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1. Introduction 

Paragonimiasis is a food-borne trematode infection that affects 22 million people in at least 
20 countries (World Health Organization [WHO], 2002) with 293 million more at risk of 
infection (Keiser & Utzinger, 2007). In East, Southeast, and South Asia, pulmonary 
paragonimiasis is commonly caused by the trematode Paragonimus westermani (Blair et al., 
2007).  Humans get infected by this lung fluke by ingesting metacercariae present in raw 
freshwater crabs or by eating raw meat of paratenic hosts such as omnivorous mammals 
(Miyazaki & Habe, 1976).  Human paragonimiasis has been reported to be re-emerging in 
previously endemic areas in Japan (Mukae et al., 2001; Nakano et al., 2001, and Kirino et al., 
2009) and increasing in some regions of China (Lieu et al., 2008). New foci of transmission 
have also been reported in Lao PDR (Odermatt et al., 2009). 
Currently, either praziquantel or triclabendazole is effective for the treatment of pulmonary 
paragonimiasis.  However, since these are the only viable drugs against this infection, there 
is a need to develop back up drugs while drug resistance is not yet emerging (Keiser & 
Utzinger, 2007).  In addition, a more specific and sensitive detection tool is needed for 
diagnosing pulmonary paragonimiasis since a considerable number of cases are 
misdiagnosed as tuberculosis or vice versa due to similarity of some signs and symptoms 
(WHO, 2002). 
The rapid availability of parasite genomic sequences coupled with development of robust 
bioinformatics tools have resulted in the identification of numerous potential drug targets. 
These include the phosphagen kinases (PKs) that catalyze the reversible transfer of a 
phosphate between ATP and naturally occurring guanidino substrates. These enzymes play 
a key role in maintaining cellular energy homeostasis through temporal energy buffering 
that stabilizes the cellular ATP/ADP hydrolysis (Ellington, 2001).  Studies on PKs of  
parasitic protozoans and nematodes have shown that PKs are important in energy 
metabolism and adaptation to stress conditions (Platzer et al, 1999; Alonso et al., 2001; 
Miranda et al., 2006; Pereira et al., 2003; Pereira et al., 2002).  Enzyme activity of PK in 
Trypanosoma cruzi, the causative agent of Chagas disease, has been shown to be inhibited by 
various compounds such as catechin gallate (Paveto et al., 2004) and arginine analogs 
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(Pereira et al., 2003).  In this chapter the cloning, expression and molecular characterization 
of a novel phosphagen kinase from the lung fluke P. westermani will be described. Mutation 
studies for the elucidation of substrate binding mechanism and phylogenetic analyses will 
also be presented. 

2. Cloning and molecular characterization of P. westermani PK 

At present, eight PKs and their corresponding phosphagens have been identified (Ellington, 
2001). Creatine kinase (CK) is the sole PK in vertebrates. In addition to CK, the following 
PKs are found in various invertebrate species: arginine kinase (AK) (Uda et al. 2006), 
hypotaurocyamine kinase (HTK), glycocyamine kinase (GK), thalessemine kinase (ThK); 
opheline kinase (OK), lombricine kinase (LK), and taurocyamine kinase (TK) (Robin, 1974; 
Thoai, 1968; Morrison, 1973). Among the PKs, AK is the most widely distributed being 
present in deuterostomes, protostomes, basal metazoans, some protozoans (Uda et al. 2006) 
and in the  prokaryote Desulfotalea psychrophila (Andrews et al., 2008).   
Besides T. cruzi, phosphagen kinases have also been identified in other important animal 
and human parasites.  AKs were cloned from the nematodes Ascaris suum and Toxocara canis 
which can cause visceral larva migrans (VLM) in humans (Nagataki et al., 2008; 
Wickramasinghe et al., 2007) and from T. brucei which causes human sleeping sickness and 
Nagana in livestock (Pereira et al., 2002).  The PK from the trematode Schistosoma mansoni 
was also recently described by Awama et al. (2008).   
To determine the cDNA sequence of the PK in P. westermani, total RNA was first isolated 
from samples collected from definitive hosts in Bogil Island, South Korea using the acid 
guanidinium thiocyanate–phenol–chloroform extraction method (Chomczynski & Sacchi, 
1987). Messenger RNA (mRNA) was purified with a poly (A)+ isolation kit (Nippon Gene, 
Tokyo, Japan).  First-strand cDNA was synthesized from 20 ng to 2 μg of mRNA using the 
Ready-To-Go You-Prime First-Strand Beads (Amersham Pharmacia Biotech, NJ, USA) which 
utilizes Moloney Murine Leukemia Virus (M-MuLV) as reverse transcriptase. One microliter 
of 10 pmol lock-docking oligo(dT) primer was used for the first-strand synthesis.  The 5’ half 
of P. westermani PK cDNA was first amplified by RT-PCR using the universal PK primers 
SmTcPKptnF1 and SmTcPKptnR1 and ExTaq DNA polymerase (Takara, Kyoto, Japan) as 
the amplifying enzyme. The PCR reaction components are listed in Table 1 while the 
amplification conditions are in Table 2. 
 

Components Concentration/25 µL reaction volume 

cDNA 5 μL 

Forward primer 10 pmol 

Reverse primer 10 pmol 

Ex TaqTM dNTPs 0.2 mM each 

10 × Ex TaqTM buffer 1X 

ExTaqTM   polymerase 2.5 U 

Table 1. Components of the PCR reaction mixture for the amplification of P. westermani PK 
cDNA. 
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Step Temperature Time Cycles 

Initial denaturation 94°C 2 min 1 
Denaturation 94°C 30 sec 35 
Annealing 55°C 35 sec 35 
Extension 72°C 2 min 35 
Final Extension 72°C 4 min 1 

Table 2. Thermal cycling conditions for the amplification of P. westermani PK cDNA. 

The amplified products were purified using GeneClean® II Kit (QBIOgene, USA) and 
subcloned into the pGEM® T-vector (Promega, USA)  and transformed into E. coli JM109 
cells (Takara, Japan).  After transformation, the bacteria are plated on Luria-Bertani plate 
containing 5-bromo-4-chloro-3-indoyl-β-D-galactoside (X-gal), isopropyl β-D-1 
galactopyranoside (IPTG), and ampicillin. Positive clones were obtained and cultured 
overnight in liquid 2 ml Luria Bertani (LB) medium with ampicillin.  Plasmid DNA was 
extracted using the alkaline SDS method and nucleotide sequencing was done with an ABI 
PRISM 3100-Avant DNA sequencer using a Big Dye Terminators v3.1 Cycle Sequencing Kit 
(Applied Biosystems, CA, USA).  From the obtained partial sequence, the specific primer 
PwKoreaPKF1 was designed and used, together with the lock-docking oligo (dT) primer, to 
amplify and determine the remaining sequence of the 5’ half.  A poly (G)+ tail was added to 
the 3’ end of the P. westermani cDNA pool with terminal deoxynucleotidyl transferase 
(Promega, WI, USA).  The 3’ half of the PK cDNA was then amplified using the oligo(dC) 
primer and a specific primer PwKoreaPKR3 designed from the sequence of the 5’ half.  The 
amplified products were purified, subcloned, and sequenced as described above.  The 
sequences of the primers used for cDNA amplification are listed on Table 3. 
 

Primer name Sequence (5’-3’) 

Oligo(dT) GACTCGAGTCGACATCGA(T)17 

SmTcPKptnF1 CTNMCNAARAARTAYCT 

SmTcPKptnR1  AGNCCNAGNCGNCGYTRTT 

PwKoreaPKF1  TCTGTGAGGAGGATCATAT 

Oligo(dC) GAATT(C)18 

PwKoreaPKR3 TTTTTGTTGTGGAAGATCCC 

Table 3. Primers used for the amplification of P. westermani PK cDNA. 

P. westermani PK cDNA comprises 2, 305 bp with 163 bp of 3’ UTR; the 5’UTR was not 
successfully amplified. The ORF consisting of 2, 142 bp codes for 713 amino acid residues 
and the translated protein has a calculated mass of 80, 216 Da and an estimated pI of 7.86.  
Alignment of P. westermani PK amino acid sequence with other PKs indicated that this 
enzyme has a contiguous two-domain structure potentially encoding for two distinct PK 
enzymes.  Domain 1 (D1) (Fig. 1) consists of 360 amino acids with a calculated mass of 40, 
422 Da and an estimated pI of 8.47.  Domain 2 (D2) consists of 353 amino acids with a 
calculated mass of 39, 583 Da and an estimated pI of 7.63.   
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Fig. 1. Schematic representation of P. westermani PK 

 

 
a) Domain 1                                                         b) Domain 2 

Fig. 2. Nucleotide and amino acid sequence of ORF of P. westermani PK (start codon is 
underlined and stop codon is marked with *). 

Two-domain AKs were also reported for the sea anemone Anthopleura japonicus (Suzuki et 
al., 1997), the clams Pseudocardium sachalinensis (Suzuki et al., 1998), Corbicula japonica, Solen 
strictus (Suzuki et al., 2002), Ensis directus (Compaan & Ellington, 2003), and Calyptogena 
kaikoi (Uda et al., 2008). The PK found in S. mansoni also has a contiguous two-domain 
structure (Awama et al., 2008). These multiple domain AKs are products of gene duplication 
and subsequent fusion as suggested by the presence of a bridge intron separating the two 
domains of A. japonicus and P. sachalinensis AKs (Suzuki & Yamamoto, 2000). 
Members of the phosphagen kinase family share high sequence identity suggesting that these 
enzymes have evolved from a common ancestor (Suzuki et al., 1997).  Phylogenetic analyses 
have shown that PKs can be divided into two distinct lineages, an AK lineage and a CK 
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lineage (Uda et al., 2005).  It is probable that the ancestral PK was monomeric and an early 
gene duplication event resulted in the formation of these lineages.  Moreover, the genes coding 
for the ancestral AK and CK could have been present early in the evolution of metazoans since 
AKs and CKs are found in both deuterostomes and protostomes (Ellington & Suzuki, 2006). 
The phylogenetic tree constructed based on the amino acid sequence of P. westermani PK 
and other phosphagen kinases using the Neighbor-joining method in MEGA version 4 
(Tamura et al., 2007) shows the presence of two major clusters:  a CK cluster and an AK 
cluster. The CK cluster includes the CKs from vertebrates and other PKs from annelids.  The 
AK cluster, on the other hand, is divided into two subclusters.  The first subcluster contains 
the nematode, arthropod, and protozoan AKs.  P. westermani PK falls in the second 
subcluster together with S. mansoni PK, molluscan AKs and sipunculid HTK.  
 

 
Fig. 3. Neighbor-joining tree for the amino acid sequences of phosphagen kinases (Jarilla et 
al., 2009). 
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3. Expression of recombinant P. westermani PK and enzyme kinetics 

The full-length and truncated domains of P. westermani PK were expressed in E. coli as MBP 
fusion proteins.  Specific primers with EcoRI and PstI restriction sites were designed to 
amplify the open reading frames (ORFs) of P. westermani PK.  The forward primer 
PwKorPK5D1EcoRI (5’TTGAATTCGCCGATGTCATGCCTGTTGAG-3’) and reverse primer 
PwKorPK3D1PstI (5’-TTCTGCAGTTACGGAGCATCCTTGTTGTAA-3’) were used to 
amplify D1 while the primers PwKorPK5D2EcoRI (5’-TTGAATTCG CCGATG 
TCATGCCTGTTGAG-3’) and PwKorPK3D2PstI (5’-TTCTGCAGTCAAA 
GTGACTGTTCGATAGC-3’) were used for D2.  PwKorPK5D1EcoRI and PwKorPK3D2PstI 
were used to amplify the ORF of the full-length construct.  PCR was done in a total volume 
of 50 µL using KOD DNA polymerase for high fidelity amplification.  The thermal cycling 
condition used was similar as described above.  The components of the PCR reaction 
mixture are shown on Table 4. 
 

Components Concentration/25 µL reaction volume 

cDNA 5 μL 
Forward primer 10 pmol 
Reverse primer 10 pmol 
KOD dNTPs 0.2 mM each 
MgSO4 2 mM 
10 × KOD Plus buffer 1X 
KOD Plus DNA   polymerase 1 U 

Table 4. Components of the PCR reaction mixture for amplification of P. westermani PK 
ORF. 

Since KOD DNA polymerase produces blunt-ended DNA products, an A-tail was added to 
the 3’ end of the PCR product.  Amplified products were first purified using the QIA quick 
PCR purification columns (QIAGEN, GmbH, Hilden, Germany). The 30 µL A-tailing 
reaction mixture contained purified KOD PCR product, 15 U of Gene Taq DNA Polymerase 
(Wako Nippon Gene, Japan), 3 µL of 10X Gene Taq Buffer, and 1.2 µL of 5 mM dATP.  The 
mixture was incubated at 70°C for 30 minutes.  A-tailing product was purified, subcloned, 
and sequenced as described above. 
To isolate the ORFs of P. westermani PK D1, D2, and D1D2, plasmids with verified sequence 
were restriction digested and cloned into the EcoRI/PstI site of pMAL-c2 (New England 
Biolabs, MA, USA).  Plasmids from selected clones were isolated and sequenced as above for 
final verification of orientation and sequence of the inserts. The maltose binding protein 
(MBP)- phosphagen kinase fusion protein was expressed in E. coli TB1 cells by induction 
with 1 mM IPTG at 25°C for 24 h.  The cells were resuspended in 5X TE Buffer, sonicated, 
and the soluble protein was extracted.  The recombinant enzymes were obtained as soluble 
fractions, and successfully purified by affinity chromatography using amylose resin (New 
England Biolabs, MA, USA).  SDS-PAGE was used to determine the purity of the expressed 
protein. A single 120 kDa band (PwTK D1D2+MBP) was obtained from SDS-PAGE of the 
full-length recombinant protein and 80 kDa band (truncated domain+MBP) for each of the 
truncated domain. 
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The purified enzymes were placed on ice until enzyme activity assay within 12 h. The 
enzyme activity of the recombinant proteins was measured with an NADH-linked assay 
spectrophotometric assay at 25°C (Morrison & James, 1965) and determined for the forward 
reaction or phosphagen synthesis (Fujimoto et al., 2005).  The following available substrates 
were used to determine specificity: L-arginine, D-arginine, creatine, glycocyamine, and 
taurocyamine.  The MBP tag was not removed from the recombinant enzymes due to 
possible enzyme inactivation if the tag was to be digested.  Tada et al. (2008), based on 
results of previous studies, concluded that the presence of MBP tag had no significant effect 
on the substrate binding properties of AK or CK activity. The full-length and truncated 
domains 1 and 2 showed significant activity for the substrate taurocyamine (0.715 - 32.857 
umol/min*mg protein) (Table 1).  Therefore, it was concluded that the PK of P. westermani is 
a taurocyamine kinase (Jarilla et al., 2009). 
 

Substrate 
PK activity (µmol/min*mg protein) 

D1 D2 D1D2 
Blank (control) 0.028 0.010 0.198 
Taurocyamine 32.857 0.715 14.360 
L-arginine 0.024 0.014 0.184 
D-arginine 0.031 0.006 0.100 
Creatine 0.019 0.006 0.085 
Glycocyamine 0.014 0.013 0.156 

Table 5. Enzyme activity of P. westermani phosphagen kinase for various guanidine 
compounds (Jarilla et al., 2009). 

Taurocyamine kinase was previously suggested to be exclusively found in marine annelids 
(Uda et al., 2005).  This enzyme was first purified from the lugworm Arenicola marina by 
sequential ammonium sulfate precipitation and gel-sieve chromatography (Thoai et al., 1963 
as cited in Surholt, 1979) and inferred to be localized in the cytosol and mitochondria 
(Surholt, 1979).  Indeed, cytoplasmic and mitochondrial isoforms of TK were found in A. 

brasiliensis (Uda et al., 2005) and the tubeworm Riftia pachyptila  (Uda et al., 2005).  It has 
been observed that cytoplasmic isoforms are more specific to taurocyamine compared to the 
mitochondrial isoforms (Uda et al., 2005).  On the basis that P. westermani TK showed 
activity to taurocyamine only, it can be surmised that this TK is cytoplasmic.  But this cannot 
be confirmed at this point, since the 5’ UTR of the cDNA was not succesfully amplified; 
thus, the absence or presence of the mitochondrial targeting sequence cannot be determined. 
The kinetic parameters (Km, Kd, and kcat) and Vmax of the MBP-tagged P. westermani TK were 
also obtained for the forward reaction with various concentrations of the substrate 
taurocyamine and ATP. Shown in Table 6 are the components of the reaction mixture (total 
1.0 ml).  The reaction was started by adding 0.05 ml of an appropriate concentration of 
guanidine substrate made up in 100 mM Tris–HCl (pH 8). The initial velocity values were 
obtained by varying the concentration of guanidine substrate (taurocyamine) versus fixed 
concentrations of the ATP. The KmTc value was determined from the enzyme reaction using 
nine different substrate concentrations of taurocyamine around the rough KmTc value. To 
determine the Kd value, the above reactions were done at four different concentrations of 
ATP (10 mM, 7 mM, 5 mM, and 3 mM). For the estimation of kinetic constants (Km and Kcat), 
a Lineweaver–Burk plot was made and fitted by the least-square method in Microsoft Excel. 
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The kinetics of phosphagen kinase can be explained as a random-order, rapid-equilibrium 
kinetic mechanism (Morrison and James, 1965), and the Kd, the dissociation constant, was 
obtained graphically as described by Suzuki et al. (1997) or by fitting data directly according 
to the method of Cleland (Cleland, 1979), using the software written by Dr. R. Viola 
(Enzyme Kinetics Programs, ver. 2.0). Protein concentration was estimated from the 
absorbance at 280 nm (0.77 AU at 280 nm in a 1 cm cuvette corresponds to 1 mg 
protein/ml). 
 

Components Volume μL 

100 mM Tris-HCl (pH 8) 650.00 
750 mM KCl 50.00 
250 mM Mg-acetate 50.00 
25 mM phoephoenolpyruvate (made up in 100 mM 
imidazole/HCl, pH 7.0) 50.00 

5 mM NADH (made up in Tris-HCl, pH 8.0) 50.00 
Pyruvate kinase/lactate dehydrogenase mixture 
(made up in 100 mM imidazole/HCl, pH 7.0) 50.00 

ATP (appropriate concentration; made up in 100 
mM imidazole/HCl, pH 7) 

50.00 

Recombinant enzyme 50.00 

Table 6. Components of the reaction mixture used for enzyme kinetics assays. 

X-ray crystal structures of substrate-free as well as transition state forms of both AKs and 
CKs showed that these enzymes can be divided into two structural domains, a smaller 
amino-terminal (N-terminal) domain and a carboxyl-terminal (C-terminal) domain (Zhou et 
al., 1998, Lahiri et al., 2002, Gattis et al., 2004).  During substrate binding, a flexible loop from 
each domain folds over the substrate at the active site resulting to large conformational 
changes (Zhou et al., 1998) which appear to be necessary in aligning the two substrates for 
catalysis, configuring the active site only when productive phosphoryl transfer is possible, 
and excluding water from the active site to avoid wasteful ATP hydrolysis (Zhou et al., 
2000).  These conformational changes are elicited by the combination of Mg2+ + ADP or ATP 
which are substrates common to all PKs (Forstner et al., 1998).   
Recent studies by Yousef et al. (2003) and Fernandez et al. (2007) on crystal structures of 
AKs from Limulus polyphemus and Trypanosoma cruzi, respectively, suggested that instead of 
the movement of two domains, the differences in substrate binding can be attributed to the 
motion of three domains relative to a fixed one. Dynamic domain 1 comprises the amino-
terminal globular domain, as well as other elements of the active site that are critical to 
substrate specificity and catalysis.  It also contains the active-site cysteine conserved in 
phosphagen kinases that is proposed to mediate the synergism in substrate binding (Yousef 
et al., 2003) that appears to be a common feature in PKs (Wu et al., 2008).  The substrate 
synergism may be associated with substrate-induced conformational changes within the 
tertiary complex (Maggio et al., 1977; Zhou et al., 1998). Gattis et al. (2004) suggested that the 
active-site cysteine is relevant to catalysis and that one of its roles is enhancing the catalytic 
rate through electrostatic stabilization of the transition state. Also included in the dynamic 
domain 1 is the highly conserved segment “NEEDH” regarding which interactions link 
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conformational changes to phosphagen binding. The other two dynamic domains, together 
with the dynamic domain 1, close the active site with separate hinge rotations relative to the 
fixed domain (Yousef et al. 2003).  
The complex conformational changes during substrate binding may be affected by the 
presence of two or more catalytic domains on a single polypeptide chain (Compaan & 
Ellington, 2003).  Contiguous dimeric AKs from Ensis and C. japonica have high sequence 
conservation in both domains of the protein but only their second domain showed activity 
(Compaan & Ellington, 2003; Suzuki et al., 2003).  However, this was not the case for  
P. westernai TK since both truncated domains exhibited activity for taurocyamine (Jarilla et 
al, 2009). 
Table 7 shows the kinetic parameters of P. westermani TK and annelid TKs. The second 
domain and the contiguous domain of P. westermani TK have stronger affinity for 
taurocyamine than D1 as indicated by their lower KmTc values.  However, D1 has stronger 
affinity for ATP.  P. westermani TK also has lower KmTc compared to the Arenicola 
cytoplasmic and mitochondrial TKs and Riftia mitochondrial TK.  All P. westermani TK 
constructs exhibit synergism during substrate binding since the KdTc/KmTc and KdATP/KmATP 
values obtained for the three recombinant enzymes were greater than one. 
It appears that the full-length P. westermani TK is catalytically more efficient than the 
truncated domains since the kcat value (a measure of the number of substrate molecules 
converted to product per enzyme molecule per unit time) for D1D2 accounts for the kcat 
values of the truncated domains.  This is further corroborated by the values obtained for the 
Vmax and kcat/KmTc . 
 

Source 
KmTc    

(mM)
KdTc     

(mM)
KdTc/Kmc 

KmATP    

(mM) 
KdATP    
(mM) 

KdATP/
KmATP

kcat  
(S-1) 

kcat/KmTc 
Vmax 

(umol/min*
mg protein 

P. westermani    
TK D1 

0.75    
± 0.07

4.22   
± 1.12

5.63 
0.66      

±  
0.11 

3.58      
± 

 0.27 
5.42 

24.16     
± 

 1.54 
32.21 

40.31  
±  

2.51 

P. westermani    
TK D2 

0.51    
± 0.04

1.49   
± 0.29

2.92 
1.43     

± 
 0.36 

4.03      
± 

 0.76 
2.82 

11.56     
± 

 0.45 
22.67 

21.43  
± 

 1.75 

P. westermani 
TK D1D2 

0.57    
± 0.10

1.95   
± 0.43

3.42 
0.98      

± 
 0.16 

3.37      
± 

 0.70 
3.44 

33.44     
± 

1.01 
58.67 

60.01  
± 

 3.01 

Arenicola TK 
4.01    

± 0.41
NA NA NA NA NA 

9.43      
±  

0.45 
2.35 

28.71  
± 

 1.06 

Arenicola 
MiTK 

0.88    
± 0.08

NA NA NA NA NA 
14.3      

±  
1.01 

16.23 
17.82  

± 
 1.24 

Riftia MiTK 
2.12    

± 0.45
NA NA NA NA NA 

12.5      
±  

1.52 
5.9 

10.4  
± 

 0.59 

Table 7. Kinetic parameters of P. westermani and annelid TKs. 
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4. Role of the amino acids on the guanidino specificity (GS) region  

The guanidine specificity (GS) region has been proposed by Suzuki et al. (1997) as a 
potential candidate for the guanidine substrate recognition site based on amino acid 
sequence analysis results.  This is the substrate specifity loop (residues 61-68), included in 
the part of the N-terminal domain, which moves substantially closer to the phosphagen 
substrate-binding site (Yousef et al., 2003).  It has been suggested that there is a proportional 
relationship between the size of the deletion in the GS region and the mass of the guanidine 
substrate used.  For instance, CK and GK, which use the smallest substrate, have no deletion 
while LK, AK, and TK, which recognize relatively large guanidine substrates, have a five- 
amino acid deletion (Suzuki et al., 1997; Uda et al., 2005). Previous studies on AKs of 
Nautilus and Stichopus, CK of Danio and LK of Eisenia showed that introduction of mutations 
on the GS region significantly reduced the activity of the said enzymes (Suzuki et al., 2000; 
Suzuki et al., 2000; Uda & Suzuki, 2004; Suzuki & Yamamoto, 2000; Tanaka and Suzuki, 
2004).  Unlike cytoplasmic TKs from A. brasiliensis and R. Pachyptila which have five amino 
acid deletions on the GS region (Uda et al., 2005; Uda et al., 2005), the two domains of    
P. westermani TK have six amino acid deletions in the GS region (Fig. 4) (Jarilla et al., 2009). 
 

 
Fig. 4. Alignment of the guanidino specificity region of P. westermani PK with other  selected PK. 

Elucidation of the amino acids involved in substrate binding and maintenance of substrate-
bound structure in P. westermani TK are important for the exploration of inhibitors against 
this enzyme.  Currently, the functional properties and substrate binding mechanisms in TK 
are not well known.  To characterize the substrate recognition system in P. westermani TK we 
introduced mutations (D1: Gly58Arg, Ala59Gly, Ile60Val, Tyr84His, and Tyr84 Ile; D2: 
Arg61Leu, Ala62Gly, Ile63Val, Tyr87His, and Tyr87 Ile) on the amino acids on and near the GS 
region of pMAL/P. westermani TK template by PCR-based mutagenesis. The PCR products 
were digested with DpnI and the target DNA was purified using the QIA quick purification 
column (Qiagen, USA). The mutated cDNA was self-ligated after blunting and 
phosphorylation and sequenced as described above to check for mutations. After the 
mutation has been confirmed, enzyme expression and determination of kinetic properties 
were done as above and the obtained values are shown on Table 8. 
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The conformational change or the change from open to close structure during substrate 
binding in PKs is reflected by the kinetic parameters KmP (the value comparable to the 
dissociation constant of the phosphagen substrate in the absence of ATP) and KdP (the 
dissociation constant of the phosphagen substrate in the absence of ATP) (Suzuki et al., 2003). 
For Domain 1, mutations on the GS region caused a decrease in the affinity for taurocyamine 
as seen in the increase in KmTc values.  The most significant decrease was observed for the Ala59 

to Gly mutant which had a KmTc  value 4 times greater than the wild type. The KdTc/KmTc of this 
mutant was almost equal to 1 indicating the absence of synergism upon ATP substrate 
binding. Moreover, the Vmax value for the Ala59 to Gly mutant was reduced to only 50% of the 
wild type.  Mutation of the equivalent position in Domain 2 (Ala62Gly mutant) resulted in the 
loss of detectable enzyme activity.  These suggest that the replacement of Ala on the GS region 
may have affected the stabilization of the closed structure implying that this amino acid may 
play an important role in taurocyamine binding.  
 

Source 
KmTc     

(mM) 
KdTc        

(mM) 
KdTc/KmTc

KmATP    

(mM) 
KdATP    
(mM) 

kcat       
(S-1) 

kcat/KmTc 
Vmax 

(umol/min*
mg protein 

Domain 1         

WT 
0.75      

± 0.07 
4.22       

± 1.12 
5.63 

0.66     
± 

0.11 

3.58    
± 0.27 

24.16     
± 1.54 

32.21 40.31 ± 2.51 

Gly58Arg 
1.02      

± 0.03 
4.84       

± 0.88 
4.74 

0.64     
± 

0.10 

3.00     
± 0.09 

34.10     
± 1.46 

54.30 57.66 ± 3.47 

Ala59Gly 
3.54      

± 0.41 
4.41       

± 1.77 
1.25 

1.89     
± 

0.45 

2.20     
± 0.23 

7.98      
± 2.16 

2.25 17.06 ± 3.52 

Ile60Val 
1.33      

± 0.33 
4.61       

± 1.37 
3.47 

1.05     
± 

0.32 

3.56     
± 0.89 

31.00     
± 13.50 

26.29 54.30 ± 
22.21 

Tyr84His 
1.76      

± 0.05 
6.20       

± 0.83 
3.52 

0.70     
± 

0.11 

2.43     
± 0.25 

18.10     
± 4.01 

10.28 29.25 ± 6.93 

Tyr84Ile 
1.91      

± 0.29 
8.85       

± 3.15 
4.63 

0.97     
± 

0.15 

4.41     
± 0.66 

11.38     
± 3.05 

6.13 20.07 ± 5.17 

Domain 2         

WT 
0.51      

± 0.04 
1.49       

± 0.29 
2.92 

1.43    
± 

0.36 

4.03     
± 0.76 

11.56     
± 0.45 

22.67 21.43 ± 1.75 

Arg61Leu 
0.51      

± 0.17 
2.44       

± 1.17 
4.78 

1.83    
± 

0.99 

8.757    
± 2.45 

6.88     
± 0.48 

13.49 16.17 + 2.53 

Ala62Gly ND ND ND ND ND ND ND ND 

Ile63Val 
1.19      

± 0.14 
2.42       

± 1.22 
2.03 

2.12    
± 

0.63 

4.11     
± 0.74 

6.99      
± 1.51 

6.00   ± 
1.78 14.10 ± 2.51 

Tyr87His ND ND ND ND ND ND ND ND 
Tyr87Ile ND ND ND ND ND ND ND ND 

Table 8. Kinetic parameter of wild-type and mutant P. westermani TK. 
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In Danio rerio CK, Arg-96 which is located close to the substrate-binding site has been 
proposed to have a key role in substrate recognition and in organizing a hydrogen-bond 
network for active center configuration (Uda et al., 2009).  For annelid TKs, the equivalent 
amino acid is His (Uda et al., 2005; Uda et al., 2005); however, it has been replaced with 
tyrosine in P. westermani TK similar to that in AKs (Jarilla et al., 2009). Replacement of this 
amino acid with isoleucine (Tyr84 Ile and Tyr87 Ile mutants) did not change the substrate 
specificity from taurocyamine to glycocyamine but caused a decrease in affinity and Vmax  in 
domain 1 and loss of activity in domain 2 (Table 8).  Similar results were observed when Tyr 
was replaced with His.  These imply that, in the case of P. westermani TK, Tyr may play a 
role in substrate binding but it may not be the key residue for substrate recognition. 

5. Gene arrangement of P. westemani TK 

We have determined the exon/intron organization of P. westermani TK (Fig. 5) to further 
elucidate the phylogentic relationship with other PKs. Genomic DNA was extracted from an 
adult worm of P. westermani using Easy-DNATM Kit (Invitrogen, USA).  PCR was performed 
with Ex TaqTM (Takara, Tokyo, Japan) and primers designed from the cDNA. PCR conditions 
were as follows: initial denaturation at 94 oC for 2min, followed by 35 cycles of 94 oC for 30 sec, 
annealing at 50 oC for 30 sec and extension at 72 oC for 3 min and a final extension at 72 oC for 
4min.  The PCR products were purified, cloned in T-vector, and sequenced as described above. 
Thus far, for Domain 1, we have identified  four exons and three introns with intron sizes 
ranging from 88 bp to 3,627 bp.  Domain 2 has five exons and four introns with sizes ranging 
from 99 bt to 3,145 bp.  We have also identified a bridge intron (2,806 bp) between the two 
domains.  All of these introns typically began with gt and ended with ag.  
 

 
Fig. 5. Comparison of the gene strucrures (exon/inton organization) of P. westermani TK 
with PKs from other sources. The intron postions are based on aligned amino acid 
sequences.  Intron phases are indicated by “.0”, “.1”, or “.2” followed by the amino acid 
sequence position.  The conserved introns are shown by vertical lines 
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Interestingly, no intron positions are conserved between P. westermani TK and TK from the 
annelid A. brasiliensis. Instead, P. westermani TK share more intron positions with the 
molluscan AKs (D1: 300.0, D2: 97.1, 300.0, 366.1) suggesting that P. westermani TK evolved 
from an AK gene, consistent with the phylogenetic analysis of amino acid sequence.  On the 
contrary, several intron positions are conserved among annelid TKs, AKs, GKs and 
vertebrate CKs.  Annelid TKs and other annelid-specific PKs are hypothesized to have 
evolved from a MiCK-like ancestor early in the divergence of the protostome metazoans 
(Tanaka et al., 2007) with cytoplasmic TKs diverging earliest together with cytoplasmic AKs 
and LKs (Suzuki et al., 2009). 
Three intron positions were also shared with the sipunculid HTK which was suggested to 
have evolved from an AK gene (Uda et al., 2005).  It should also be noted that less intron 
positions are conserved in the first domain which could imply that it has recently diverged.  
However, the 5’ half of P. westermani TK gene still needs to be further amplified to confirm 
for the presence of intron. 

6. Conclusion 

The phosphagen kinase system found in the lung fluke P. westermani, a taurocyamine 
kinase, appears to be different from those identified in annelids.  This TK, which probably 
evolved from an AK gene, consists of two enzymatically active domains  that may have a 
unique substrate recognition and binding mechanisms. 
Since TK is not present in mammalian hosts, P. westermani TK could be a potential novel 
chemotherapeutic target for the effective control and eradication of paragonimiasis.  This 
enzyme could also be utilized in the development of diagnostic tools specific for pulmonary 
paragonimiasis to avoid misdiagnoses especially in regions where tuberculosis is also 
enedemic.  However, for the validation of this enzyme as a therapeutic target, there is still a 
need for further studies to determine the specific role of TK in the metabolic routes of the 
lung fluke. Further elucidation of the structure and substrate binding mechanisms are also 
necessary for the subsequent search of specific TK inhibitors.   
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