
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



0

Reynolds Stress Transport Modelling

Sharaf F. Al-Sharif
Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah

Saudi Arabia

1. Introduction

The Reynolds–averaged Navier–Stokes (RANS) approach is the most commonly employed
approach in CFD for industrial applications, and is likely to continue to be so for the
foreseeable future. The need to handle complex wall-bounded flows, and the need to
evaluate large numbers of design variations usually prohibits high-fidelity approaches such
as direct numerical simulation (DNS), and large-eddy simulation (LES). The application
of Reynolds–averaging to the equations of motion introduces a set of unclosed terms, the
Reynolds Stresses, into the mean flow momentum equations, and turbulence models are needed
to provide closure of these terms before the set of equations can be solved. Within the
framework of RANS approaches, a hierarchy of modelling schemes exists based on the level of
sophistication in which these unclosed terms are modelled. In Reynolds stress transport (RST)
modelling, rather than assuming a direct (linear or non–linear) link between the Reynolds
stresses and mean strain, a separate transport equation for each of the stress components is
solved. This in principle provides a number of advantages over other RANS models, which
will be reviewed here.
This chapter aims to provide a general introduction and overview of Reynolds Stress transport
modelling. The first section will provide a brief historical background on the development of
this class of models. Next, the theoretical background and rationale underlying the most
common modelling practises within this framework are presented. This is followed by a
discussion of some numerical implementation issues specific to RST modelling within the
context of the finite volume method. Finally the chapter is closed with some concluding
remarks.

2. Development of RST modelling

Early work leading to the development of Reynold-stress transport (RST) modelling was
mainly theoretical, due to the relative complexity of this level of modelling compared to the
available computational capabilities of the time. Chou (1945) constructed a formal solution
to the fluctuating pressure Poisson equation that is the basis for current models of the
pressure–strain-rate correlation. Later Rotta (1951), laid the foundation for Reynolds stress
transport modelling by being the first to develop a closed model of all the terms in the exact
equation (Speziale, 1991). Because of limited computational capability at the time, successful
computations were not carried out until several decades later (Speziale, 1991). Another
important development came when the continuum mechanics community speculated on the
potential similarity between turbulent flow and the flow of non-Newtonian fluids (Gatski,
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2 Numerical Simulations

2004). This meant that tensor representation results from the continuum mechanics literature
could be used to formulate expressions for the Reynolds-stress tensor, as first proposed by
Rivlin (1957). These ideas were then expanded by Crow (1968; 1967), and Lumley (1967; 1970).
Computational work accelerated in the 1970’s with the works of Daly & Harlow (1970),
Reynolds (1970), Donaldson (1971), Naot et al. (1972), Hanjalić & Launder (1972), and Lumley
& Khajeh-Nouri (1974). In a landmark paper, Launder, Reece & Rodi (1975), developed a
hierarchy of Reynolds-stress transport models by consolidating the work of various separate
groups into a unified framework. They were able to successfully apply the models to a variety
of free-shear and wall-bounded flows of practical interest (Launder et al., 1975). Their model,
particularly the simple version (the ‘Basic’ model), has since been one of the most widely
used RST models in engineering applications because of the combined advantage of being
simple in form, yet retaining the ability to overcome many of the weaknesses of eddy-viscosity
formulations (Hanjalić & Jakirlić, 2002).
Later Schumann (1977) introduced the concept of realisability as a constraint to guide model
formulation. By this it is meant that models should be designed to prevent certain unphysical
solutions, such as negative normal stress components, or a stress tensor that violates the
Cauchy-Schwartz inequality. Lumley (1978) extensively discussed the significance and
implementation of realisability requirements. He devised and used anisotropy invariant
maps, or ‘Lumley triangles’, to illustrate the limiting states of turbulence with respect to values
of the second and third invariants of the Reynolds-stress anisotropy tensor. Lumley pointed
out that to prevent a negative normal stress component from arising during computations, the
time derivative of the component must be made to vanish at the instant when the component
itself vanishes, thereby preventing a negative value to arise as time progresses. Such a
situation can arise near a wall or a free-surface, where the interface-normal component decays
much faster than the other components as the interface is approached, thus approaching a
two-component limit. Shih & Lumley (1985) later used these arguments to devise a realisable
model for the pressure–strain-rate correlation. Their model, however, did not perform
well in simple shear flows, and higher order corrections were later added to achieve better
agreement with these flows (Craft & Launder, 2002). Speziale (1985; 1987) used arguments of
material-frame indifference in the limit of two-dimensional turbulence to develop a model for
the rapid pressure–strain-rate correlation. Speziale et al. (1991) later considered the simplest
topologically equivalent form (returning the same equilibrium states) to that of the Speziale
(1987) model, to arrive at a more simplified, similarly performing version (Speziale et al.,
1991). This latter model is also in relatively common use in engineering RST computations.
The UMIST group, starting with the work of Fu et al. (1987), Fu (1988), Craft et al. (1989), and
Craft (1991) developed a model also based on ensuring realizability in the two-component
limit, but using an approach slightly different from that used by Shih & Lumley. This model
(the ‘TCL’ model, in what follows) uses a cubic expansion of the rapid pressure–strain-rate
correlation in k and aij. It was shown to achieve significant improvements over previous
models in a wide range of flows.

3. Modelling practises

In this section the basic equations for the mean flow of incompressible fluids are presented,
along with the equations for the relevant turbulence statistics. At the level of Reynolds stress
transport modelling, the Reynolds averaged Navier–Stokes (RANS) equations are solved,
along with separate equations for each independent component of the Reynolds stress tensor,
as well as a transport equation for the scalar rate of dissipation of turbulent kinetic energy.
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Reynolds Stress Transport Modelling 3

The modelling approach used for the various terms appearing in the exact Reynolds stress
transport equation are briefly reviewed.

3.1 Basic equations of turbulent flow

Turbulent flows are characterised by highly fluctuating velocity, pressure, and other field
variables. One approach for dealing with this fluctuating nature of the flow, the one most
widely used by engineers, is to work with an averaged form of the basic equations. In Reynolds
averaging the instantaneous flow variables are decomposed into an average quantity and a
fluctuation. Thus,

Ũi = Ui + ui

P̃ = P + p ,
(1)

where capital letters denote averaged quantities, and small letters denote purely fluctuating
quantities. The averaging can be either over time or over a repeated realisation of an
experiment with the same nominal conditions. The latter, ensemble averaging, will be
implied in the following, to allow for temporal variations of mean quantities. When this
decomposition is substituted into the Navier Stokes equations for incompressible flow, and
the result is ensemble averaged, one obtains the Reynolds-averaged Navier-Stokes (RANS)
equations

∂Ui

∂t
+ Uj

∂Ui

∂xj
= − 1

ρ

∂P

∂xi
+ ν

∂2Ui

∂x2
j

−
∂uiuj

∂xj
. (2)

When the decomposition is substituted into the continuity equation for incompressible flow,
and averaging is applied, one obtains for the mean flow

∂Ui

∂xi
= 0 . (3)

If this is subtracted from the instantaneous continuity equation, the continuity condition for
the fluctuating velocity is obtained

∂ui

∂xi
= 0 , (4)

meaning that both the mean and fluctuating velocity fields are individually divergence free.
The last term in the RANS equation (2) contains the Reynolds stress tensor uiuj. Thus
the averaging process introduced a new unknown tensor term, and the set of equations is
no longer closed. This is called the closure problem of averaging approaches. The task of
turbulence modelling is to construct appropriate models for these stresses that relate them to
the mean flow quantities, and thus to construct a closed set of equations allowing numerical
solutions to be obtained. An additional implied objective in the engineering context is for the
models to be as computationally inexpensive as possible while being able to reproduce the
behaviour and phenomena of relevance to the problem in question, at the required level of
accuracy.
A transport equation for the fluctuating velocity can be obtained by subtracting the RANS
equation (2) from the Navier-Stokes equation. Using the divergence-free property of the
fluctuating field, the result can be written as

Dui

Dt
= − 1

ρ

∂p

∂xi
− uj

∂Ui

∂xj
− ∂

∂xj

[
uiuj − uiuj − ν

∂ui

∂xj

]
(5)
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4 Numerical Simulations

The operator D/Dt is used to denote the material derivative following the mean flow

D

Dt
=

∂

∂t
+ Uj

∂

∂xj
. (6)

Since this interpretation will be used exclusively here, the over-bar on this mean-flow material
derivative will subsequently be dropped. An exact equation for the Reynolds stresses can be
obtained by using (5) to construct

Duiuj

Dt
= uj

Dui

Dt
+ ui

Duj

Dt
,

where it has been assumed that averaging and taking the material derivative (6) commute.
The result is

Duiuj

Dt
=−

(
uiuk

∂Uj

∂xk
+ ujuk

∂Ui

∂xk

)

+
p

ρ

(
∂ui

∂xj
+

∂uj

∂xi

)

+
∂

∂xk

[
ν

∂uiuj

∂xk
− uiujuk −

p

ρ
(uiδjk + ujδik)

]

−2ν
∂ui

∂xk

∂uj

∂xk
.

(7)

The first term on the right hand side above is the production rate of Reynolds stresses by mean
velocity gradients. This term is closed at the RST level since it is given in terms of quantities
that are being solved for at this level. All the remaining terms in the equation, except for
viscous diffusion, require modelling. The second term is a correlation between the fluctuating
pressure and the fluctuating strain rate. From continuity this term is traceless, so it does not
contribute directly to the kinetic energy of the turbulence. Its effect is to redistribute the energy
between the stress components, so it plays a very important role in determining the degree
of anisotropy of the stresses. Accordingly, it has received much attention from researchers,
and continues to do so. The third term in (7) is a combination of several diffusion terms, all
having the effect of spatial redistribution of the Reynolds stresses. Finally, the last term is
the dissipation rate of Reynolds stresses by viscous action at the smallest scales of turbulence.
Since the smallest scales of motion are assumed to be isotropic, the dissipation rate tensor is
frequently modelled as εij =

2
3 ε δij, where ε is the scalar dissipation rate of turbulent kinetic

energy. This approximation is not applicable near walls or free surfaces, where the dissipation
tensor becomes markedly anisotropic. Equation (7) can be written in short form as

Duiuj

Dt
= Pij + φij +Dij − εij , (8)

where it is understood that each term above defines the notation for the corresponding term
in (7).
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Reynolds Stress Transport Modelling 5

An equation for the kinetic energy associated with the turbulent fluctuations, k = uiui
2 , can be

obtained by taking half the contraction of (7). The resulting equation is

Dk

Dt
= −uiuk

∂Ui

∂xk
+

∂

∂xk

[
ν

∂k

∂xk
− uiuiuk −

1

ρ
puiδik

]
− ν

∂ui

∂xk

∂ui

∂xk
. (9)

In short form, this can be written
Dk

Dt
= Pκ +D − ε (10)

The first term on the right hand side of (9) is the production of turbulent kinetic energy by
mean velocity gradients. The next term is the diffusion of turbulent kinetic energy by various
mechanisms. Finally, the last term is the scalar dissipation rate of turbulent kinetic energy. The
short form (10) defines the notation that will be used in the following for the respective terms
in (9). It is often convenient to work with the deviatoric Reynolds stress anisotropy tensor aij

defined as,

aij =
uiuj

k
− 2

3
δij . (11)

3.2 Pressure–strain rate correlation

Modelling of the pressure–strain rate correlation is to a large extent guided by consideration
of the exact equation for it. An equation for the fluctuating pressure can be obtained by taking
the divergence of (5), and invoking continuity (4). This gives

1

ρ

∂2 p

∂xk∂xk
= −2

∂Ui

∂xj

∂uj

∂xi
− ∂2

∂xi∂xj
(uiuj − uiuj) (12)

A formal solution to this Poisson equation can be constructed using the method of Green’s
functions, as first demonstrated by Chou (1945). The Green’s function of the Laplacian
operator is

g(x|x′) = −1

4π|x − x
′| .

The fluctuating pressure is thus given by

p

ρ
=

1

4π

∫∫∫

V

[
−2

∂Ui

∂x′j

∂uj

∂x′i
− ∂2

∂x′i∂x′j
(uiuj − uiuj)

]

x
′ ,t

dx
′

|x − x
′| + Surface integral. (13)

It can be seen from this equation that the fluctuating pressure can be decomposed into three
components (Pope, 2000), corresponding to the three terms appearing on the right-hand
side of (13). The first term is linear in the turbulent fluctuations, and responds directly to
changes in mean velocity gradient. It is thus called the rapid pressure, pr. The second is
a turbulence-turbulence interaction term, that does not respond directly to changes in the
mean flow, but through the turbulent cascade process, and is thus called the slow pressure, ps.
The last term is the solution to the homogeneous (Laplace) equation and satisfies appropriate
boundary conditions that ensure the superposition of the three parts, p, satisfies its own
boundary conditions (Pope, 2000). This final term is only significant close to a wall or a free
surface, and, since the emphasis here is on modelling regions away from walls, it will be
neglected. Wall effects on φij are considered in Section 3.3.

7Reynolds Stress Transport Modelling
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6 Numerical Simulations

Based on the above decomposition, the pressure–strain rate correlation can similarly be
decomposed into rapid, slow, and wall influence terms. The rapid part can be constructed
as follows

φr
ij =

pr

ρ

(
∂ui

∂xj
+

∂uj

∂xi

)
(14)

pr

ρ

(
∂ui

∂xj

)
=

1

2π

∫∫∫ ∞

−∞

(
∂Uk

∂x′l

∂ul

∂x′k

)

x
′ ,t

(
∂ui

∂xj

)

x,t

dx
′

|x − x
′|

=
1

2π

∂Uk

∂xl

∫∫∫ ∞

−∞

∂2

∂xj∂x′k
(ui(x)ul(x

′))
dx

′

|x − x
′| .

(15)

In taking ∂Uk

∂x′
l

outside the integral it is assumed that this term is reasonably constant over the

volume integral. In homogeneous flows, that is of course exact, but is an approximation in
inhomogeneous ones. One can thus write:

φr =
∂Uk

∂xl

(
Mil jk +Mjlik

)
, (16)

where the fourth rank tensor Mil jk is given by

Mil jk =
−1

2π

∫∫∫ ∞

∞

∂2ui(x)ul(x + r)

∂rj∂rk

dr

|r| , (17)

using r = x
′ − x for the separation distance. The Mil jk tensor is symmetric in the first two

indices, and in the last two
Mil jk = Mlijk = Milkj. (18)

The divergence-free velocity condition means that contraction over the middle indices results
in the quantity vanishing:

Mijjk = 0 , (19)

and contraction over the last two indices can be shown to yield (twice) the Reynolds stress
tensor

Milkk = 2 uiul . (20)

The last of these kinematic conditions (20) suggested to workers that the M tensor could
be modelled as a function of the Reynolds stresses (Launder et al., 1975). The approach taken
was to model M as a polynomial function in the stresses. The most general fourth-rank tensor
linear in the Reynolds stresses satisfying the symmetry conditions (18) is

Mijkl =αδkluiuj + β(δikujul + δilujuk + δjkuiul + δjluiuk)

+γδijukul + [ηδijδkl + v(δikδjl + δilδjk)]k,
(21)

where the coefficients α, β, γ, η, v are constants (or functions of the invariants of aij). The
continuity condition (19), and the normalisation condition (20) can be used to reduce the
number of undetermined constants to one. When this is done, and the resulting modelled
Mijkl is substituted into (16) the resulting linear rapid pressure–strain rate model is

φr
ij = −γ + 8

11
(Pij − 2/3Pδij)−

30γ − 2

55
k

(
∂Ui

∂xj
+

∂Uj

∂xi

)
− (8γ − 2)

11
(Dij − 2/3Dδij) , (22)
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where Dij is given by

Dij = −uiuk
∂Uk

∂xj
− ujuk

∂Uk

∂xi
, (23)

and D = Dii/2. This is the first of the two Launder-Reece-Rodi (LRR) models in Launder
et al. (1975), called the Quasi-Isotropic model (LRR-QI). A simplified version of (22) was also
suggested in Launder et al. (1975) by observing that the dominant term in this equation is the
first one appearing on the right hand side. The model thus obtained, first proposed by Naot
et al. (1972), is sometimes termed the isotropization of production model (LRR-IP),

φr
ij = −c2(Pij − 2

3 P δij). (24)

Various other models have been proposed following similar lines of reasoning, in which M
is modelled as a tensor-polynomial function of the Reynolds stress tensor or, equivalently,
expressed in terms of k and aij

M = M(k, a) . (25)

It is worth pointing out at this stage that there is an intrinsic weakness in all such models
of the form (25). The tensor M, as defined by (17), contains two kinds of directional
information – the direction of the energetic velocity components, and the direction of variation
or dependence of the two-point correlation (Pope, 2000). Only the former type of information
is contained in the Reynolds stress tensor, so two fields having the same Reynolds stresses can
have different M tensors. More explicitly put, the evolution of the Reynolds stresses is not
uniquely determined by the Reynolds stresses (Pope, 2000). This is an intrinsic limitation in
RST modelling, that is difficult to overcome without significantly complicating the modelling
approach and/or computational cost (Johansson & Hallbäck, 1994; Kassinos & Reynolds,
1994). This limitation is known to cause poor results in flows where the velocity gradient
has a strong rotational component, such as in pure (or dominant) rotation, and in high shear
rate flows (Johansson & Hallbäck, 1994). However, in many other flows, including ones with
significant rotational effects, RST models have been shown to produce very good results.
As for the slow pressure–strain-rate term, φs

ij, it is difficult to extract anything from the exact

expression, pertaining to the non-linear turbulence–turbulence interaction part of (13). Most
early models followed Rotta’s (1951) linear return to isotropy model for the slow term

φs
ij = −C1εaij . (26)

This model is motivated by the decay of homogeneous anisotropic turbulence in the absence
of mean velocity gradients. It is generally observed that in such cases turbulence progressively
tends towards an isotropic state, hence the negative sign in (26).
Experimental evidence shows that the return-to-isotropy process is in fact non-linear in aij

(Chung & Kim, 1995). When plotted on anisotropy invariant maps, the paths taken during
return-to-isotropy experiments are not straight lines, and have different behaviour depending
on the sign of the third invariant (Pope, 2000). It is also found that the rate of return is highly
dependent on the Reynolds number. A number of nonlinear models for the slow pressure
strain term have been suggested in the literature.

3.3 Wall effects on φij

The presence of a wall alters pressure fluctuations by viscous effect through the no-slip
condition, and by inviscid effect through the impermeability condition. DNS results show that

9Reynolds Stress Transport Modelling
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8 Numerical Simulations

the viscous effect is confined to a region within y+ ≈ 15 from the wall (Mansour et al., 1988).
The inviscid wall-blocking effect on the other hand is significant where the distance from the
wall is of the same order as the turbulent length scale. Wall blocking causes two opposing
effects; wall reflection of the fluctuating pressure field increases the energy-redistributing
pressure fluctuations, which pushes turbulence towards isotropy, while it also causes selective
damping of the wall-normal fluctuating velocity component in turbulent eddies, thereby
increasing anisotropy. The latter effect dominates, and turbulence anisotropy near a wall is
higher than that in a free shear flow at a similar rate of shear. To account for this, Gibson &
Launder (1978) proposed two additive corrections to φij using the unit normal vector to the
wall, ni. The first, based on the proposal of Shir (1973), is an additive correction to the slow
part

φs,w
ij = Cw

1
ε

k

(
ukumnknmδij − 3

2 uiuknknj − 3
2 ujuknkni

)
fw (27)

and the second, is a correction to the rapid part

φr,w
ij = Cw

2

(
φr

kmnknmδij − 3
2 φr

iknknj − 3
2 φr

jknkni

)
fw (28)

where Cw
1 = 0.5, Cw

2 = 0.3, and fw = 0.4k3/2/(εxn) is a damping function based on the ratio
of the turbulence length scale to the normal distance to the wall, xn.

3.4 Modelling dissipation

While modelling of the turbulent kinetic energy, and of the pressure–strain rate correlation,
has been to at least some degree guided by consideration of their exact equations, the same
is not true for the standard dissipation rate model (Pope, 2000). Dissipation of turbulent
kinetic energy is associated with the smallest scales of the fluctuating field, while the kinetic
energy itself is mostly contained in the largest scales of fluctuations. The exact dissipation
rate equation is comprised of a large number of terms that are all related to dissipative-scale
processes, and all but one of the source-terms require modelling. It is thus not a useful
starting point for modelling the dissipation rate. Instead the more empirical approach taken is
motivated by the spectral energy transfer view of dissipation. The kinetic energy of the larger
energy containing eddies is transferred by vortex-stretching in the presence of mean velocity
gradients to smaller eddies, and the same process occurs at the ‘next’ smaller scales, and so on
to the smallest dissipative scales, where kinetic energy is finally converted to heat by viscous
(molecular) action. If the molecular viscosity is somehow changed, all that happens is that
the size of the dissipative scales change to accommodate the rate of energy they receive, but
the rate itself is not affected. Thus even though the mechanism of dissipation is governed by
processes that occur at the smallest scales, dissipation can also be viewed as an energy-transfer
rate that readjusts itself with the amount of energy it receives. In this sense, the amount
(as opposed to the mechanism) of dissipation is in fact determined by the energy in larger
scales. Under the assumption of spectral equilibrium, the transfer rate of energy across the
spectrum of turbulence scales is constant and determined by the rate of energy input. Based
on this assumption, and the preceding arguments, the conventional equation for dissipation
is assumed to be of the form

Dε

Dt
= Cε1

ε

k
P +Dε − Cε2

ε2

k
, (29)

where Dε is the diffusion of ε. The modelled production term above reflects the assumed
direct link between a single rate of transfer of energy across the spectrum and production
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Reynolds Stress Transport Modelling 9

of energy at the large scales. This assumption is an obvious weakness in the model when
the turbulence is not in equilibrium, as when unsteady solutions are sought, or where the
time-scale of the mean flow is of the same order or smaller than the characteristic time-scale
of turbulence. In such cases the small-scale turbulence may not have enough time to adjust to
the large-scale scale variations, and the instantaneous link implied by the production term in
(29) is questionable.
The destruction term in (29) is motivated by consideration of the decay of homogeneous
isotropic turbulence in the absence of production (Pope, 2000). In such a flow one expects
that the turbulence will decay in a self-similar form in which the rates of decay of k and ε are
proportional

k/ dk
dt

ε/ dε
dt

=
−k/ε

ε/ dε
dt

= C

If this proportionality constant is labelled Cε2, the following destruction term is implied

dε

dt
= −Cε2

ε2

k
(30)

3.5 Diffusion modelling

There are three diffusive transport terms on the right hand side of (7). The first is the viscous
diffusion term

Vij = ν
∂2uiuj

∂xk∂xk
(31)

which is closed and does not require modelling. The following two terms are the pressure

diffusion and turbulent convection, respectively. Most commonly these are modelled
together as a combined turbulent diffusion term, Tij, using the generalised gradient diffusion
hypothesis (GGDH) of Daly & Harlow (1970),

Tij =
∂

∂xl

(
Cs

ε

k
uluk

∂uiuj

∂xk

)
(32)

where Cs is typically 0.22.

A deficiency of this model is that it does not preserve the symmetry under cyclic permutation
of indices that is exhibited by the triple velocity moments uiujuk. This is only significant when
the triple moments and pressure diffusion are modelled separately. In such case an improved
model that has been suggested by Hanjalić & Launder (1972) is often used,

uiujuk = −Cs
k

ε

(
uiul

∂ujuk

∂xl
+ ujul

∂ukui

∂xl
+ ukul

∂uiuj

∂xl

)
. (33)

More elaborate models exist in the literature, as in (Craft, 1998) for example, but the models
mentioned above are the ones more commonly used.

11Reynolds Stress Transport Modelling
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10 Numerical Simulations

3.6 Accounting for low-Re effects

Viscous effects on turbulence properties and their implications on modelling are considered
next. The absence of viscous terms in the equation for fluctuating pressure (12) suggests
that viscous effects on the fluctuating pressure will be of secondary importance compared
to the inviscid effects due to impermeability, considered in section 3.3. The focus of the
discussion is thus directed to the dissipation rate tensor, and the transport equation for the
scalar dissipation rate. When discussing low-Re effects, reference is frequently made to the
turbulent Reynolds number, Ret, defined as

Ret =
k2

νε
. (34)

As previously mentioned, at high Reynolds numbers the dissipation rate tensor is assumed
to be isotropic, εij = 2

3 ε δij. This, however, will cease to be true near a wall where the high
anisotropy of the turbulence is expected to be increasingly felt at the smaller scales as the wall
is approached. The simplest model accounting for this effect is that of Rotta (1951), which
is based on the idea that the anisotropy of the dissipation rate tensor is similar to the stress
anisotropy, thus

εij =
uiuj

k
ε . (35)

This model was used by Hanjalić & Launder (1976) to give the following blending
approximation for the dissipation rate tensor

εij =
2

3
ε

[
(1 − fs) δij + fs

3

2

uiuj

k

]
, (36)

where fs is a function of Ret whose value ranges from 1 to 0 as Ret ranges from 0 to ∞, ensuring
the desired behaviour of εij in these limits. The near-wall model (35) is the simplest form
accounting for near-wall anisotropy of the dissipation tensor. Launder & Reynolds (1983)
have shown that this form does not give the correct near-wall asymptotic behaviour of the
individual tensor elements, which are rather given by

εij

ε
=

uiuj

k
, i �= 2, j �= 2

ε12

ε
= 2

uiu2

k
, i �= 2

ε22

ε
= 4

u2u2

k
.

(37)

What is needed then is a term to replace the Rotta model in (36) which yields the correct
asymptotic behaviour described by (37), and which contracts to 2ε. One possible form that
satisfies these requirements is

ε∗ij =
ε/k

(
uiuj + uiuk nj nk + ujuk ni nk + ukul nk nl δij

)

(
1 + 5

2 npnqupuq/k
) , (38)

where ni represents a component of the wall-normal unit vector (Pope, 2000). The use of
the wall vector in a model is undesirable because of the ambiguity it introduces in complex
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geometries. One way to avoid it is based on the observation that the quantity ∇k1/2, evaluated
near a wall, is a vector that points in the wall-normal direction. Thus

�n =
∇k1/2

|∇k1/2| , (39)

and using the value of the dissipation at the wall for a wall with�n = (0, 1, 0),

|∇k1/2|x2=0 =

(
∂k1/2

∂x2

∂k1/2

∂x2

)1/2

x2=0

=

√
ε

2ν
. (40)

Quantities of the form ninj appearing in (38) can therefore be replaced by

ninj =
2ν

ε

∂k1/2

∂xi

∂k1/2

∂xj
. (41)

Following Hanjalić & Launder (1976), when considering the implications of Low-Re effects
on dissipation rate modelling, it is instructive to consider the exact transport equation for the
energy dissipation rate. This is given by (Daly & Harlow, 1970)

Dε

Dt
=− 2ν

∂ui

∂xk

∂ui

∂xl

∂uk

∂xl
− 2

(
ν

∂2ui

∂xk∂xl

)2

− ∂

∂xk

[
ukε +

2ν

ρ

∂uk

∂xl

∂p

∂x
− ν

∂ε

∂xk

]

− 2ν

(
∂ui

∂xl

∂ul

∂xi
+

∂ul

∂xi

∂ul

∂xk

)
∂Ui

∂xk
− 2νuk

∂ui

∂xl

∂2Ui

∂xk∂xl
.

(42)

All the terms on the right hand side above are unclosed, with the exception of viscous
diffusion. The first two terms on the right hand side of (42) are the dominant ones in high
Re flows. Respectively they represent generation and destruction of ε. The third term, which
represents a combination of diffusive processes, can be of the same order as the difference of
the first two, and must therefore be retained. These three terms are modelled by the three
terms that typically appear in high-Re ε transport models, as in section 3.4. The fourth and

fifth terms are respectively of order Ret
1/2 and Ret smaller than the other terms (Hanjalić &

Launder, 1976), and are thus neglected in high-Re model versions. In low-Re models these
terms need to be reconsidered and accounted for if necessary. The last term is often modelled
as

− 2νuk
∂ui

∂xl

∂2Ui

∂xk∂xl
= Cε3ν

kujuk

ε

(
∂2Ui

∂xj∂xl

)(
∂2Ui

∂xk∂xl

)
. (43)

This term is present in several Low-Re models developed by the Manchester group. As
for the fourth term, initial proposals meant to account for it by allowing the coefficient
of the production and destruction terms, Cε1and Cε2, to be functions of Ret. Similarly,
possible viscous effects on the diffusion terms were to be accounted for by allowing the
term Cε to depend on Ret (Hanjalić & Launder, 1976). However, computations revealed that
adding the term in (43) alone was sufficient in producing good agreement between computed
energy profiles and available data to within experimental accuracy. Thus dependence of the
coefficients Cε1, Cε2, Cε on the turbulence Reynolds number is often (not always) abandoned.
Finally the viscous diffusion term, neglected in high-Re models, is retained in its exact form.
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12 Numerical Simulations

3.7 The Launder–Reece–Rodi models

In their seminal 1975 paper, Launder, Reece & Rodi laid out a hierarchy of RST models based
on arguments presented in section 3.2. Two rapid pressure-strain rate models were proposed.
The first is the quasi-isotropic model (LRR-QI), which has the most general linear tensorial
form satisfying the required symmetry conditions, and is given by

φr
ij = −C2(Pij − 2

3 δij Pκ)− C3(Dij − 2
3 δij Pκ)− 2C4k Sij, (44)

where Sij is the mean strain rate tensor, defined as:

Sij =
1

2

(
∂Ui

∂xj
+

∂Uj

∂xi

)
, (45)

and the coefficients have the following values

C2 = 0.764, C3 = 0.182, C4 = 0.109 . (46)

The second rapid pressure-strain rate model is the isotropization of production model
(LRR-IP), which is also referred to as the ‘Basic’ model, and simply retains the first term of
the QI model and neglects the other two. Thus,

φr
ij = −C2(Pij − 2

3 δij Pκ), (47)

where the coefficient C2 is now set at 0.6. Both models use the Rotta return-to-isotropy model
for the slow pressure-strain rate term,

φs
ij = −C1εaij , (48)

but the coefficient C1 is 1.5 for the QI model and 1.8 for the IP model.
In the original proposal turbulent diffusion Tij is modelled using (33) for the triple velocity
moments (pressure diffusion is usually neglected). In many later implementations this is
replaced by the simpler GGDH. Thus the models can be written as

Duiuj

Dt
= Pij − C1εaij + φr

ij + φs,w
ij + φr,w

ij +
∂

∂xl

(
Cs

ε

k
uluk

∂uiuj

∂xk

)
− 2

3 δijε (49)

where φr
ij is replaced by either the QI or IP models, and the wall-reflection terms φs,w

ij , φr,w
ij are

given by (27) and (28), respectively. Since these models are intended as high Re models, the
viscous diffusion term is neglected and an isotropic dissipation rate tensor is assumed.
Finally, closure is completed with the standard high-Re dissipation rate equation, given by

Dε

Dt
= Cε1

ε

k
Pκ − Cε2

ε2

k
+

∂

∂xk

(
Cε

k

ε
ukul

∂ε

∂xl

)
, (50)

where
Cε1 = 1.44, Cε2 = 1.92, Cε = 0.15. (51)
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The Shima low-Re model

In its original form, the Launder & Shima (1989) model is a low-Re version of the Basic
model that uses wall reflection terms and includes Ret-based damping coefficients to return
the correct near-wall behaviour. Shima (1998) later proposed a low-Re model, based on the
QI pressure-strain rate model, that does away with the wall reflection terms in the interest
of more general applicability to complex geometries. The model admittedly gives stress
anisotropy results in steady channel flow that are inferior to his previous low-Re formulation,
but this is a compromise made in order to discard the wall reflection terms with their
associated difficulties related to complex geometries. The pressure-strain rate coefficients are
no longer constant, and are given by the following expressions:

C1 = 1 + 2.45A0.25
2 A0.75[1 − exp(−49A2)]× {1 − exp[−(Ret/60)2]} (52a)

C2 = 0.7A (52b)

C3 = 0.3A0.5 (52c)

C4 = 0.65A(0.23C1 + C2 − 1) + 1.3A0.25
2 C3 (52d)

where A2, A3 are the second and third invariants of the stress anisotropy tensor:

A2 = aijaji A3 = aijajkaki . (53)

and A is the ‘flatness’ parameter first defined by Lumley (1978),

A = 1 − 9
8 (A2 − A3). (54)

Turbulent diffusion, comprising the triple velocity correlation and the pressure velocity
correlation, is modelled using the simple gradient diffusion of Daly & Harlow (1970)

Tij =
∂

∂xk

(
Cs

k

ε
ukul

∂uiuj

∂xl

)
(55)

where Cs = 0.22.
The dissipation equation is given by

Dε

Dt
= Cε1

ε

k
P − Cε2

εε̃

k
+

∂

∂xk

(
Cε

k

ε
ukul

∂ε

∂xl
+ ν

∂ε

∂xk

)
. (56)

where ε̃ is the homogeneous dissipation rate, defined as:

ε̃ = ε − 2ν

(
∂k1/2

∂xi

)2

. (57)

The coefficients Cε2,Cε retain their typical values 1.92, 0.15 respectively, but Cε1 is prescribed
as:

Cε1 = 1.44 + β1 + β2 , (58a)

β1 = 0.25A min(λ/2.5 − 1, 0)− 1.4A min(P/ε − 1, 0) , (58b)

β2 = 1.0Aλ2 max(λ/2.5 − 1, 0) , (58c)

λ = min(λ∗, 4) , (58d)

λ∗ =

[
∂

∂xi

(
k1.5

ε

)
∂

∂xi

(
k1.5

ε

)]
. (58e)
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14 Numerical Simulations

3.8 The Speziale–Sarkar–Gatski model

Speziale et al. (1991) developed a pressure-strain rate model that is quadratic in aij by first
considering the most general form for φij (slow and rapid) that is linear in the mean strain
and rotation tensors and quadratic in aij. Then they obtained their model by considering the
simplest subset of that general form that has an equivalent structural equilibrium in plane
homogeneous flows. The resulting model has a rapid part that is linear in aij, and a quadratic
slow part, given by

φij =− (2d1ε + d∗1 Pκ)
aij

2
+

d2

4
ε(aikakj − 1

3 akl aklδij)

+

(
d3 − d∗3

√
A2

2

)
kSij +

d4

2
k(aikSjk + ajkSik − 2

3 aklSklδij)

+
d5

2
k(aikΩjk + ajkΩik) ,

(59)

where Ωij is the mean vorticity tensor defined as:

Ωij =
1

2

(
∂Ui

∂xj
−

∂Uj

∂xi

)
, (60)

and the coefficients have the following values

d1 = 1.7, d∗1 = 1.8, d2 = 4.2, d3 = 4
5 , d∗3 = 1.3, d4 = 1.25, d5 = 0.4 . (61)

The rapid part of the SSG model, aside from the nonlinear dependence on A2 in third term of
(59), is tensorially equivalent to the QI model.
Diffusion is modelled using the GGDH, and the standard high-Re version of the ε equation
(50) is used, but the coefficient Cε2 is assigned the slightly lower value of 1.83.

3.9 The Hanjalić–Jakirlić low-Re model

Jakirlić & Hanjalić (1995) developed a low-Re RSTM that is based on the LRR-IP model, and
the Gibson & Launder (1978) wall corrections (27) and (28), making modifications to handle
Low-Re and near-wall effects. The modifications are expressed in terms of Ret, the stress
anisotropy invariants, A2, A3, in addition to invariants of the stress dissipation rate anisotropy
tensor, E2, E3, defined as:

E2 = eijeji E3 = eijejkeki , (62)

eij =
εij

ε
− 2

3
δij . (63)

A ‘flatness’ parameter based on the stress dissipation rate anisotropy invariants is also used:

E = 1 − 9

8
(E2 − E3) . (64)

The modelled RST equation is given by:

Duiuj

Dt
=Pij − C1εaij − C2

(
Pij −

2

3
δijPκ

)
+ φs,w

ij + φr,w
ij

+
∂

∂xl

(
Cs

ε

k
uluk

∂uiuj

∂xk

)
− εij .

(65)
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The coefficients are specified by:

C1 = C +
√

AE2, C = 2.5AF1/4 f , F = min(0.6, A2) , (66)

C2 = 0.8
√

A , (67)

f = min
[(Ret

150

)3/2
, 1

]
, (68)

Cw
2 = max(1 − 0.7C, 0.3), Cw

2 = min(A, 0.3) . (69)

The damping coefficient appearing in the wall correction terms (27) and (28) is given by:

fw = min
[ k3/2

2.5εxn
, 1.4

]
. (70)

The modelled dissipation rate transport equation is given by:

Dε

Dt
= Cε1

ε

k
Pκ − Cε2 fε

εε̃

k
+

∂

∂xk

(
Cε

k

ε
ukul

∂ε

∂xl
+ ν

∂ε̃

∂xk

)

+ Cε3 ν
k

ε
uiuj

∂2Uk

∂xi∂xl

∂2Uk

∂xj∂xl
− Cε4 f4k Ωk Ωk + Sl .

(71)

The coefficients have the following specified values:

Cε1 = 2.6 Cε2 = 1.92 Cε3 = 0.25 Cε4 = 0.1 Cε = 0.18 , (72)

and

fε = 1 − Cε2 − 1.4

Cε2
exp

[
−

(
Ret

6

)2
]

. (73)

The length-scale growth correction, Sl , is given by:

Sl = max

{[(
1

Cl

∂l

∂xn

)2

− 1

](
1

Cl

∂l

∂xn

)2

, 0

}
ε̃ε

k
A , (74)

where l = k3/2/ε, and Cl = 2.5.
The anisotropic stress dissipation rate tensor is modelled as:

εij = fsε∗ij + (1 − fs)
2

3
δijε, (75)

where ε∗ij is given by:

ε∗ij =
ε

k

uiuj + (uiuk nj nk + ujuk ni nk + ukul nk nl ni nj) fd

1 + 3
2 npnq

upuq

k fd

, (76)

fs = 1 −
√

AE2, fd = (1 + 0.1Ret)
−1. (77)
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3.10 The Two-Component-Limit model

Researchers at UMIST, starting with the work of Fu et al. (1987), and Craft et al. (1989),
developed a stress transport model that satisfies the constraint of realizability in the limit
of two component turbulence. An outline of the derivation of the model is presented in Craft
& Launder (2002). Using similar arguments as in (21), but retaining up to cubic terms in aij,
and using the additional constraint of realizability, the following model for φr

ij was obtained

φr
ij =− 0.6

(
Pij − 2/3δijP

)
+ 0.6aijP

− 0.2

{
ukuj ului

k

[
∂Uk

∂xl
+

∂Ul

∂xk

]
− uluk

k

[
uiuk

∂Uj

∂xl
+ ujuk

∂Ui

∂xl

]}

− c2

{
A2(Pij − Dij) + 3amianj(Pmn − Dmn)

}

+ c′2

{(
7

15
− A2

4

)
(Pij − 2/3δijP)

+ 0.2[aij − 1/2(aikakj − 1/3δij A2]P − 0.05aijalkPkl

+ 0.1

[
uium

k
Pmj +

ujum

k
Pmi − 2/3 δij

ulum

k
Pml

]

+ 0.1

[
ului ukuj

k2
− 1/3 δij

ulum ukum

k2

]
·
[

6Dlk + 13k

(
∂Ul

∂xk
+

∂Uk

∂xl

)]

+ 0.2
ului ukuj

k2
(Dlk − Plk)

}

(78)

where A2 is the second invariant of the stress anisotropy tensor defined in (53). In the earliest,
high-Re, version of the model the recommended values of the coefficients, C2, C′

2, are

C2 = 0.55, C′
2 = 0.6 .

As for the slow pressure–strain-rate term, a second-order expression in aij is used, where
the coefficients are allowed to depend on the stress anisotropy invariants in such a way as
to satisfy realizability (Craft & Launder, 2002). Dependency on the third invariant, A3, is
introduced through the flatness parameter, A, defined in (54). The flatness parameter becomes
zero when one stress component vanishes; thus using the form

φs
ij = −C1ε[aij + c′1(aijajk − 1

3 A2δij)]− f ′Aεaij , (79)

where the coefficients are given by

C1 = 3.1(A2 A)1/2 C′
1 = 1.1 f ′A = A1/2 ,

ensures that φs
ij drops to zero when the turbulence is two-component.
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Low-Re TCL model

A low-Re version of the TCL model was presented by Craft (1998). This version adopts
a slightly different decomposition of the velocity-pressure gradient correlation Πij (which
appears in the exact RST equation before it is decomposed, as in (7)). The alternate
decomposition was found to be more appropriate when modelling inhomogeneous flows.
Where this correlation is typically decomposed into the pressure–strain-rate correlation and
pressure diffusion, an alternative decomposition is obtained by defining:

φ∗
ij = Πij − 1

3 δijΠkk . (80)

Constructing φ∗
ij in this way ensures that it is redistributive in nature, since it is traceless and

thus cannot contribute to the level of kinetic energy. This redistributive quantity is modelled
as

φ∗
ij = φ∗,s

ij + φ∗,r
ij + φinh,s

ij + φinh,r
ij . (81)

The quantities φ∗,s
ij , φ∗,r

ij have the same form as their homogeneous counterparts (79) and (78),

respectively, but the coefficients C1, C2 and C′
2 are prescribed by

C1 = 3.1 fA fRet
A1/2

2 , (82a)

C2 = min

{
0.55

[
1 − exp

(
−A1.5Ret

100

)]
,

3.2A

1 + S∗

}
, (82b)

C′
2 = min(0.6, A) +

3.5(S∗ − Ω∗)
3 + S∗ + Ω∗ − 2SI , (82c)

where
f ′A =

√
A fRet

+ A(1 − fRet
) , (83)

fRet
= min[(Ret/160)2, 1] , (84)

fA ==

⎧
⎪⎨
⎪⎩

(A/14)1/2 A < 0.05

A/0.8367 0.05 < A < 0.7

A1/2 A > 0.7 ,

(85)

S∗ = Sk/ε, Ω∗ = Ωk/ε, (86)

S = (2SijSji)
1/2, Ω = (2ΩijΩji)

1/2, (87)

SI =
2
√

2SijSjkSki

(SlmSml)3/2
, (88)

and

Sij =
1

2

(
∂Ui

∂xj
+

∂Uj

∂xi

)
, Ωij =

1

2

(
∂Ui

∂xj
−

∂Uj

∂xi

)
. (89)
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The inhomogeneous corrections are independent of the wall-normal vector, and are given by

φinh,s
ij = fw1

ε

k
(ulukdA

l δij − 3
2 uiukdA

j − 3
2 ujukdA

i )d
A
k

+ fw2
ε

k2
ulun(unukdA

k δij − 3
2 uiundA

j − 3
2 ujundA

i )d
A
l

+ fw3ν

(
ail

∂
√

k

∂xl

∂
√

k

∂xj
+ ajl

∂
√

k

∂xl

∂
√

k

∂xi
− 2

3
anl

∂
√

k

∂xl

∂
√

k

∂xn
δij −

4

3
aij

∂
√

k

∂xl

∂
√

k

∂xl

)

+ f ′w1
k2

ε

(
ukul

∂
√

A

∂xk

∂
√

A

∂xl
δij −

3

2
uiuk

∂
√

A

∂xk

∂
√

A

∂xj
− 3

2
ujuk

∂
√

A

∂xk

∂
√

A

∂xi

)
,

(90)

φinh,r
ij = f Ik

∂Ul

∂xn
dldn(didj − 1

3 dkdkδij) , (91)

where the ‘normalised length-scale gradients’, di, dA
i , introduced by Craft & Launder (1996),

are used indicate the direction of strong inhomogeneity, when present, without the use of a
wall-normal vector. These are defined by

di =
Ni

0.5 + (Nk Nk)0.5
, where Ni =

∂(k1.5/ε)

∂xi
, (92a)

dA
i =

NA
i

0.5 + (NA
k NA

k )0.5
, where NA

i =
∂(k1.5 A0.5/ε)

∂xi
. (92b)

The coefficients appearing in the inhomogeneous corrections are given by:

fw1 = 0.4 + 1.6 min
{

1, max
[
0, 1 − Ret − 55

20

]}
, (93)

fw2 = 0.1 + 0.8A2 min
{

1, max
[
0, 1 − Ret − 50

85

]}
, (94)

fw3 = 2.5
√

A , (95)

f ′w1 = 0.22 , (96)

f I = 2.5 fA . (97)

As discussed in Section 3.6, the dissipation tensor near a wall or free surface is anisotropic, and
the low-Re TCL accordingly prescribes the following anisotropic model for the dissipation rate
tensor,

εij = (1 − fε)
ε′ij + ε′′ij + ε′′′ij

D
+ 2

3 fεεδij , (98)
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where

ε′ij =ε
uiuj

k
+ 2ν

ulun

k

∂
√

k

∂xl

∂
√

k

∂xn
δij

+2ν
ului

k

∂
√

k

∂xj

∂
√

k

∂xl
+ 2ν

uluj

k

∂
√

k

∂xi

∂
√

k

∂xl
,

ε′′ij =ε

(
2

uluk

k
dA

l dA
k δij −

ului

k
dA

l dA
j −

uluj

k
dA

l dA
i

)
,

ε′′′ij =Cεsνk

(
∂
√

A

∂xk

∂
√

A

∂xk
δij + 2

∂
√

A

∂xi

∂
√

A

∂xj

)
,

D =
ε′kk + ε′′kk + ε′′′kk

2ε
,

(99)

and the coefficients are taken as fε = A3/2, Cεs = 0.2. The term ε′ij is similar in nature

to the model in (38), and its purpose is to ensure the correct wall-limiting behaviour of εij,

as discussed in Section 3.6. The term ε′′ij serves the specific purpose of producing the dip

in ε12 near y/δ = 0.1 observed in DNS studies of plane channel flow, and finally the term
ε′′′ij improves the behaviour of εij at a free surface where there is strong inhomogeneity even

without significant viscous effects (Craft & Launder, 1996).

Dissipation rate equation

Early high-Re implementations of the TCL model used the same transport equation for the
scalar dissipation rate (50) as in the LRR models. In later versions of the TCL model (Batten
et al., 1999; Craft, 1998), an equation for the homogeneous dissipation rate,

ε̃ = ε − 2ν

(
∂k1/2

∂xi

)2

, (100)

is solved, which takes the form

Dε̃

Dt
= Cε1

ε̃

k
Pκ − Cε2

ε̃2

k
− C′

ε2
(ε − ε̃)ε̃

k
+

∂

∂xk

(
Cε

k

ε
ukul

∂ε̃

∂xl
+ ν

∂ε̃

∂xk

)

+ Cε3 ν
k

ε
uiuj

∂2Uk

∂xi∂xl

∂2Uk

∂xj∂xl
+ YE.

(101)

The term YE is a length-scale correction based on the proposal of Iacovides & Raisee (1997),
and is given by

YE = Cεl
ε̃2

k
max[F(F + 1)2, 0], (102)

and F in turn is given by

F =

(
∂l

∂xj

∂l

∂xj

)
− Cl{[1 − exp(−BεRet)] + BεClRet exp(−BεRet)} , (103)

l = k3/2/ε, Bε = 0.1069, Cl = 2.55 . (104)
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The remaining coefficients are given by

Cε1 = 1.0, Cε2 =
1.92

1 + 0.7Ad

√
A2

, Ad = max(A, 0.25),

C′
ε2 = 1.0, Cε3 = 0.875,

Cεl = 0.5, Cε = 0.15.

(105)

4. Numerical issues specific to RST modelling

There are a number of numerical difficulties associated with the use of RST models that are not
present when using eddy viscosity formulations. In particular, the use of RST models results
in relatively large source terms that increase the stiffness of the algebraic equation system,
in addition to the fact that the equation set becomes highly non-linear and strongly coupled
(Leschziner & Lien, 2002; Lien & Leschziner, 1994). When using a collocated grid, there is also
the issue of odd-even decoupling of the velocities and the Reynolds stresses.
The use of an eddy-viscosity approach adds to the momentum equations a momentum
diffusion term that can be treated implicitly, thus enhancing stability. Since no such term
is present in RST model equations, one approach to improve stability when applying RST
models is to add and subtract a gradient-diffusion term based on an effective viscosity, νeff.

Considering the stress term u2, for example, one may write

u2 =
(

u2 + νeff
∂U

∂x

)
− νeff

∂U

∂x
,

allowing the unbracketed term to be treated implicitly in the U-momentum equation.
Since the effective viscosity does not affect the final converged solution, it is not uniquely
specified. One would, in general, simply be trying to significantly reduce the residual stress
term that must be treated explicitly in the source term. One way to specify the effective
viscosity is by reference to a simplified form of the Basic Reynolds stress model equations.

What is needed is to construct a relation between u2 and ∂U
∂x , between v2 and ∂V

∂x , and so on.

Take u2 for example, and start by assuming its transport equation is source dominated:

P11 + φ11 −
2

3
εδij = 0 . (106)

Substituting for φ11 from the Basic model,

P11 − C1ε
(u2

k
− 2

3

)
− C2

[
P11 −

1

3
(P11 + P22 + P33)

]
− 2

3
εδij = 0 . (107)

This leads to

− 2u2 ∂U

∂x

(
1 − 2

3
C2

)
− C1

ε

k
u2+

(
other terms not containing u2 or

∂U

∂x

)
= 0 , (108)

or

u2 =
(2 − 4

3 C2)u2

C1

k

ε

∂U

∂x
+ O.T. (109)
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Thus a suitable choice for ν11 is

ν11 =
2 − 4

3 C2

C1

k

ε
u2 . (110)

Similar consideration of the v2 transport equation leads to the specification

ν22 =
2 − 4

3 C2

C1

k

ε
v2, (111)

and relating the shear stress uv to ∂U
∂y leads to the following specification for ν12

ν12 =
1 − C2

C1

k

ε
v2 . (112)

Maintaining the required coupling between the velocity and Reynolds stress components can
be accomplished through a Rhie-Chow-type interpolation (Leschziner & Lien, 2002):

u2
P =

1

aP

(
∑

i

aiu
2
i + Su

)
+

Su

aP
︸ ︷︷ ︸

HP/ap

+νP
11
(Uw − Ue)P

∆x
. (113)

Similarly,

u2
E =

HE

aE
+ νE

11
(Uw − Ue)E

∆x
, u2

e =
He

ae
+ νe

11
(UP − UE)

∆x
.

Using linear interpolation for νe
11 and He/ae, one obtains for the value at face e:

u2
e = 1

2 (u
2
P + u2

E)︸ ︷︷ ︸
linear interpolation

+
1

2∆x

{[
νP

11 + νE
11

]
(UP − UE)− νP

11(Uw − Ue)P − νE
11(Uw − Ue)E

}

︸ ︷︷ ︸
velocity smoothing

.
(114)

Similar expressions can be constructed for the remaining faces, and for the remaining stress
terms.

5. Concluding remarks

This chapter has provided an introduction to the subject of Reynolds stress transport
modelling. A brief historical account of the development of this class of RANS models was
presented. This was followed by an account of the theoretical background, assumptions,
approximations, as well as the rationale behind the most commonly adopted RST modelling
practises. Finally, some numerical implementation issues specific to RST models were briefly
discussed.
The account served to illustrate areas of strength of this class of RANS models, such as the
exact form of the stress production terms, and the abandoning of the incorrectly assumed
direct link between stress and strain that characterises eddy–viscosity formulations. The
presentation also serves to illustrate some inherent weaknesses of present RST models,
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which might also be thought of as areas for potential improvement. These weaknesses are
a natural result of the complexity of turbulent phenomena, and of the persistent closure
problem—transport equations for any level of statistical moments will always contain
unclosed higher moment terms.
The realizability constraint is ultimately a kinematic constraint that serves to prevent
certain un-physical results. Aside from that, it does not prescribe any particular dynamic
stimulus–response type of link between the strain field and inter-component redistribution
processes. Therefore there is no reason to expect that redistributive models, in the form
of tensor polynomial expansions in stress anisotropy and velocity gradient, satisfying such
constraints should return the correct response to all possible strain fields and histories,
particularly ones far removed from those for which the models were calibrated.
This does not diminish the value of RST models, but rather serves to emphasise the
importance of testing and validation in order to understand the limits of validity and accuracy
for intended applications. As discussed earlier, there is always a trade-off between accuracy
and computational cost, and the need for reliable RANS models for many types engineering
simulations is not likely to be replaced by LES or DNS in the near future. More importantly,
these arguments emphasise the need to strive for a deeper and more general understanding of
the complex turbulent phenomena described by the unclosed terms in the transport equations,
with the aim of building better models.
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