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1. Introduction

Recently, a new biometric technology based on human finger-vein patterns has attracted
the attention of biometrics-based identification research community. Compared with other
traditional biometric characteristics (such as face, iris, fingerprint, etc.), finger vein exhibits
some excellent advantages in application. For instance, apart from uniqueness, universality,
permanence and measurability, finger-vein based personal identification systems hold the
following merits:

• Immunity to counterfeit: Finger veins hiding underneath the skin surface make vein
pattern duplication impossible in practice.

• Active liveness: Vein information disappears with musculature losing energy, which
makes artificial veins unavailable in application.

• User friendliness: Finger-vein images can be captured noninvasively without the
contagion and un-pleasant sensations.

Hence, the finger-vein recognition technology is widely considered as the most promising
biometric technology in future.
The current available techniques for finger-vein recognition are mainly based on vein texture
feature extraction (Miura et al., 2004; 2007; Mulyono and Horng, 2008; Zhang et al., 2006;
Vlachos et al., 2008; Yang et al., , 2009a;b;c; Hwan et al., 2009; Liu et al., 2010; Yang et al., 2010).
Although texture features are effective for finger-vein recognition, three inherent drawbacks
remain unsolved. First, the current finger-vein ROI localization methods are sensitive to finger
position variation, which inevitably increases intra-class variation of finger veins. Besides,
the current finger-vein image enhancement methods are ineffective to improve the quality
of finger-vein images, which is very unhelpful for feature information exploration. Most
importantly, the current texture-based finger-vein extraction methods are impotent to reliably
describe the properties of veins in orientation and diameter variations, which can directly
impair the recognition accuracy.
For finger-vein recognition, a desirable finger-vein feature extraction approach should address
ROI localization, image enhancement and oriented-scaled image analysis, respectively.
Therefore, in this chapter, detailed descriptions on these aspects are given step by step. First, to
localize finger-vein ROIs reliably, a simple but effective ROI segmentation method is proposed
based on the physiological structure of a human finger. Second, haze removal method is
used to improve the visibility of finger-vein images considering light scattering phenomenon
in biological tissues. Third, a bank of even-symmetric Gabor filters is designed to exploit
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finger-vein information in multi-scale and multi-orientation. Finally, to improve the reliability
of identification, finger-vein features are extracted in Gabor transform domain, and a fusion
scheme in decision level is adopted. Experimental results show that the proposed method
performs well in personal identification.

2. Finger-vein imaging system

In anatomy, finger veins lie beneath epidermis, and form a network spreading along a finger in
a high random manner. Since they are internal, visible lights usually are incapable of imaging
them. Thus, illuminating the subcutaneous region of a finger properly is an important task
of vein visualization. In medical applications, the NIR (near infrared) lights (760- 850nm) are
often used in vein imaging because they can penetrate relatively deep into the skin as well as
the radiation of lights can be absorbed greatly by the deoxyhemoglobin (Zharov et al., 2004).

Finger

Additional  
LEDs CCD

Main LEDs 

Additional  
LEDs

Output

Position sensors

Fig. 1. The proposed principle of a homemade finger-vein imaging system.

In our application, a homemade finger-vein image acquisition system is designed and
established as shown in Fig. 1. An open window with a fixed size centered in the width
of CCD image plane is set for imaging. The luminaire contains main NIR light-emitting
diodes (LEDs) and two additional LEDs at a wavelength of 760 nm, and a CCD sensor is
place underneath a finger. Here, the additional LEDs are only used for enhancing the contrast
between veins and other tissues. Furthermore, to reduce the variations of imaging poses, two
position sensors (denoted by two brighter cylinders in the right of Fig. 1) are set to light an
indicator lamp when a finger is placed properly.
From the right of Fig. 1, we can see that the captured image contains not only the finger-vein
region but also some uninformative parts. So, the original image needs to be preprocessed to
localize a finger-vein region.

3. Finger-vein image preprocessing

3.1 Finger-vein ROI localization

It is well known that two phalangeal joints, as shown in Fig. 2(a), related with the middle
phalanx of a finger make the finger activities possible. And, a functional interphalangeal joint
organ is constituted by several components, as shown in Fig. 2(b). Obviously, the density of
synovial fluid filling in the clearance between two cartilages is much lower than that of bones.
This make possible that more lights penetrate the clearance region when a near infrared LED
array is placed over a finger. Thus, a brighter region may exit in the CCD image plane, as
shown in Fig. 2(c). Actually, the clearance of a finger inter-phalangeal joint only is with 1.5-2
mm width. Hence, the brighter region can be substituted by a line with a pixel width. We
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Fig. 2. Phalangeal joint prior. (a) A X-Ray finger image; (b) Phalangeal joint structure; (c) A
possible region (white-rectangle) containing a phalangeal joint.
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h
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Fig. 3. Finger-vein ROI localization. (a) Finger-vein imaging window denoted by W0; (b) A
subwindow W1 centered in the width of W0; (c) Inter-phalangeal joint position; (d)
Finger-vein ROI region W2; (e) Finger-vein ROI image.

call the above observation the interphalangeal joint prior. This will be fully used in vein ROI
localization.
According to the preceding observation, the idea resides in the use of the distal
interphalangeal joint as the localized benchmark. In addition, Yang et al. found out that the
only partial imagery of a human finger can deliver discriminating clues for vein recognition
(Yang et al., , 2009a). Likewise, we employ the similar subwindow scheme to achieve the
description of vein images, since most of vein vessels actually disappear at the finger tip and
boundaries. The specific procedure of vein ROI localization is as follows:

• A fixed window (denoted by W0 in Fig. 3(a)) same as finger-vein imaging window in size
is used to crop a finger-vein candidate region in CCD imaging plane.

• A predefined w × h window (denoted by W1) is used to locate a subregion in W0. This can
reduce the effect of uninformative background, as illustrated in Fig. 3(b);

• The pixel values at each row image are accumulated in the subregion W1:

Φi =
w

∑
j=1

I(i, j), i = 1, . . . , h; (1)

• The maximum row-sum is pinpointed to approximately denote the position ( a line
denoted by rk) of the distal interphalangeal joint, as displayed in Fig. 3(c):

rk = arg max
i∈[1,h]

(Φi); (2)
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• Three exemplar points P1, P2, and P0 are located along the detected baseline. The points P1
and P2 represent the intersection of the joint baseline and the finger borders, respectively.
Meanwhile, the point P0 stands for the midpoint of the segment between P1 and P2;

• Based on point P0, a window, denoted by W2 in Fig. 3(d), is used to crop a ROI image from
the finger vein region as shown in Fig. 3(e). Note that the line rk runs at 2/3 height of W2.

Fig. 4. Some samples ROI images from one subject at different sessions.

The fingers vary greatly in shape not only from different people but also from an identical
individual, the cropped ROI by W2 therefore may be different in size. For reducing the aspect
ratio variation of ROIs, all ROI images are normalized to 180 × 100 pixels. Fig. 4 delineates
some sample ROI images of one subject at different instants. We can note from Fig. 4 that the
sample ROI images have little intra-class variation.
From Fig. 4, we can easily see that the contrast of finger-vein images usually is low and the
separability is less between vascular and nonvascular regions. This brings a big challenge
for finger-vein recognition, since the finger-vein patterns may be unreliable when feature
extraction methods are weak in generalization.

3.2 Finger-vein image restoration

Researches in the medical domain reveal that the NIR lights penetrating through a human
finger can be absorbed, reflected, scattered and refracted by such finger components as
bones, muscles, blood vessels, and skin tissue (Delpy and Cope, 1997; Anderson and Parrish,
1981; Xu et al., 2002). This phenomenon is similar to the way of light scattering in
fog (Sassaroli et al., 2004), which can greatly reduce the visibility of imaging scenes. Degraded
finger-vein imageries therefore are nature products of the current available finger-vein
imaging systems.
To remove the scattering effect from images, dehazing techniques currently are effective ways
in many applications (Jean and Nicolas, 2009; Narasimhan and Nayar, 2003). Assume that
I(x, y) is the captured image, R(x, y) is the original image free of haze, ρ(λ) denotes the
extinction coefficient of the fog (scattering medium) and d(x, y) is the depth-map of the scene,
the Koschmieder’s law (Hautière et al., 2006) defined as the following often is used to restore
the degraded image.

R(x, y) = I(x, y)eρ(λ)d(x,y)+ Iv(1 − eρ(λ)d(x,y)), (3)

where λ is wavelength of light and Iv is the luminance of the imaging environment.
Approximatively, the Koschmieder’s law can be transferred to solve the finger-vein image
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Fig. 5. Dehazing-based image restoration. Top: some original images; Bottom: restored
images.

restoration problem since the fog and the biological tissues are two light scattering media
with different extinction coefficients corresponding to different light wavelengths.
Inconveniently, it is difficult to obtain the exact ρ(λ), Iv and d(x, y) in practice, so a filter
approach proposed in (Jean and Nicolas, 2009) is adopted here to estimate R(x, y). This
method can successfully implement visibility restoration from a single image with high speed.
Fig. 5 shows some low-contrast, degraded finger-vein images and their restored versions. It
can be seen from Fig. 5 that haze removal can improve image visibility apparently. However,
it is also obvious that the contrast between venous region and nonvenous region is still low,
and the brightness is nonuniform in nonvenous region. All these may affect the subsequent
processing in feature extraction.

3.3 Finger-vein image enhancement

To further improve the contrast of a finger-vein image as well as compensate the nonuniform
illumination in an automatic manner, a nonlinear method proposed in (Shi et al., 2007) is first
used to correct pixels adaptively, then the illumination variations across the whole image are
approximately estimated. From Fig. 5, we can see that venous regions are always darker
than nonvenous regions in brightness due to NIR light absorbtion, which is not helpful for
making venous region (object region) salient in practice. The negative version of a restored
and corrected finger-vein image therefore is used for background illumination estimation, as
shown in Fig. 6(b). Here, the average filter with a 16 × 16 mask is used as a coarse estimator
of the background illumination, as shown in Fig. 6(c).
Subtracting the estimated background illumination from the negative image, we can obtain
an image with lighting variation compensation, as shown in Fig. 6(d), Then, we enhance the
lighting corrected image by means of histogram equalization. Such processing compensates
for the nonuniform illumination, as well as improves the contrast of the image. Fig. 6(e) and
6(f) show the enhanced results of some finger-vein images, from which we can clearly see
that the finger-vein network characteristics become clearer than those in the top of Fig. 5. To
reduce the noises generated by image operation, the median filter with a 3 × 3 mask is used
accordingly.

4. Finger-vein feature analysis

4.1 Even Gabor filter design

Gabor filters have been successfully employed in a wide range of image-analysis applications
since they are tunable in scale and orientation (Jie et al., 2007; Ma et al., 2003; Jain et al., 2007;
Laadjel et al., 2008; Lee, 1996; Yang et al., 2003; Zhu et al., 2007). Considering the variations
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(a) (b) (c) (d) (e)

(f)

Fig. 6. Enhancement procedure. (a) Restored finger-vein image; (b) Negative version of the
corrected image after restoration; (c) Estimated background illumination; (d) Image with
background illumination subtraction; (e) Enhanced image; (f) Other enhanced results
corresponding to the samples in Fig. 5.

of vessels in orientation and diameter along a finger, oriented Gabor filters in multiscale are
therefore desirable for venous region texture analysis.
A two-dimensional Gabor filter is a function composed by a Gaussian-shaped function and a
complex plane wave (Daugman, 1985), which is defined as

G(x, y) =
γ

2πσ2
exp

{

− 1

2

(

x2
θ + γ2y2

θ

σ2

)}

exp( ĵ2π f0xθ), (4)

where
[

xθ

yθ

]

=

[

cos θ sin θ

− sin θ cos θ

]

[

x
y

]

,

ĵ =
√
−1, θ is the orientation of a Gabor filter, f0 denotes the filter center frequency, σ

and γ respectively represent the standard deviation (often called scale) and aspect ratio of
the elliptical Gaussian envelope, xθ and yθ are rotated versions of the coordinates x and y.
Determining the values of the four parameters f0, σ γ and θ usually play an important role in
making Gabor filters suitable for some specific applications (Lee, 1996).
Using Euler formula, Gabor filter can be decomposed into a real part and an imaginary part.
The real part, usually called even-symmetric Gabor filter (denoted by Ge

· (·) in this paper), is
suitable for ridge detection in an image (Yang et al., 2003), while the imaginary part, usually
called odd-symmetric Gabor filter, is beneficial to edge detection (Zhu et al., 2007). Since the
finger veins appear dark ridges in image plane, even-symmetric Gabor filter here is used to
exploit the underlying features from the finger-vein network. To make even Gabor wavelets
into admissible Gabor wavelets, the DC response should be compensated.
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Based on Eq. 4, a bank of admissible even-symmetric Gabor filters subtracting the DC response
can be expressed as (Lee, 1996)

Ge
sk(x, y) =

γ

2πσ2
s

exp

{

− 1

2

(

x2
θk
+ γ2y2

θk

σ2
s

)}

×
(

cos(2π fsxθk
)− exp(− ν2

2
)

)

, (5)

where s is the scale index, k is the orientation index and ν is a factor determining DC response

whose value is determined by
√

2 ln 2(2△φ + 1)
/

(2△φ − 1).

(a)

(b)

Fig. 7. Spatial filtering. (a) A bank of even-symmetric Gabor filters; (b) The 2D convolution
results.

Since fs, σs, γ and θ usually govern the output of a Gabor filter, these parameters should be
determined sensibly for finger-vein analysis application. Considering that vein vessels hold
high random characteristics in diameter and orientation, γ is set equal to one (i.e., Gaussian
function is isotropic) for reducing diameter deformation arising from elliptic Gaussian
envelop, θ varies from zero to π with a π/8 interval (that is, the even-symmetric Gabor filters
are embodied in eight channels). To determine the relation of σs and fs, a scheme proposed in
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(Daugman, 1985; Lee, 1996) is used here, which is defined as follow

σs fs =
1

π

√

ln 2

2
· 2△φ + 1

2△φ − 1
, (6)

where △φ(∈ [0.5, 2.5]) denotes the spatial frequency bandwidth (in octaves) of a Gabor filter.
Let s = 1, · · · , 4, σs = 8, 6, 4, 2 and k = 1, · · · , 8, we can build a bank of even-symmetric Gabor
filters with four scales and eight orientations, as shown in Fig. 7(a). Assume that F(x, y) denote
a filtered R(x, y), we can obtain

Fsk(x, y) = Ge
sk(x, y) ∗ R(x, y), (7)

where ∗ denotes 2D image convolution operation. Thus, for a enhanced finger-vein image,
32 filtered images are generated by a bank of Gabor filters, as shown in Fig. 7(b). Noticeably,
Gabor filters corresponding to the top row and the bottom row in Fig. 7(a), respectively, are
undesirable for finger-vein information exploitation since they can result in losing a lot of vein
information due to improper scales. The filtered images with two scales corresponding to the
two rows in the middle of Fig. 7(b) therefore are used for finger-vein feature extraction.

4.2 Finger-vein feature extraction

According to the above discussion, the outputs of Gabor filters at the sth scale forms an
8-dimensional vector at each point in R(x, y). For a pixel, its corresponding vector therefore
is able to represent its local characteristic. For dimension reduction, an 8-dimensional vector
based on the statistical information in a 10 × 10 small block of a filtered image is constructed
instead of a pixel-based vector. Thus, for a certain scale, 180 (18 × 10) vectors can be extracted
from the filtered images in Gabor transform domain. Assume that H18×10 represent the block
matrix of a filter image, the statistics based on a block Hij (a component of H in the ith column
and the jth row, where i = 1, 2, · · · , 10 and j = 1, 2, · · · , 18) can be computed. Here, the
average absolute deviation from the mean (AAD) (Jain et al., 2000) δs

ij of the magnitudes of

Fsk(x, y) corresponding to Hij is calculated as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

δsk
ij = 1

K ∑
Hij

∣

∣

∣
|Fsk(x, y)| − µsk

ij

∣

∣

∣

µsk
ij = 1

K ∑
Hij

|Fsk(x, y)|
(8)

where K is the number of pixels in Hij, µsk
ij is the mean of the magnitudes of Fsk(x, y) in Hij.

Based on Eq. 8, the local statistics of filtered images are shown in Fig. 8, where the statistical
information in a red box is used for finger-vein feature analysis.
Thus, the vector matrix at the sth scale of Gabor filter can be represented by

Vs =

⎡

⎢

⎢

⎣

−→v s
11 · · · −→v s

1N
... −→v s

ij

...
−→v s

M1 . . . −→v s
MN

⎤

⎥

⎥



18×10

, (9)

where −→v s
ij = [δs1

ij , · · · , δsk
ij , · · · , δs8

ij ]. According to Eq. 9, uniting all the vectors together can

form a 2880(180 × 2 × 8) dimensional vector, which is not beneficial for feature matching.
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Fig. 8. The average absolute deviations (AADs) in [18 × 10]× 8 blocks of the filtered
finger-vein images in different scales and orientations.

Hence, based on Vs, two new feature matrixes are constructed as

Us =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

‖−→v s
11‖ · · · ‖−→v s

1j‖ · · · ‖−→v s
1N‖

...
...

...
...

...

‖−→v s
i1‖ · · · ‖−→v s

ij‖ · · · ‖−→v s
iN‖

...
...

...
...

...

‖−→v s
M1‖ · · · ‖−→v s

Mj‖ · · · ‖−→v s
MN‖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥



, (10)

and

Qs =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

αs
1(1,2)

· · · αs
1(j,j+1)

· · · αs
1(N−1,N)

...
...

...
...

...

αs
i(1,2) · · · αs

i(j,j+1) · · · αs
i(N−1,N)

...
...

...
...

...

αs
M(1,2)

· · · αs
M(j,j+1)

· · · αs
M(N−1,N)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥



, (11)

where M = 18, N = 10, ‖ • ‖ denotes the Euclidean norm of a vector, αs
i(j,j+1)

is the

angle of two adjacent vectors in the ith row. In this way, matrix Us is suitable for local
feature representation, and matrix Qs is suitable for global feature representation. Hence,
using Us and Qs, the local and global characteristics of a finger-vein image in the Gabor
transform domain at the sth scale can be described sensibly and reliably. For convenience,
the components of matrix Us and Qs are respectively rearranged by rows to form two 1D

25Finger-Vein Recognition Based on Gabor Features
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feature vectors, here called FVCodes,

ZU
s = [‖−→v s

11‖, · · · , ‖−→v s
ij‖, · · · , ‖−→v s

MN‖]T

ZQ
s = [αs

1(1,2)
, · · · , αs

i(j,j+1)
, · · · , αs

M(N−1,N)
]T

(i = 1, 2, · · · , M; j = 1, 2, · · · , N; s = 2, 3)

. (12)

Since the components in Us and Qs are not of the same order of magnitude, it is not advisable

to combine ZU
s and ZQ

s together for feature simplification in practices.

5. Finger-vein recognition

5.1 Finger-vein classification

As face, iris, and fingerprints recognition, finger-vein recognition is also based on pattern
classification. Hence, the discriminability of the proposed FVCodes determines their
reliability in personal identification. To test the discriminability of the extracted FVCodes at a
certain scale, the cosine similarity measure classifier (CSMC) is adopted here for classification.
The classifier is defined as

⎧

⎨

⎩

τ = arg min
Z·κ

s ∈Cκ

ϕ(Z·
s, Z·κ

s )

ϕ(Z·
s, Z·κ

s ) = 1 − Z·T
s Z·κ

s

‖Z·
s‖‖Z·κ

s ‖
, (13)

where Z·
s and Z·κ

s respectively denote the feature vector of an unknown sample and the
κth class, Cκ is the total number of templates in the κth class, ‖ • ‖ indicates the Euclidean
norm, and ϕ(Z·

s, Z·κ
s ) is the cosine similarity measure. Using similarity measure ϕ(Z·

s, Z·κ
s ),

the feature vector Z·
s is classified into the τth class.

5.2 Decision-level fusion

According to section 4, we can see that the proposed FVCodes are different in content,
dimension and scale for finger-vein feature description. Therefore, fusion of the matching
results based on Z·

s may improve the performance of identification. Nowadays, many
approaches have been proposed in multi-biometrics fusion, such as Bayes algorithm, KNN
classifier, OS-Rule, SVM classifier, decision templates algorithm, Dempster-Shafer (D-S)
algorithm. Compared to other approaches, the D-S evidence theory works better in
integrating multiple evidences for decision making. Details on D-S theory can be found in
(Ren et al., 2009; Yager, 1987; Brunelli et al., 1995). Here, a overview of D-S theory is given
briefly in the following.

Let Θ = {θ1, · · · , θn} be a frame of discernment, the power set 2Θ be the set of 2n propositions
(subsets) of Θ. For an individual proposition A (or an evidence), m(A) is defined as basic
belief assignment function (or mass function) if

⎧

⎨

⎩

∑
A∈Θ

m(A) = 1

m(∅) = 0
. (14)

For a subset A satisfying m(A) > 0 is called focal element. Now, given two evidence sets
E1 and E2 from Θ with belief functions, m1(·) and m2(·), let Ai and Bi be two focal elements
respectively corresponding to E1 and E2, the combination of the two evidences is given by

26 Biometric Systems, Design and Applications
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Dempster’s orthogonal operator

m(A) =

⎧

⎪

⎨

⎪

⎩

∑
Ai∩Bj=A

m1(Ai)m2(Bj)

1−Ka
, A 	= ∅

0, A = ∅

, (15)

where
Ka = ∑

Ai∩Bj=∅

m1(Ai)m2(Bj) (16)

represents the conflict degree between two evidence sets. Traditionally, Ka usually leads to
unimagined decision-making if it increases to a certain limit. Aiming to weaken the degree
of evidence confliction, we have proposed an improved scheme in (Ren et al., 2009), and
obtained better fusion results for fingerprint recognition. In view of finger-vein recognition
application, a scheme based on D-S theory, as shown in Fig. 9, here is adopted to implement
fusion in decision level.

Fig. 9. The scheme of decision level fusion based on D-S theory.

First, for a certain extracted vector Z·
s, match scores can be generated using CSMC. Based on

the match scores, a basic belief assignment construction method proposed in (Ren et al., 2009)
is then used for mass function formation. Thus, for a proposition A, mass function of each
evidence is combined by

m(A) = (m1 ⊕ m2 ⊕ m3 ⊕ m4)(A) (17)

where ⊕ represents the improved D-S combination rule proposed in (Ren et al., 2009), and m1,
m2, m3 and m4 are the mass functions respectively computed from different evidence-match
results using CSMC. The belief and plausibility committed to A, Bel(A) and Pl(A), can be
computed as

⎧

⎨

⎩

Bel(A) = ∑
B⊂A

m(B)

Pl(A) = ∑
B∩A 	=∅

m(B) , (18)

where Bel(A) represents the lower limit of probability and Pl(A) represents the upper limit.
To give a reasonable decision, accept/reject, for incoming samples, an optimal threshold value
related to the evidence mass functions should be found during training phase.

27Finger-Vein Recognition Based on Gabor Features
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6. Experiments

6.1 Finger-vein image database

Because of the vacancy of common finger-vein image database for finger-vein recognition, we
build an image database which contains 4500 finger-vein images from 100 individuals. Each
individual contributes 45 finger-vein images from three different fingers: forefinger, middle
finger and ring finger (15 images per finger) of the right hand. All images are captured using
a homemade image acquisition system, as shown in Fig. 1. The captured finger-vein images
are 8-bit gray images with a resolution of 320 × 240.

6.2 Performance evaluation of FVCode

Due to the high randomicity of the finger-vein networks, the discriminability of the proposed
FVCodes may embody not only in different individuals but also in different fingers of an
identical individual. So, to investigate the differences among forefinger, middle finger and
ring finger, 5 finger-vein images from one finger are selected as testing samples while the rest
as training. Since the dimension of a FVCode is not high (≤ 180), dimension reduction is not
necessary for improving match efficiency. Moreover, the integrality of FVCodes describing
finger-vein networks may be destroyed by dimension reduction. Therefore, the extracted
FVCodes are directly used by CSMC for finger classification, some classification results
are listed in Tables 1 and 2, where F_finger, M_finger and R_finger, respectively represent
forefinger, middle finger and ring finger, and FRR and FAR respectively represent false
rejection rate and false acceptance rate.

L-FVCodes F-finger(500) M-finger(500) R-finger(500) FAR(%)

F-finger 492(98.4%) 5 7 1.2
s=2 M-finger 6 489(97.8%) 10 1.6

R-finger 2 6 483(96.6%) 0.8

F-finger 490(98.0%) 8 5 1.3
s=3 M-finger 6 486(97.2%) 13 1.9

R-finger 4 6 482(96.4%) 1.0
FRR s=2 1.6 2.2 3.4
(%) s=3 2.0 2.8 3.6

Table 1. Finger-vein image classification results using local FVCodes.

G-FVCodes F-finger(500) M-finger(500) R-finger(500) FAR(%)

F-finger 488(97.6%) 10 8 1.8
s=2 M-finger 8 483(96.6%) 13 2.1

R-finger 4 7 479(95.8%) 1.1
F-finger 492(98.4%) 4 8 1.2

s=3 M-finger 5 489(97.8%) 9 1.4
R-finger 3 7 483(96.6%) 1.0

FRR s=2 2.4 3.4 4.2
(%) s=3 1.6 2.2 3.4

Table 2. Finger-vein image classification results using global FVCodes.

From Tables 1 and 2, we can clearly see that forefingers hold the best capability in
classification, while middle fingers appear better than ring fingers in correct classification rate
(CCR) but lower than ring fingers in FAR. Moreover, for all test samples, local FVCodes can
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achieve CCRs of 97.6% and 97.2% at two scales, which shows that the discriminability of
local FVCodes decreases with scale (σ2 > σ3). On the contrary, the discriminability of global
FVCodes increases with scale since CCR increases from 96.67% at second scale (σ2) to 97.6% at
third scale (σ3). These results show that 1) not only the proposed FVCode exhibits significant
discriminability but also every finger is suitable for personal identification, and 2) fusion
of local and global FVCodes in this two scales can improve the performance of finger-vein
features in personal identification. Hence, the finger-vein images from different fingers can
be viewed as from different individuals, and the proposed fusion scheme, as shown in Fig. 9,
is desirable for recognition performance improvement. In the subsequent experiments, the
database thus is expanded manually to 600 subjects and 15 finger-vein images per subject.
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Fig. 10. The results of identification and verification

To obtain an unbiased estimate of the true recognition rate, a leave-one-out cross-validation
method is used here. That is, leaving one example out sequentially and training on
the rest accordingly, we conduct a classification of the omitted example. Consider that
cumulative match scores (CMS) proposed in (Phillips et al., 2000) be more general in
measuring classification performance, we therefore use it to evaluate the proposed finger-vein
recognition algorithm. CMS can report the correct match probability (CMP) corresponding to
the ranked n matches, and CCR is equivalent to the first CMP (rank =1). Fig. 10 demonstrates
the performance of the proposed method in identification and verification (for ranks up to 10).
From Fig. 10, we can see that both local FVCodes and global FVCodes have their own merits
in finger-vein recognition. Results from local FVCodes at the first scale (s = 2) are somewhat
better than those at the second (s = 3), whereas this situation is reverse in results from global
FVCodes. This is because, in the Gabor transform domain, feature variations are sufficiently
represented locally at a big scale and globally at a small scale. Furthermore, the performance
of both identification and verification for decision-level fusion is improved better, especially
in FAR. This demonstrates that fusion of FVCodes at the two scales can improve the reliability
of identification significantly. Hence, the finger-vein recognition technology is worthwhile to
pay further attentions in security.

6.3 Comparison with existing methods

Unlike iris, face and fingerprints, research on finger-vein recognition is in an initial stage. For
the purpose of comparison, we only implement some methods according to published papers
(Miura et al., 2004; 2007; Mulyono and Horng, 2008; Zhang et al., 2006). Since it is difficult
to obtain the detailed descriptions of the existing techniques in finger-vein recognition, only
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algorithms on finger-vein feature extraction are implemented faithfully to the originals. The
cosine similarity classifier here is used as a common measure to test the performance of
the extracted finger-vein features. This is helpful to illustrate the capabilities of the existing
finger-vein features in discriminability.
However, since some conditions may be uncertain in practice, our implemented versions may
be inferior to the originals. Therefore, the comparison results only show the performance of
previous methods approximately. Based on the expanded database (600 subjects, 15 images
per subject), using 10 image of each subject as training samples and the rest as testing samples,
we give the CCRs and FARs in Table 3.

(%) Miura(’04) Zhang(’06) Miura(’07) Lian(’08) L-FVCode(s = 2)
CCR 90.63 90.97 93.37 89.43 97.6
FAR 9.68 9.27 7.21 12.21 1.2

Table 3. Comparison results of the existing methods.

From Table 3, we can see that the proposed method is better than the previous in CCR
and FAR. This is exciting indeed. Unfortunately, the results from the previous methods
are significantly lower than those reported in the originals, especially in FARs. We think
that two main reasons are responsible for this situation. First, the used image databases are
different, which can directly lead to experimental deviations in practice. Second, the qualities
of the used images may be different, that is to say, different image sensors generated different
image qualities, which can significantly degrade different algorithms in finger-vein extraction.
Hence, to make finger-vein recognition technology progress steadily, a standard finger-vein
image database is indispensable in finger-vein based research community.

7. Conclusion

A method of personal identification based on finger-vein recognition has been discussed
elaborately in this chapter. First, a stable finger-vein ROI localization method was introduced
based on an interphalangeal joint prior. This is very important for finger-vein based practical
application. Second, haze removal was adopted to restore the degraded finger-vein images,
and background illumination was compensated from illumination estimation. Third, a bank
of Gabor filters were designed to exploit the underlying finger-vein characteristics, and both
local and global finger-vein features were extracted to form FVCodes. Finally, finger-vein
classification was implemented using the cosine similarity classifier, and a fusion scheme in
decision level was adopted to improve the reliability of identification. Experimental results
have shown that the proposed method performed well in personal identification.
Undoubtedly, the method discussed in this chapter can not be optimal in accuracy and
efficiency considering the development of finger-vein recognition technology. Therefore, this
work should be just for reference to implement a finger-vein recognition task.
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