij ij kku u u u S         (3.1) 

which relate the SGS stresses to the large scale strain-rate tensor Sij , where Sij is 

 1

2

ji
ij

j i

uu
s

x x

 
  
   

 (3.2) 

and νt is the eddy viscosity. Like RANS, equation (3.1) was developed by analogizing to the 
molecular viscosity. So different eddy viscosity models are actually different methods to 
calculate the νt. 

The Smagorinsky model (Smagorinsky 1963) is perhaps the most successful SGS eddy 

viscosity models, which takes eddy viscosity proportional to the product of Δ2 and s ,  

  2
t sC s    (3.3) 

where Cs is called the Smagorinsky constant, Δ is the grid size and  1/2
2 ij ijs s s  is the 

magnitude of the strain-rate tensor. By choosing different Cs for various flows, Smagorinsky 
model has been used with considerable success. For isotropic decaying turbulence, the value 

of the Smagorinsky constant is taken to be around 0.18∼0.23 (Lilly (Lilly 1996)), but in shear 

flow or near boundaries, Cs must be decreased and values 0.06∼0.1 are preferred (Piomelli  et 
al. (Piomelli  et al.1988)). 
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Smagorinsky model can properly account for the global energy transfer. It is simple and 
robust, which make it the most widely used SGS model. But the modeled SGS quantities 
correlate poorly with the actual SGS quantities obtained from DNS. Moreover it is an 
absolutely dissipative model and tends to overestimate the SGS dissipation. It only allows 
one way energy flux, i.e. from large scales to small ones, and it fails to predict the inverse 
energy transfer from the subgrid scales to the resolved scales (backscatter) which is found in 
most flows. Many ad hoc corrections and variation of eddy viscosity models are proposed to 
solve the difficulties mentioned above. Among them the dynamic model of Germano  et al. 
(Germano  et al.1991) and its variations are the most attractive ones. The dynamic model 
calculates the eddy viscosity dynamically and obtains good results in different turbulence. 
But it still has some problems when applied to complex engineering flows. 

3.1 Velocity Estimation Model (VEM) 

To construct a reasonable and reliable SGS model, to properly predict the interactions 

between large scales and small scales is the key, which means we need to know more 

detailed information about the nonlinear interactions between large and small scales. 

Fortunately during the last several years there are many investigations in a variety of 

turbulent flows, including isotropic and channel flow, at low Reynolds numbers using direct 

numerical simulation databases and experimental measurements (Zhou 1993; Hartel  et al. 

1994; Domaradzki & Rogallo 1990). Their studies show that the large scales contain enough 

information. Many of the observed features of the exact SGS interactions can be inferred 

from the dynamics of the resolved scales alone. Thus it implies a possible way to improving 

SGS model, i.e. to estimate the small scales from large scales by using the observed 

properties of the nonlinear interactions. Based on that concept, Domaradzki et al 

(Domaradzki & Saiki 1997; Domaradzki et al 2002) develop the velocity estimation model in 

both spectral and physical space. Stolz and Adam also proposed similar model called 

deconvolution model (Stolz 1999). 

The velocity estimation model is based on two observations: first, the dynamics of small 

scales are strongly determined by the large, energy carrying eddies; second, the contribution 

of small scales to large scales are mostly contained within wavenumbers that are twice that 

of the cutoff wavenumber, kc. These two observations rely on the properties of nonlinear 

interactions in turbulent flows and have been elucidated by a large number of theoretical, 

numerical and experimental investigations (Zhou 1993; Domaradzki & Rogallo 1990; 

Domaradzki & Saiki 1997; Domaradzki et al 2002). Basically these studies showed that most 

of the subgrid scale transfer happens in the range of 0.5kc ~kc and is determined by scales in 

the range of kc ~ 2kc. This implies that only a limited range of wavenumbers needs to be 

considered. Especially in VEM the modes beyond 2kc are ignored. With a proper estimation 

of the velocity field the subgrid scale stress tensor could be determined directly from the 

resolved scales and provides enough dissipation for LES. 

The eddy viscosity models basically try to solve the imaginary t  by related to the large 

scale strain-rate tensor. If we know the full velocity field of the turbulence flow, the ij  can 

be calculated directly from the definition equation (2.3) and do not need any assumption. 
Since the velocity in LES is the filtered velocity, a simple way to recover the full velocity is 
defiltering, i.e., an inversion of the filtering operation (2.1). Such a procedure is also called 
deconvolution. But the defiltered velocity does not contain any small scales information. 
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Domaradzki et al (Domaradzki & Saiki 1997; Domaradzki et al 2002) proposed a method to 
estimate the small scales. This is the basic idea of the velocity estimation model. In order to 
describe the different velocities, we use u to present the full, unfiltered turbulence velocity; 

u  means the filtered velocity; and u’ is the small scale velocity. And the relation among 

them is  

 'u u u   (3.4) 

VEM contains two steps: First is the defiltering operation, i.e. try to recover the full velocity 

u from the filtered velocity u  

 1u G u , (3.5) 

which is inverse operation of (2.1). Bertero and Boccacci (Bertero & Boccacci 1998) give a 
detailed discussion about it. Since any filtering will loss part of original information, the 
defiltering can not recover the full velocity according to Riemann–Lebesgue theory. Only 
some very special filtering function and variables can return to its original state. Most 
results of defiltering can only be approximate. The velocity u in equation (3.5) actually only 

contains large scales information, so we denote it by 0u . If we using tophat filter and the 

filtering size is twice as the grid size, then the filtering operation can be expressed as  

 1 1i i iu au bu cu    , (3.6) 

and a, b, c are constants. Then the defiltering operation is  

 0 0 0
1 1i i iau bu cu u      . (3.7) 

By defiltering, the large scales 0u  is closed to the original u, but there is no small scales. If 

we approximate the u using 0u , i.e. let 0u u  . And then calculate the SGS tensor τ directly 

from the definition 0 0 0 0u u u u      . Through practice, it is found that if the Reynolds 

number is not too high, the result is good enough. But if the Re number is high, the error is 

somehow too large. The information of the small scales is needed. The second step of VEM 

is to estimate the small scales. For full developed turbulence, the small scales are thought to 

be homogeneous, so a simplified way to estimate small scales can be described as 

 ' 'u N . (3.8) 

where N’ is the growth rate of subgrid scales due to the nonlinear interactions among 

resolved scales and θ is the time scale related to the eddy turn-over time. The detailed 

description of the full process can be found in paper (Domaradzki & Saiki 1997; Domaradzki 

et al 2002). Thus the final velocity can be expressed as  

 0 'u u u u    . (3.9) 

Correspondingly, the SGS stress tensor is 

 uu u u      . (3.10) 

The energy spectral of full (DNS), filtered, defiltered and estimated velocity are shown in Fig. 3.1 
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VEM was implemented in both spectral and physical space. It was applied to different 
flows, such as homogenous tubulence, incompressible channel flow, Rayleigh-Bénard 
convection flow, and obtained quite good results. But the disadvantage of VEM is that the 
procedure it uses is quite complicated and need much more CPU time than Smagorinsky 
model.  
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Fig. 3.1. Sketch of energy spectral for full (DNS), filtered, defiltered and estimated velocity. 

3.2 Truncated Navier–Stokes (TNS) equations approach 

As we can see, the traditional eddy viscosity models use the filtered velocity to calculate τij, 

while the VEM tries to recover the full velocity from the filtered velocity and then use it to 

calculate τij. So one may think: if we can get the full velocity from the experiment data or 

DNS directly, can we just skip the filtering and defiltering steps? Based on that concept, 

Domaradzki et al (Domaradzki et al 2002; Domaradzki & Yang 2004) developed a new TNS 

approach from VEM model. TNS uses the full velocity. It actually solves the N-S equations 

directly instead of LES equations. So it does not have the SGS term. Due to limitation of grid, 

it is an under-resolved DNS run. According to the energy transfer theory, the energy will 

accumulate at high modes. A mechanism is needed to provide necessary dissipation to 

remove the accumulated energy, such as filtering /truncation. A similar model in engine 

application is the MILES model, which depends on numerical scheme to provide implicit 

dissipation. 

TNS model is still based on the same two observations of energy transfer as VEM. The large 
energy carrying eddies can determine the dynamics of the small scales; in return, the 
contribution of the small scales to the large scales are mostly contained within wavenumber 
range between the cutoff wavenumber, kc, and 2kc. Correspondingly, a scale decomposition 
is performed in TNS as shown in Fig. 3.2: a range of physical (large) scales up to the 
traditional LES wave number cutoff kc, and a range of modeled (SGS or estimated) scales 
between kc and 2kc. The nonlinear interaction between the low wavenumber modes k<kc  and 

www.intechopen.com



Study of Some Key Issues for  
Applying LES to Real Engineering Problems 

 

35 

the high wavenumber modes kc<k<2kc provides a natural dissipation mechanism for the 
large scales, which also automatically includes the effect of reversing energy (backscatter). 
The energy accumulated at the subgrid scales kc<k<2kc is removed by truncation (filtering) at 
prescribed time intervals. In the physical space, the explanation for TNS is also 

straightforward. In the traditional LES, the mesh size is LES ck  , denoted as a coarse 

mesh; while the TNS operates on a fine mesh with the size of 2 2TNS c LESk    . Instead 

of solving the LES equations on the coarse mesh, full Navier-Stokes equations are solved on 
the fine mesh with a corresponding filtering operation in physical space. It should be 
noticed that the filtering time interval plays a critical role in TNS. In order to avoid under-
dissipating or over-dissipating, appropriate interval must be carefully chosen (Domaradzki 
& Yang 2004). The suitable interval depends on the filter type, grid resolution and flow 
condition.  
 

 

Fig. 3.2. The sketch of TNS in spectral space. 

Compared to other LES models, TNS does not have the closure problem because it has no 
SGS term in the equation. It satisfies the Galilean transformation properties of the Navier-
Stokes equations. It is easy to implement with fewer empirical parameters and can be easily 
extended to other types of turbulence without too much modification. When the explicit 
filtering is used, the TNS model also shows its advantages over the other models. For 
instance, as mentioned by Lund (Lund 1997), adaptation of the second explicit filtering leads 
the SGS term actually to be 

 ij i j i ju u u u   . (3.11) 

This is not Galilean invariant in most cases. In TNS, this problem is naturally avoided since 
no such term exists. 
TNS was tested in several different turbulent flows. Here only the results of the simplest 
homogeneous, isotropic decaying turbulence are discussed. For this simple flow there are lot 
of DNS and experiment data which can be used to test LES model. Here the DNS data of 
Horiuti (Horiuti 1999) is used, which have a resolution of 2563. The initial condition for LES 
is obtained from DNS by truncating the full 2563 DNS field to 323 in spectral space, see Fig. 
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5.1. Notice the energy at the cutoff kc=15 may not be small enough compared to the energy 
peak. Usually for LES models in order to get good results, the energy at cutoff should be 
two orders of magnitude less than the energy peak. The initial parameters are summarized 
in Table 3.1 
 

  0E    L    ReL  Re  ettt  

1/720 0.686 0.152 0.51 0.24 245 118 0.68 

Table 3.1. Initial parameters. 

Fig. 3.3 shows the initial and final energy spectrum for TNS and DNS results. Note that in 
order to compare the results of other LES models are also presented, including Smagorinsky 
model and Chollet-Lesieur (C-L) eddy viscosity model (Chollet & Lesieur 1981). The C-L 
model in spectral space can be expressed as 

  1/2*( ) ( / ) ( ) /t c c ck k k E k k  . (3.12) 

ν* is the normalized eddy viscosity, which is defined as 

  * 3/2( / ) 0.441 15.2exp( 3.03 / )c ck k Ko k k    . (3.13) 

where Ko is the Kolmogoroff constant, and is usually set to 1.4.  
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Fig. 3.3. Initial and final energy spectrum for DNS, LES and TNS. 

As we can see from Fig. 3.3, all models obtain reasonable results compared to DNS, 
especially at low modes they match each other quite well. However at high modes TNS 
spectrum matches the result of DNS best, and the k−5/3 spectral form is preserved. For 
Smagrinsky model, as indicated by many studies, the dissipation is overestimated and 
biggest. C-L shows good results but not as good as TNS. Fig. 3.4 shows the history of 
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normalized energy decay for all models. Note here we simply divide the energy E(t) by the 
initial total energy E(0) to get normalized energy. Again TNS gets the best results while the 
Smagrinsky model shows too much dissipation. 
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Fig. 3.4. The history of total energy decaying. 

4. The choice of filters  

The filter shape and filtering width are the two free parameters in LES. Each affects the LES 

results greatly. Designing suitable filter type and filtering width is important to get 

reasonable results. In dynamic Smagrinsky model and similarity model, the effect of the 

filtering width has been studied by Lund (Lund 1997), De Stefano and Vasilyev (De Stefano 

and Vasilyev 2002) etc. In order to separate these two effects from one another, the present 

study is focus on the importance of the filter shape.  

Theoretically, the filtering operation should be repeated every time step because the 

nonlinear term continuously generates high frequency modes that need to be dissipated 

(Lund 1997). Depending on the type of filter, the SGS model should be adjusted in order to 

represent the dynamics of the unresolved scales correctly. Consequently the nature of the 

LES solution strongly depends on the filter shape. But for the traditional LES, especially for 

the eddy viscosity model, there is no explicit filtering process during the calculation in spite 

of the reasons mentioned above, i.e., the simulation result is independent of the filter. In the 

conventional practice, the filter has been only used as a concept (Fröhlich & Rodi 2001). The 

effect of the filter shape on LES is rarely discussed in the literature. 

On the other hand, a suitable LES model is needed to test different filters. As just 
mentioned, most traditional eddy viscosity models do not have explicit filtering in the 
solution procedure. In the similarity models and the dynamical Smagorinsky model the 
filtering width of the test (second) filter plays a key role besides the filter shape. A more 
appropriate LES model, which can directly validate different filters, is therefore required. 
From section 3.2 we found that the filtering plays a key role in TNS. The dynamics of the 
large scales and the energy budget strongly depend on the filter shape. It is a very good 
model to study the filter effect. 
There have been many filters proposed in the literatures that can be categorized into two 
groups: smooth filters and discrete filters. At the early stage of development, LES was mostly 
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performed in spectral space in which the filters were defined as continuous in the whole 
domain. These filters are referred to as smooth filters. The most commonly used ones are the 
Tophat (box), the Gaussian, and the sharp spectral (Fourier cutoff) filters. Recently, the 
application of LES to solve real engineering problems in the complex flow has become 
realistic and, in fact, popular because of the urgent need from the industry. Finite difference 
scheme instead of pseudo-spectral method is now widely adopted in the numerical 
approach due to its flexibility in handling complex geometry and obtaining high order 
schemes (Lele 1992, Visbal & Gaitonde 2002). The finite difference discretization scheme, 
together with the limited grid resolution, can be seen as an implicit filtering as mentioned by 
many researchers (De Stefano and Vasilyev2002; Fröhlich & Rodi 2001; Lund 2003; Vasilyev 
1998). However this kind of implicit filtering has some problems because of the interactions 
among the modified terms in the governing equations, the numerical error, and the order of 
the filter, etc.(Lund 2003; Vasilyev 1998). In order to avoid some of these problems, 
researchers tend to employ the explicit filtering to exert direct influence on the simulation 
result. These filters are usually defined on several adjacent points and, hence, denoted as 
discrete filters thereafter. There are several advantages using explicit filter: First it is easier 
to control the truncation and aliasing errors by removing the high wave number modes 
which is beyond the bandwidth allowed by the mesh. Second it can dump the oscillation at 
high frequency which comes from the numerical discretization scheme, boundary condition, 
etc. The amplitude of these oscillations usually is comparable to or even larger than that of 
the small scales after sufficiently long computation time, which tends to contaminate the 
final result of the simulation. By using the same explicit filter, it also makes the comparison 
with experiment or DNS data more direct. 

4.1 Smooth filters 

The smooth filters include the spectral filter, the Gaussian filter, the Tophat filter and those 

are defined continuously in the whole computation domain. The definitions for the first 

three can be easily found in some books (Pope 2000). Table 4.1 shows these filter functions in 

physical and spectral space respectively. 

 

 Spectral space Physical space 

Spectral filter 
1, ;ˆ ( )
0,

c

c

k k
G k

k k


  

  sin
( )

x
G x

x






  

Tophat filter 
 sin 0.5

ˆ ( )
0.5

k
G k

k





 

1
, 0.5 ;

( )

0,

x
G x

otherwise

   


 

Gaussian filter 
2 2

ˆ ( ) exp
24

k
G k

 
   

 
 

2

2 2

6 6
( ) exp

x
G x



 
     

 

Table 4.1. Smooth filters in physical and spectral space / ck  . 

The main problem for the Tophat and Gaussian filters is that they remove too much energy 
of the large scales (Domaradzki et al 2002; Yang & Domaradzki 2004). The spectral filter is 
thought as the best among these three for LES because it keeps all the large scales while 
removes all the small scales. However filters defined in the physical space are much flexible 
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because for most flows transformation to the spectral space is difficult. People are trying to 
find a filter that is defined in the physical space while has the property of the spectral filter 
or close to it at the same time. 
Actually the filtering operation (2.1)(Leonard 1974) is a linear spatial averaging operation, 

  ( ) ( ) ( , '; ) ( ') 'G D
f x L f x G x x f x dx    (4.1) 

A formal inverse of it in a power series expansion can be expressed as 

       1 21
G G G GL I I L I I L I L

              (4.2) 

where I is the unity operator. The product of LG and the first few terms of the above 
expansion (4.2) actually defines a suitable new filter (Domaradzki et al 2002) (the product of 
LG and the full equation (4.2) is equal to I, of course). If only first few terms are selected, the 
new filter is close to the original filter LG and the extra computation cost is small. When 
more terms are selected, the new filter is closer to unity. It has less effect on the large scales 
but needs much more computation time. Domaradzki et. al. (Domaradzki et al 2002) found 
that the combination of the first three terms in Eq. 4.2 is the best choice and denoted this 
filter as the physical filter 

 
ˆˆ ˆˆ ˆ ˆ3 3i i iu u u u    (4.3) 

where ’^’ is the original Tophat filter or Gaussian filter. One thing need to be pointed out is 
that the results of the Tophat, Gaussian and Physical filters strongly depend on the filter 

width  . However the objective of present work is to highlight the importance of the filter 
shape as mentioned above. In the following analysis, the filter width is fixed for these 

smooth filters, which is equal to 2 times of grid size  . 
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Fig. 4.1. Effect of the smooth filters on the k-5/3 spectrum. 

www.intechopen.com



 
Computational Simulations and Applications 

 

40

The effects of above filters on the k-5/3 spectrum are shown in Fig.4.1. As can be seen, the 
Tophat and Gaussian filters remove too much energy of the low modes. The spectral filter 
only keeps the large scales. The physical filter strongly damps the small scales while 
affecting the large scales very little, which make it a good filter for LES.  
Beside a prior test, the effects of these filters on a real three dimensional LES are also 
examined. Again the simplest homogeneous, isotropic decaying turbulence is utilized as the 
test case with two different initial conditions. The first has the initial condition of spectrum 

 4 2 2( ) exp 2 / pE k Ak k k  , where kp is the peak mode and equals to 4. The grid resolution is 

643 (In the following, the mesh size is 643 for all LES unless further specified). For 
comparison, the 2563 DNS result is also included. The final energy spectrum is plotted in 
Fig. 4.2. It also shows that the Tophat filter removes too much energy (Since the Gaussian 
filter performs very similarly to the Tophat filter, we did not include it in the figure). The 
spectral and physical filters show very good agreement with the DNS data. 
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Fig. 4.2. Energy spectrum at final time for LES case 1. 

The second case has a more critical initial condition as shown in Fig. 4.3. The initial 
condition is obtained from the 2563 DNS data of Horiuti (Horiuti 1999) same as section 3. It 
is a challenging case for LES because the energy at cut-off mode kc is not in the inertial 
range. The Tophat filter shows too much dissipation same as above. However the spectral 
filter delivers some undesirable behaviors this time. By removing all the small scales, it also 
shut down the energy transfer from the large to small scales completely. It will take some 
time for LES to rebuild the nonlinear interactions between the large and small scales, which 
leads to insufficient dissipation. Thus, the energy accumulates near the cutoff wavenumber 
as shown in Fig. 4.3. The physical filter provides the best result compared to the DNS data 
as also observed in paper ((Domaradzki et al 2002; Yang & Domaradzki 2004). The main 
reason is that the physical filter keeps a small part of the small scales which facilitates the 
energy transfer. Since this initial condition is a better case to test filters, we only run LES 
with case two in the following discussion. 
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Fig. 4.3. Energy spectrum at final time for LES case 2. 

The history of total kinetic energy decay for the smooth filters is plotted in Fig. 4.4. 
Corresponding to Fig. 4.3, the physical filter obtains better result compared to DNS. Since 
the spectral filter does not provide sufficient dissipation as shown in Fig. 4.3, its total energy 
is the biggest among all the results. The Tophat filter removes a part of large-scale energy 
each time when the filtering operation is applied. That is why the total energy jumps 
downwards periodically. 
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Fig. 4.4. The decay of the total kinetic energy for the smooth filters. 
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The effect of different grid resolutions is also investigated. The result of LES with grid 323 is 
shown in Fig4.5 and the result for 1283 is plotted in Fig. 4.6. The behaviors of these smooth 
filters in coarse mesh (323) are almost the same as those in grid 643. Physical filter still gets 
the best results. For the fine mesh (1283), all filters obtain good result except that the Tophat 
filter still dissipates a little more. The effect of the SGS model becomes small when the grid 
resolution increases, which is well known. 
 

k

E
(k

)

5 10 15
10

-4

10
-3

10
-2

10
-1

Initial Spectrum

DNS

Spectral

Tophat

Physical

 

Fig. 4.5. Energy spectrum at final time for the smooth filters with grid 323. 
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Fig. 4.6. Energy spectrum at final time for the smooth filters with grid 1283. 
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4.2 Discrete filters 

In order to handle complex geometry, finite difference scheme is widely used instead of the 
spectral method. The solution is available only on a set of discrete grid points. At most time, 
the filter for the whole domain does not exist due to the inhomogeneous and boundary 
condition. The discrete filters, including the discrete Tophat filter, the Padé filter (Visbal & 
Gaitonde 2002) and the filter series proposed by Vasilyev  et al. (Vasilyev  et al. 1998) are 
utilized rather than the spectral smooth filters 
The main problem of the discrete filter is the commutation error between differentiation and 
filtering operation. Fortunately Vasilyev  et al. (Vasilyev  et al. 1998) gave out a solution 
which can control the commutation error to any specified order. Another problem is that if 
the order of the filter is too low, the error introduced by filtering may become larger than 
the magnitude of SGS term. Hence for traditional LES, the filter order is usually required to 
be higher than that of SGS term. But the filtering operation in TNS only acts as a dissipation 
source. The numerical error can be included into it as part of the dissipation. Low order 
filters can also obtain good results. It is similar to the strategy used by Mathew  et al. 
(Mathew  et al. 2003). 
A one-dimensional filter given by Vasilyev  et al. (Vasilyev  et al. 1998) is defined as: 

 
L

j l j l
l K

f w f 


   (4.4) 

In order to control the commutation error to a specified order, the filter is required to have a 
different number of vanishing moments. Correspondingly, the weight factors wi should 
satisfy a set of constrains. These filters are referred as V-filters in the following analysis. 
 

Case 3w  2w  1w  0w  1w  2w  3w  4w  5w  

1   1/4 1/2 1/4     

3   1/8 5/8 3/8 -1/8    

6  -1/16 1/4 5/8 1/4 -1/16    

7    31/32 5/32 -5/16 5/16 -5/32 1/32 

9  -1/32 5/32 11/16 5/16 -5/32 1/32   

10 1/64 -3/32 15/64 11/16 15/64 -3/32 1/64   

Table 4.2. The weight parameters of the V-filters. 

Several sets of weights for the V-filters are given in Table 4.2 which is similar to the Table 1 
in Vasilyev et al’s paper (Vasilyev  et al. 1998). The equation (4.4) defines a symmetric 
(center) scheme if K equals to L. The case 1, 6 and 10 are symmetric and have a commutation 
error of order 2, 4, 6 respectively. In order to handle boundary points, Vasilyev et al also 
proposed several asymmetric filters, i.e., K and L is different. For high asymmetric V-filters, 
such as the one side filter - case 7, it is found that too much unphysical energy is introduced 
to the high modes as also mentioned by Vasilyev et al (Vasilyev  et al. 1998). This property is 
not desirable for TNS because it will lead to unphysical solution. Thus high asymmetric 
filters (case 2, 4 5, 7, 8) are not included in the following analysis. Only case 3 and 9 (whose 
order are 3 and 5 respectively) are tested as well as the symmetric ones.  
Fig. 4.7 presents the filtering results of different V-filters applied to the k-5/3 spectrum. For 
comparison, the result of the smooth physical filter is also included. Case 1 in fact is a 
discrete version of the Tophat filter using trapezoidal rule. Similar to the smooth one, it 
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removes too much energy of the large scales. It is interesting that the asymmetric filters like 
case 3 and 9 keep more energy than the symmetric ones (case 6 and 10). Note case 3 and case 
6 still remove a small part of the large-scale energy. While case 7 introduces too much 
energy at high wavenumber modes which will lead to an unphysical solution in a real LES 
run. 
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Fig. 4.7. Effect of the V-filters on the k-5/3 spectrum. 
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Fig. 4.8. Energy spectrum at final time for the V-filters. 
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Fig.4.8 shows the final energy spectrum of the V-filters in the same homogeneous run as 

Fig.4.3. As expected, case 1 dissipates too much energy. High order filters obtains better 

results. Corresponding to Fig.4.7, the result of the low order asymmetric filter case 3 (3rd 

order) is a little better than that of the high order symmetric filter case 6 (4th order). And the 

behaviors of case9 and case 10 are very similar. The reason is still attributed to the fact that a 

small amount of energy is introduced at high modes for the asymmetric filters. The decay of 

the total energy is plotted in Fig.4.9. Except case 1, all other cases show good agreement 

with the filtered DNS data. But there are small jumps for low order filters (case 3 and case 6) 

because of the undesirable effect to the large scales as shown in Fig.4.7. The effects of grid 

resolutions on V-filters are similar to the smooth ones, which are not included here. 
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Fig. 4.9. The decay of the total kinetic energy for the V-filters. 

Another series of discrete filters is the Padé filters. The Padé compact difference scheme can 

be regarded as an implicit filter (Visbal & Gaitonde 2002; Vasilyev et al 1998). Based on that, 

a set of Padé explicit filters is proposed by Visbal and Gaitonde (Visbal & Gaitonde 2002). 

For a variable f, the filtered value can be expressed as: 

  1 1
0 2

N
n

f i i f i i n i n
n

a
f f f f f    


     (4.5) 

where f  is an adjustable parameters between (-0.5, 0.5) and high value of f  means a less 

dissipative filter. N is the order of filter scheme, 2N+1 points give a 2N order filter. The 

coefficients na  are listed in Table 4.3. 
The filtering results of the k-5/3 spectrum using different Padé filters are shown in Fig. 4.10. 
The smooth physical filter is also included as a benchmark. The 2nd order filter removes a 
small amount of the energy of the low modes, which may have undesirable effect on LES 
because of the unnecessary dissipation. The 4th order and above have little effect on the 
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Fig. 4.10. Effect of the V-filters on the k-5/3 spectrum. 
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15( 1 2 )
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fa  45(1 2 )

512

fa 5( 1 2 )

256

fa 
 

1 2

512

fa
 

Table 4.3. The Coefficients of the Padé filters. 

large scales. But higher the order is, the Padé filter tends to keep more small scales 
compared to the physical filter. In turn it may not provide enough dissipation for TNS. 
The final energy spectra of the LES run with the Padé filters are plotted in Fig. 4.11 and the 
time evolutions of the total energy are shown in Fig. 4.12. Corresponding to Fig.4.10 the 2nd 
order filter overestimates the dissipation and subsequently provides the worst results 
among these runs. The 4th order and above show very good results as compared to the DNS 
data. However the 6th order and above filters keep more small-scale energy than DNS 
which may imply them do not provide enough dissipation.  
From above results, it is found that the Padé filters show better results than the V-filters. It 
could be attributed to the fact that the Padé filters consider the effects of adjacent points. On 
the other hand, the calculation of the V-filters is much simple and straightforward. For the 
Padé filters we need to solve a tri-diagonal system. It is time consuming and may be 
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infeasible for the inhomogeneous case. In the Section 4.1 the physical filter shows very good 
property but it is a smooth filter. So we modified it into a discrete version using the V-filters, 
i.e. in equation 4.3 we use the V-filters instead of the Tophat filter. Hereafter we denote it as 
PV-filter. 
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Fig. 4.11. Energy spectrum at final time for the Padé filters. 
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Fig. 4.12. The decay of the total kinetic energy for the Padé filters. 

www.intechopen.com



 
Computational Simulations and Applications 

 

48

The results of a priori test and the LES run of the PV-filters are shown in Fig. 4.13, Fig. 
4.14 and Fig. 4.15 respectively. For comparison, we also include the result of the original 
case 1 of the V-filter (V-case1) in Fig.4.13. It shows that the result of the 2nd order PV-
case1 is improved significantly as compared to V-case1. As mentioned before V-case1 is 
actually a discrete version of the Tophat filter. Therefore the PV-case1 is a discrete version 
of the smooth physical filter. Since the result of smooth physical filter is much better than 
that of the Tophat filter as shown in Fig.4.1, it is no wonder that the PV-case1 is better 
than the V-case1. However, by comparing Fig.4.14 and Fig.4.3, it was found the results of 
this discrete version (PV-case1) are not as good as those of the smooth physical filter for a 
real LES run. Similar to Fig.4.7, the asymmetric filters (PV-case3 and PV-case9) show good 
behavior in Fig.4.13, keeping more energy than the symmetric ones (PV-case6 and PV-
case10). But it was also found that small amount of nonphysical energy is introduced near 
the cutoff wavenumber. Correspondingly the behaviors of these asymmetric filters in a 
real LES run are not good as shown in Fig.4.14 and Fig.4.15 (PV-case3 is not shown in 
Fig.4.14 because the energy spectrum becomes so large that it is out of the scope range). 
The results of high order symmetric PV-filters are also improved compared to the original 
V-filters, but not too much.  
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Fig. 4.13. Effect of the PV-filters on the k-5/3 spectrum. 
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Fig. 4.14. Energy spectrum at final time for the PV-filters. 
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Fig. 4.15. The decay of the total kinetic energy for the PV-filters.  

5. The effects of numerical errors on TNS 

For DNS, the numerical errors mainly are aliasing and truncation errors (Chow 2003). As for 
LES, the small scales must be modelled because of the limited grid resolution which can not 
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resolve all the scales. Therefore LES has an additional source of error comes from the SGS 
models. In general, it is required that all the source of errors can not overwhelm the 
contribution of SGS model in LES (Ghosal 1996; Chow 2003). In addition, unlike DNS the 
cut-off mode in LES is still energetic. As a result, LES is more sensitive to numerical errors. 
The numerical errors must be well controlled.  
Note the numerical error in this section refers to aliasing and truncation errors introduced 
by spatial numerical scheme. Usually time discretization also introduces some 
computational errors (He et al 2004). Guo-Wei He etc studied the time correlation of several 
SGS model on LES (He et al 2004). Here we only focus on the spatial discretization error. In 
addition, the effect of the floating error of the computer is assumed to be small and ignored 
thereafter. 

5.1 DNS results 

We conduct DNS run at first in order to avoid the effect of SGS model. Also DNS data can 
provide benchmark for LES. The initial condition is the homogenous isotropic turbulence 
same as section 3 and 4. The grid resolution is 128×128×128 which is found fine enough to 
resolve the large scales for this simple flow. At Fig.1 the DNS results of 1283 and 2563 grid 
are compared. It is clear shows that they have a very good match for low wavenumber 
modes. In order to save computation time, only 1283 runs are carried out thereafter. 
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Fig. 5.1. The result of 1283 DNS compared with 2563. 

As mentioned above, DNS only suffers from aliasing and discretization errors that depend 

on the numerical scheme used. When spectral method is used, the discretization errors is 

very small. So the numerical error is dominated by aliasing error. The main reason for 

aliasing error arising is that the gird resolution is limited. The modes beyond the grid cut-off 

wavenumber are incorrectly 'aliased' to wavenumbers that are resolved. Usually the 

contribution of aliasing errors is largest at the highest wavenumbers where any energy 

above the wavenumber cutoff incorrectly adds on the resolved spectrum. Without control, 
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aliasing errors destroy the energy conservation and cause the solution to departure from 

physical solution. Usually a random shift technology is used to eliminate aliasing error. In 

order to identify the importance of aliasing error, we run two DNS: one uses anti-aliasing 

technology (the result marked as Dealiased) and the other one does not (the result denoted 

by Aliased). The simulation results are shown in Fig. 5.1. In Fig. 5.1a the energy spectrum at 

t=1 (the upper line) and t=3 (the lower line) are shown. And Fig. 5.1b gives the relative value 

of aliasing error, which is calculated as  

  ( ) ( ) ( ) ( )dealias alias dealiask E k E k E k    (5.1) 
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Fig. 5.2. The aliasing errors for DNS using spectral method. 

As we can see, the aliasing error is relatively small for DNS with spectral method. The 

largest error happens at high modes, which is consistent with the analysis of Park and 

Mahesh (Park & Mahesh 2007). The aliasing error can contaminate the low modes gradually 

with time evolution, as shown in Fig.5.1, but it is still very small. 

For complex engineering problem, the spectral method is no longer suitable. Finite 

difference scheme or finite volume scheme is used instead. Same as section 4, the Padé 

compact scheme is used here. In order to examine the truncation error of different order of 

Padé scheme, one common used technology is to analysis the modified wavenumber in 

spectral space (Lele 1992). Similar to aliasing error, Padé scheme has little effect on low 

modes. The error is highest near the cut-off wavenumber. With higher order, the error is 

smaller and the result is more close to spectral method.  

In order to isolate the discretization error, here we only apply the Padé scheme to the 

nonlinear term, which is similar to the way used by Kravchenko and Moin (Kravchenko & 

Moin 1997). The reason is that nonlinear term has important impact on SGS term. Also 

nonlinear term is a key factor which affects the stability of computation.  

In Fig. 5.3 we compare the energy spectrum at different time for spectral method and 

different order Padé schemes. While the time evolution of total kinetic energy is shown in 

Fig. 5.4. As we can see, high order scheme, 6th order Padé scheme compares well with 

spectral method at all time. But for 4th order Padé scheme, at the initial stage (t=1), it 
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compares well with spectral method at low modes, but shows some difference at high 

modes. The nonphysical energy introduced by discretization error accumulates at high 

modes and affects low modes gradually with time developing (t=3)  
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Fig. 5.3. The energy spectrum for DNS using different discretization schemes at t=1 and t=3 
(from above to low). 
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Fig. 5.4. The time evolution of total kinetic energy for DNS using different discretization 
schemes. 

Note that 2nd order Padé scheme actually is the 2nd order center difference scheme. It is 
well known that it has the problem of even-odd oscillation which will leads to the 
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computation diverging. We observe the same problem here. Usually an artificial viscosity is 
needed to dump the oscillation, which is beyond the research scope of this article. In Fig.5.5 
the energy spectrum before computation fail is shown. It is clear seen that the nonphysical 
energy accumulates quickly at high modes which lead to the computation divergence. Park 
and Mahesh (Park & Mahesh 2007) gave a detail description about this problem. Interested 
reader should refer to their paper. 
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Fig. 5.5. The time evolution of energy spectrum for DNS using 2nd order Padé scheme. 

The results for Padé schemes shown in Fig. 5.3 actually contain all the numerical errors, i.e. 
discretization and aliasing errors. Unlike spectral method, many researches thought that 
finite difference scheme can automatically decrease the aliasing error and therefore no anti-
aliasing method is needed. Since the result of 6th order Padé scheme is the closest one to the 
spectral method, here we also apply the same anti-aliasing technology as used in spectral 
method to 6th order Padé scheme (denoted by Dealiased). The new result is then compared 
with the original one as shown in Fig. 5.6. Compared to spectral method, the magnitude of 
aliasing error does decrease. Note that actually it is very hard to isolate aliasing error from 
discretization error. The aliasing error shown above is not the actual aliasing error for 6th 
order Padé scheme. But anyway we can use that technology to determine the relative 
importance of aliasing error. 
In general, the aliasing error in DNS can be well controlled. The main error is the truncation 
error of discretization scheme. Low order scheme is not suitable for simulation in some 
cases. 

5.2 LES results 

For the same simulations above, we also run the LES. The mesh size is 64×64×64. Spatial 
discretization adapts the same spectral and Padé compact schemes as in DNS. Note that LES 
has additional numerical error source which comes from the SGS model besides the aliasing 
error and discretization error for DNS. Again TNS approach is used to modelling the small 
scales. TNS model depends on periodic filtering to remove high modes energy. There are 
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Fig. 5.6. The aliasing error for DNS using 6th order Padé scheme. 

many filters available as mentioned in section 4. Because we pay more attention to the 
possibility of applying LES to real engineering problem, only discrete filters are adapted 
here. Since Padé discrete filters show good results in section 4, we only focus on them to 
simply the research. Note that different order of Padé filter means the error introduced by 
SGS model is different. 
In Fig. 5.7a, b, c, d it shows the final energy spectrum for spectral method and different Padé 
compact schemes (marked with ‘d’) combined with TNS model using different order Padé 
discrete filters (denoted as ‘f’), i.e. ‘d6f4’ means 6th order Padé compact scheme and 4th 
order filter. As we can see, TNS model plays a key role in the simulations. Low order filter 
provides too much dissipation and performs poorly for all discretization schemes. High 
order filter (4th order and above) obtains good results compared with DNS. However higher 
the filter order is, it keeps more high modes energy and thus dissipates less. In return it 
decreases the performance of LES. TNS model with 4th order filter provides the best results. 
Compared to DNS, LES is not so sensitive to the order of the discretization scheme. Even 
2nd order scheme can obtain reasonable results. The result is not as good as of high order 
scheme though, but much better than of DNS which diverges when using 2nd order scheme. 
The reason is that the discretization and aliasing errors cause the energy to accumulate at 
high modes; while TNS model removes high modes energy through filtering. The 
dissipation provided by SGS model dumps the unphysical energy increment. This result 
may help explain why low order scheme can obtain good results when applied to 
engineering problem.  
In order to further comparing the effect of different discretization scheme on LES, here we 
run a series cases with the same TNS model (all using 6th order Padé filter) while the spatial 
discretization uses spectral method and different order of Padé schemes. The results are 
shown in Fig. 5.8 and Fig. 5.9. Similar to DNS, low order Padé discretization scheme leads 
energy to accumulate at high modes. Higher the order is, the result is more close to DNS. 
The spectral method is the best one. But different form DNS, low order (2nd order) scheme 
obtains reasonable result and does not cause divergence like DNS case in Fig. 5.5. It is 
because the TNS model removes the unphysical energy accumulated at high modes and 
thus dumps the discretization error. 
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        (a) spectral method                               (b) 2nd order Padé scheme 
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Fig. 5.7. The final energy spectrum for LES using spectral method, different order Padé 
schemes and TNS models. 
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Fig. 5.8. The final energy spectrum for different discretization scheme with the same TNS 
model. 
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Fig. 5.9. The time evolution of total energy for different discretization scheme with the same 
TNS model. 

Same to Fig. 5.6, we also try to investigate the effect of anti-aliasing method on the final 
results (only the case using 6th order Padé scheme, 6th TNS model is considered). The 
comparison is shown in Fig. 5.10. The aliasing error is still small. But for LES the energy at 
cut-off wavenumber is considerable large compared to DNS, the relative value of aliasing 
error increases. 
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Fig. 5.10. The aliasing error for LES using 6th Padé scheme and TNS model with 6th order 
filter. 

6. Conclusion 

In the past ten years significant progress has been made in the LES technology. LES has 
become one of the most promising and successful methodology available to solve the 
complex turbulent flows. However there are still some challenges before LES can be a 
mature tool to predict engineering problems, including reliable subgrid scale model, the 
choice of filter, near-wall treatment, numerical errors etc. And an accurate, fast and robust 
numerical algorithm for complex geometry is also needed. In this article, three key issues of 
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LES, namely the SGS models, the choice of filters and the effects of numerical errors, are 
investigated briefly. 
The TNS approach is a simple and promising model. It actually is a DNS run with periodic 
processing of high modes. The basic assumption in TNS is that dynamics of small scales are 
strongly determined by the large eddies and the contribution of small scales to large scales 
are mostly contained within wavenumbers that are twice that of the cut-off wavenumber. By 
periodic removal of high mode energy using a filter, TNS provides necessary dissipation for 
small scales and thus avoids energy accumulation at high wavenumbers. It provides natural 
dissipation mechanism for low modes by nonlinear interactions between low modes and 
high modes at the cost of doubling the mesh. It can be expended to other flow easily because 
it does not have any empirical parameter. 
The filtering operation plays a key role in TNS. It is responsible for removing the 
accumulated energy of the small scales at prescribed intervals. The filter type has direct 
effect on the final simulation results. Here a set of smooth filters and discrete filters are 
tested using TNS model. For the smooth filters, the physical filter is implemented in the 
physical space while it has similar property to the spectral filter at the same time. Also it 
keeps a part of the small-scale energy, which benefits the energy transfer. The Tophat and 
Gaussian filters are easy to implement but have serious undesirable effects on the large-scale 
energy. The discrete Padé filters exhibit advantages over the V-filters because the effect of 
adjacent points can be taken into account. The Padé filters can keep most of large-scale 
energy while maintaining sufficient amount of the small-scale energy at the same time. They 
show very good performance in all the runs, even better than the smooth physical filter. 
However the second order Padé filter still has effect on the large scales and the high order 
ones tend to keep too much small-scale energy, both of them may decrease the performance 
of TNS. The V-filters can be easily implemented to any specified order. However, high 
asymmetric filters should be avoided because they introduce too much nonphysical energy 
at high modes. The second order symmetric V-filter is actually a discrete version of the 
Tophat filter. It has the same problem as the smooth one, i.e., removing too much large-scale 
energy. When the smooth physical filter idea is applied to the V-filters, the results for the 
low order V-filters are improved significantly, but it is not necessary for high order V-filters. 
Note that the filter type should be adjusted according to the SGS model. So for LES with 
other SGS models, the effect of filters may be different. 
The effects of numerical errors on LES are investigated briefly here, including discretization 
error, alias errors as well as SGS model error. As for DNS, no matter using spectral method 
or Padé compact scheme, the aliasing error can be well controlled. The final result is more 
affected by the truncation error of discretization scheme. High order scheme is preferred. 
Low order scheme is not suitable in some case. For example in our simulation, 2nd order 
discretization scheme leads energy to accumulate at high modes quickly and causes the 
solution unstable. As for LES, the interaction between numerical error and SGS model is 
complicated. Different model, such as TNS with different order filtering, can have different 
results. Low order filter brings in too much dissipation which is not a suitable property for 
LES; while the dissipation provided by high order filter is too small which also decreases the 
performance of TNS model. High order discretization schemes (4th order Padé scheme and 
above) plus middle order filters (4th or 6th order) can obtain good results compared with 
DNS. A more advantage is that TNS model not only avoids the small scales energy 
accumulating, but also dumps the side effect of discretization and alias errors to the high 
modes because TNS model removes the high modes energy periodically by filtering. This 
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interaction between TNS model and numerical error benefits LES. So low order 
discretization scheme plus a more dissipative TNS model can get good enough result. In 
addition, the energy at cut-off wavenumber for LES is still relative large, so the effect of 
aliasing error increases. We have to admit that due to the time and our knowledge 
limitation, the study on the numerical error is not full enough. There are some excellent 
works by other researches available. 
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