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1. Introduction 

The bicuspid aortic valve (BAV), the most common congenital cardiac malformation, is 
associated with ascending thoracic aneurysms and appears to reflect a common 
developmental defect. (Hahn et al., 1992; Roberts, 1970) The average time of patients with 
BAV undergoing surgery (of the aortic valve and/or because of complications associated 
with it) is a decade earlier than patients with a normally developed aortic valve. 
Accordingly, it is contended that if a diseased BAV must be replaced because of a diseased 
BAV, the aneurysmal ascending aorta should also be replaced. Valve replacement surgery 
without replacing the aorta would simplify the surgical intervention and shorten the time of 
operation. In contrast, an enlarged ascending aorta represents an increased likelihood of the 
patient undergoing the same surgical procedure after a few years. Replacing the aortic valve 
in patients with BAV does not prevent the progressive dilation of the aortic root and 
ascending aorta. (Yasuda et al., 2003) 
Cellular and extracellular processes are involved in the pathogenesis of the ascending  aortic 
aneurysms in patients with BAV. (Bonderman et al., 1999; Mohamed et al., 2010; 
Nataatmadja et al., 2003; Tang et al., 2005) Many studies have demonstrated the 
abnormalities of matrix metalloproteinases (MMPs) and tissue inhibitors of 
metalloproteinases (TIMPs) in aneurysmal tissues. (Boyum et al., 2004; Koullias et al., 2004; 
Longo et al., 2002) Using tissue microarray techniques, Koullias et al. detected a significantly 
higher MMP-2 and MMP-9 levels in BAV compared with normal tricuspid aortic valves 
(TAV), and even significantly higher MMP-2, MMP-9 and TIMP-1 levels compared with all 
other tissues (control and TAV together). LeMaire et al. observed a lack of inflammatory 
processes and an increased MMP-2 level and normal MMP-9, TIMP-1 and TIMP-2 
expression levels in aneurysmal tissues obtained from patients with BAV. In contrast, in 
aneurysmal tissues obtained from patients with TAV, they observed increased inflammatory 
processes and MMP-9 levels. (Lemaire et al., 2005) Furthermore, they showed an increased 
incidence of cultured vascular smooth muscle cell (VSMC) loss in BAV and Marfan 
syndrome (MFS) compared with control samples and suggested that a link between the up-
regulation of MMP-2 and VSMC apoptosis may exist in MFS. Certainly, there are similarities 
between the histology of the aneurysmal tissue of the aorta in MFS and that BAV. (Longo et 
al., 2002) In MFS, a mutation in the gene encoding for the extracellular matrix protein 
fibrillin-1 can be observed; this mutation leads to dysregulation of the transforming growth 
factor-beta (TGF-b) signaling. (Dietz et al., 2005) In this chapter, we review the present 
knowledge for elucidating the ascending aortic aneurysm pathogenesis, particularly in 
patients with BAV.  
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We will discuss the genetic basis and basic pathology underlying BAV and ascending aortic 
aneurysms. We used a simultaneous detection system for MMPs and TIMPs in two different 
areas of aortic aneurysms to quantify protein levels. Light and transmission electron 
microscopy were performed in some cases. 

2. The aorta and its basic structure  

The aorta transports oxygenated blood from the heart to the organs of the body. It plays a 

major role in the biomechanics of the circulatory system. The high velocity pulsatile flow of 

the ascending aorta changes into a low velocity steady flow when entering the arterioles and 

capillaries where metabolic processes such as gaseous and nutrient exchange occur. (Lohff, 

1999; Olufsen and Nadim, 2004) A healthy aorta has a flexible vasculature and specific size, 

which correlates with age and gender. Located near the left ventricle, the ascending aorta 

along with the aortic root forms a unique shape and displays mechanical properties to 

influence left ventricle workload and coronary blood flow.  (Davies et al., 2008; El-Hamamsy 

and Yacoub, 2009) Similar to all other arterial walls, the ascending aorta comprises three 

basic layers: the innermost layer, tunica intima that adjoins the blood vessel lumen with an 

endothelial lining; the middle layer, tunica media that contains muscular elastic fibers; and 

the outer layer, tunica adventitia. The internal and external elastic laminae (thick elastic 

fibers) separate these layers from each other. The lamellar unit of the media is the 

fundamental structural and functional unit of the aortic wall providing viscoelastic 

properties to the aorta. It is composed of vascular smooth muscle cells between two layers of 

elastin fibers, which comprise microfibrils and proteoglycans that form the extracellular 

matrix. (El-Hamamsy and Yacoub, 2009; Wolinsky and Glagov, 1967) 

3. Present knowledge of genetics of BAV and thoracic aortic aneurysms 

Remodeling, processing, and degradation of extracellular matrix proteins are regulated by 

MMPs and tissue inhibitors of TIMPs. MMPs are a family of zinc-dependent proteolytic 

enzymes with five major members categorized according to substrates. These members 

include collagenases, gelatinases, stromelysins, matrilysins, and membrane-type MMPs. 

(Brauer, 2006; Folgueras et al., 2004) Imbalances in MMP and/or TIMP synthesis have been 

linked to changes in the aortic wall and formation of aortic aneurysms. (Coady et al., 1999; 

Davis et al., 1998; Isselbacher, 2005) Although the involvement of MMPs or TIMPs in the 

pathogenesis of abdominal aortic aneurysms is clarified to a great extent, MMP or TIMP 

levels in ascending aortic aneurysms have shown different results. (Davis et al., 1998; 

Goodall et al., 2001; Raffetto and Khalil, 2008) In particular, the elevation of MMPs and 

TIMPs occurs in ascending aneurysms in BAV. BAV, which was probably first depicted 

more than 400 years ago in Leonardo da Vinci’s sketches, is a genetic disorder. (Clementi et 

al., 1996; Cripe et al., 2004; Friedman et al., 2008; Huntington et al., 1997; Roberts, 1970) The 

high heritability of BAV was estimated to be 0.89. Family-based genome-wide analysis 

revealed linkage of BAV to the chromosomal regions 5q, 13q, and 18q in an autosomal 

dominant inheritance with reduced penetrance and a non-Mendelian pattern. (Cripe et al., 

2004; Huntington et al., 1997; Ward, 2000) Mutations were detected in the transmembrane 

receptor NOTCH1 (gene mapped to a locus on chromosome 9q) in familiar and sporadic 

cases of BAV. (Garg et al., 2005; McKellar et al., 2007; Mohamed et al., 2006) Moreover,  
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mutations in the vascular smooth muscle cell alpha actin gene (mapped to chromosome 10q) 
have also been identified in patients with BAV and aortic aneurysms. (Milewicz et al., 2008) 
The ubiquitin fusion degradation 1-like gene (mapped to chromosome 22q), which is highly 
expressed in the outflow tract during embryogenesis, was down-regulated in the cusps of 
patients with BAV compared with those of control patients. (Mohamed et al., 2005) 
Furthermore, BAV can manifest as a type of a group of left ventricular outflow tract 
abnormalities such as aortic coarctation, arch hypoplasia, and supravalvular and mitral 
valve stenosis. The homeobox gene (mapped to a locus on chromosome 5q in humans) Nkx2-5 
deficient heterozygous mice are at a higher risk of developing BAV. (Biben et al., 2000; 
Wessels et al., 2005) A male predominance of more than 3:1 has been reported for BAV, and 
this anomaly is very frequent in the X0 Turner’s syndrome, with an incidence rate of 22%–
34%, suggesting an X-linked etiology. (Miller et al., 1983; Tadros et al., 2009) Analysis of a 
subpopulation with Anderson syndrome described 4 members (4/41) with BAV. In 
Anderson syndrome a mutation in the potassium inwardly-rectifying channel, subfamily J, 
member 2 (mapped to chromosome 17q) was observed. (Andelfinger et al., 2002) Endothelial 
nitric oxide synthase (eNOS; located on chromosome 7q in humans) knockout is associated 
with the development of BAV in mice. (Lee et al., 2000) Kuhlencordt et al. detected a higher 
incidence of aortic aneurysms in eNOS/apolipoprotein E double-knockout mice. 
(Kuhlencordt et al., 2001) Aicher et al. reported a significant decrease in the amount of the 
eNOS protein in BAV aortic tissue compared with that in TAV aortic tissue. (Aicher et al., 
2007) The expression and activity of eNOS in aortic endothelial cells is controlled by 
hemodynamic wall shear stress. Recent studies have indicated that aortic wall shear stress 
differs locally between BAV and control patients, when examined by magnetic resonance 
imaging. (Barker et al., 2010; Weigang et al., 2008) Furthermore, we have provided evidence 
that VSMCs show different apoptotic behavior in the convex and opposite concave portions 
of the dilated aorta (Fig. 1). Inhibition of caspase-3 protected cultured cells derived from the 
tunica media of the concavity to a greater extent than those derived from the convexity of 
the aorta. (Mohamed et al., 2010) These observations that compare of convex and concave 
ascending aortic sites are extremely important, not only necessarily from a genetic 
standpoint but also from the standpoint of differential pressures experienced (or more 
specifically dP/dt) at every site. Early in development, the growth of the embryonic outflow 
tract (OFT, descendant of the second heart field) shortens at specific stages according to 
programmed cell death (apoptosis). (Fisher et al., 2000) During cardiac valve formation, 
when the heart is a simple tube, invaded the extracellular matrix to build the endocardial 
cushions in the OFT. Migratory cells from pharyngeal arches, i.e., neural crest cells, 
participate and differentiate into VSMCs that populate the walls of the ascending aorta, 
aortic arch, head vessels, and interior of semilunar valves. Transient and moderate activities 
of caspase-3 promote stem cell differentiation; in OFT, only cells with moderate caspase-3 
activity undergo smooth muscle differentiation. (bdul-Ghani and Megeney, 2008) It is also 
our personal belief that dysregulation of apoptosis during valvulogenesis may lead to 
failure in separating valve leaflets from each other like in BAV. (Zhang et al., 2010). 
This present knowledge of ascending aortic aneurysms in patients with BAV reflects only a 

part of the complex entity of the pathogenesis. BAV occurs at an incidence rate of 1%–2% in 

the general population, and almost 50% of the anomaly is associated with ascending 

aneurysms that can lead to aortic dissection or rupture. (Roberts, 1970b; Siu and Silversides, 

2010) Therefore, further investigations to understand the pathogenesis of ascending 

aneurysms are required. 
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Fig. 1. Schematic representation of ascending aneurysms. Rescted tissue of the concave and 
convex aortic sites for analysis. 

4. Simultaneous detection of MMPs and TIMPs in thoracic aortic aneurysms  

The mutiplex system (Bio-Plex, BioRad Laboratories, Hercules, CA, USA)) analyses  were 
used to determine the concentrations of MMP-1, MMP -2, MMP -8, MMP -9, MMP -12, and 
MMP -13 in pg/ml as well as those of TIMP-1, TIMP -2, TIMP -3, and TIMP -4 in two areas 
of the dilated aorta ascendens (Fig. 1). The Human MMP Fluorokine MultiAnalyte Profiling 
(FMAP) Base Kit and the respective kits to this panel of targets obtained from R&D Systems 
(Minneapolis, MN, USA), applied according to the manufacturer's instructions. 
Forty-one patients were included in the analysis, the concave and convex aortic sites were 

identified from overall cases. The group of 31 patients with BAV consisted of 24 male (77%) 

and 7 female patients, while 7 of the 10 patients with TAV were male (70%). The distribution 

of age was considerably different between the two groups. Patients with BAV featured a 

mean age of 50.9 ± 12.9 years and were therefore significantly younger than patients with 

TAV having a mean age of 63.2 ± 8.2 years (P = 0.006). On the other hand, the means of 

aortic diameters are comparable (52.7 ± 4.9 mm vs. 56.7 ± 6.6 mm). There were differences in 

the aortic valve disease between the two groups. While the BAV group contained 10 patients 

with aortic valve insufficiency (32%), 3 patients with stenosis (10%), and 18 patients with a 

combination of both diseases (58%), the TAV group comprised patients who only suffered 

from aortic valve insufficiency. 

The overall detection of MMPs and TIMPs using the multiplex system revealed significantly 
higher MMP-8 and MMP-9 levels in the convex aortic site than in the opposite area 
(concave) in all patients (P = 0.001; P =.007). On the other hand, MMP-2 and TIMP-3 levels 
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were elevated in the concave aortic site (P = 0.04, P = 0.0007; Table 1). Patients with TAV 
have a higher TIMP-3 level in the concave aortic site than in convex aortic site (P = 0.008).  

4.1 Elevation of MMPs and TIMPs with age 

Within the BAV group the age group below and including 51 years displayed a significantly 
lower expression of TIMP-3 in the convex aortic site in contrast to convex aortic site (10.35 ± 
3.4 pg/ml; P = 0.01). The convex area of older patients featured significantly higher MMP-8 
and TIMP-2 levels than that of the younger group (10.84 ± 13.92 pg/ml, P = 0.02; 141.91 ± 
34.29 pg/ml, P = 0.05). 

4.2 Elevation of MMPs and TIMPs based on the diameter of aortic aneurysm 

To classify patients according to the diameter of aortic aneurysms, the threshold was chosen 
to be located between 54 and 55 mm, as the mean diameter was 53.7 ± 5.6 mm. Most of the 
TAV associated aneurysm was larger in diameter than the BAV associated aneurysm. 
Therefore, all patients with TAV were selected in the group of greater than or equal to 55 
mm. 
The aortic convex area of patients with BAV suffering from an aneurysm of 54 mm diameter 
or less, showed a higher MMP-8 and MMP-9 levels compared with the concave area (2.78 ± 
2.76 pg/ml, P = 0.04; 9.61 ± 9.78 pg/ml, P = 0.05). The expression of TIMP-3 and TIMP-4 on 
the other hand is significantly lower in the convex area (11.51 ± 3.81 pg/ml, P = 0.004; 0.25 ± 
0.07 pg/ml, P = 0.004). Patients with BAV and an aneurysm with greater than or equal to 55 
mm displayed considerably higher MMP-8 and MMP-9 levels in the convex aortic site when 
compared the concave aortic site (12.30 ± 15.20 pg/ml, P = 0.01, 28.29 ± 41.80 pg/ml, P = 
0.04). The TAV group exhibited a higher TIMP-3 expression in the concave when compared 
with the convex aortic site (10.03 ± 3.50 pg/ml, P = 0.05). 

4.3 Elevation of MMPs and TIMPs based on gender 
Comparison of male and female patients with BAV resulted in a significantly higher TIMP-1 
concentration in area 23II of female patients (P = 0.03). 
Analyses of the male BAV group resulted in significantly increased MMP-8 and MMP-9 
levels in the convex aortic site than in the concave aortic site (P = 0.005; P = 0.01). The 
concave aortic site showed an elevated TIMP-3 concentration (P = 0.03). 

4.4 Elevation of MMPs and TIMPs based on aortic valve disease 
The classification of patients depending on their aortic valve disease was restricted by the 
low number of patients with isolated stenosis. Therefore, only patients with BAV with aortic 
valve insufficiency or a combination of insufficiency and stenosis were considered. 
The TAV group comprised patients who only suffered from aortic valve insufficiency.  
The BAV group with aortic valve insufficiency showed increased TIMP-3 in the convex 
aortic site in contrast to concave aortic site (P = 0.02).  
The BAV group with a combination of aortic valve disease showed significantly elevated 
MMP-8 and MMP-9 levels in the convex aortic site (P = 0.004; P = 0.007). 

5. Light and transmission electron microscopy  

In light microscopy, we studied the histopathological features of ascending aortic 
aneurysms in 15 patients with BAV and 6 with TAV. Convex and concave aortic sites were 
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graded according to the severity of seven histopathological features: fibrosis, atherosclerosis, 
medionecrosis, cystic medial necrosis, smooth muscle cell orientation, elastic fiber 
fragmentation, and inflammation. (de Sa et al., 1999) The most prominent feature is elastic 
fiber fragmentation (Fig. 2). Aortic ascending abnormalities were more severe in TAV than 
in BAV. Nonetheless, it became obvious that histological grading of the convex aortic site 
was generally more severe in BAV, which is associated with the aortic diameter of the 
convex and not concave aortic sites (Fig. 2). These results correlated with the previous 
observations of Bechtel et al. (Matthias Bechtel et al., 2003). 
 

 

Fig. 2. Elastic fragmentation detected in two sites (concave and convex) of ascending 
aneurysms of 15 patients with BAV and 6 with TAV. The histopathological evaluation after 
de SA et al. The histological grading was copared with the aortic diameter (AoAsc; in 
millimetres) of the concave aortic site in A) and convex aortic site B). Elastica van Gieson 
staining is demonstrated in paraffin section  of aneurysmatic tissue obtained from a 46 year-
old-male with BAV thoracic aortic aneurysms (original magnification, x100). In C) the 
concave aortic site, in D) grade 2 elastic fragmentation of the presence of foci elastic 
fragmentation in more than five neighboring elastic lamellae of the convex aortic site. 

The transmission electron microscopy analysis of the examined slides of aneurysmal tissues 

obtained from patients with BAV lacks any well known typical structure of the aortic wall. 

This texture mingles the whole aortic wall as well as the adventitia; the typical build up 

layer of an aortic wall is not recognisable (Fig. 3A).  
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In the intima, the endotheliums still possess a single layered consistent coating of plain cells 
that are aligned parallel to the bloodstream with their longitudinal axis. 
The subendothelial layer of the examined specimen exhibits partial extensive differences. 

This layer contains few cells, at the most long thin stretched processes of fibrocytes, muscle 

cells are rare. A rather broad layer with a variously running bundle of collagen fibers is 

attached. The transition to the media is marked through fibrocytes processes, followed by 

strong bundles of collagen fibers with different orientation. The typical structure of the 

dense elastic membrane is completely abolished within the media. Bizarre shaped fibrocytes 

among bundles of collagen fibers, small parts of elastic membranes, and few vascular 

smooth muscle cells dominate, together with strikingly wide and empty appearing matrix 

spaces in the TEM. Among all compounds of this series, calcium concrements in all layers of 

the aortic wall exist as round eosinophilic granules (Fig. 3B). 

  

 

Fig. 3. The transmission electon micropy analysis of the tunica media of the aneurysmal 
tissue obtained from 15-year-old patient with BAV thoracic aortic aneurysm. In A, the 
electron micrograph demonstration of the lamellar structure and many broken VSMCs 
(arrows) with different elongations. In B, a fibaroblast with osmiophilic granules and space 
vacuoles is demonstrated. 

6. Discussion 

BAV is associated with ascending aneurysms that can lead to acute aortic dissection.  

(Januzzi et al., 2004) Acute aortic dissection is a life-threatening condition with high 

morbidity and mortality rates and is generally an unpredictable event. (Abbara et al., 

2007; Januzzi et al., 2004; Mohamed et al., 2008; Mohamed et al., 2009; Park et al., 2004; 

Wheat, Jr., 1987) People commonly at risk of this disease include those with connective 

tissue disorders such as Marfan syndrome, Ehlers-Danlos syndrome, Erdheim–Gsell 

medial necrosis, and BAV. (Beroukhim et al., 2006; Dietz et al., 1994; Silverman et al., 

1995) The exact genetic cause of BAV is unknown. Patients with BAV present a wide 

spectrum of heterogeneous morphological phenotypes of fused cusps. (Sievers and 

Schmidtke, 2007)  

The normal aorta is a large elastic artery with a wall consisting of the intima and a 

prominent internal elastic lamina between the intima and media. The media has a markedly 

layered structure, in which fenestrated layers of elastic lamellae alternate with interlamellar 
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VSMCs, collagen, and fine elastic fibers. This arrangement is regular so that each elastic 

lamella and adjacent interlamellar zone is reported as a lamellar unit of the media. In 

addition to collagen and elastic fibers, the adventitia contains flattened fibroblasts with 

extremely long processes, macrophages and mast cells, nerve bundles, and lymphatic 

vessels. On examining the tissue samples of ascending aortic aneurysms of patients with 

BAV, we observed that the spatial structure of the aortic wall is totally destroyed. This 

structure was also partly observed during immunohistochemical analysis performed for 

Marfan syndrome. (Guo et al., 2009) The lamellar units of the media were disintegrated, and 

the VSMCs were atrophied and wrinkled in a bizarre shape. Between these wrinkled muscle 

cells, existed thick bundles of collagen fibrils. In some cases of the thoracic aortic aneurysms 

we detected dramatic changes in the distribution of collagen fibrils in the media with 

different diameters, and fibroblasts with long and thin processes between the enormous 

collagen bundles. However, the most striking observation was the lack of elastic fibers. In 

the adventitia, we observed dysplastic collagen fibrils, which had a flower-like appearance 

in transverse sections. In addition, accumulations of lipid droplets and eosinophilic 

granules, probably proteoglycan granules or calcium concrements were observed. 

In the literature, different reports exist about matrix protein expression in aneurysmal 

tissues. In accordance with the published data, we observed the profile of six MMPs and 

their four inhibitors using a simultaneous detection system in two different areas 

(concave/convex) of ascending aneurysms. Using this method, we detected and quantified 

the elevation of MMP-2, MMP-8, MMP-9, and TIMP-1, TIMP-2, TIMP-3, and TIMP-4 in 

aneurysmal tissues obtained from the concave and opposite convex aortic sites. 

Concentrations of MMP-1, MMP-12, and MMP-13 were extremely low in these tissues and 

were therefore omitted. The areas of concave and convex aortic sites were combined in 41 

patients (31 BAV and 10 TAV). The patients were divided into group on the basis of age, 

ascending aneurysm diameter, gender, and valve malformation. 
When complete patient data were considered, increased MMP-2 and TIMP-3 levels in the 
area of the concave (inner curves) aortic site became apparent. The convex area (outer 
curves) of the ascending aortic aneurysm showed significantly raised MMP-8 and MMP-9 
levels. Younger patients (≤51 years) revealed an elevated TIMP-3 level in the inner curves. In 
addition to the TIMP-3 level, older patients (≥52 years) showed an increase in MMP-2 level 
in the area of the concave aortic site, and an increase in MMP-8 and MMP-9 levels in the 
area of the convex aortic site.  
Patients with an ascending aneurysm diameter of less than or equal to 54 mm were showed 
elevated TIMP-3 and TIMP-4 levels in the area of the concave aortic site, whereas 
aneurysmal convexity showed higher MMP-8 and MMP-9 levels. A aneurysm diameter of 
greater than or equal to 55 mm was associated with elevated MMP-8 and MMP-9 levels in 
the ascending aortic wall of the dilated convexity. Comparisons of gender and aortic valve 
disease groups revealed no significant differences.  
In patients with Marfan syndrome, a mutation was observed in the gene encoding ECM 
protein fibrillin-1 (Dietz and Pyeritz, 1995) and further analysis in this regard may facilitate 
diagnosis and treatment of this syndrome. The situation differs in patients with BAV 
because haemodynamics can also play a role, and no defect can be detected in the gene 
encoding fibrillin-1. Although many studies support the genetic origin of BAV, the genetic 
pathomechanism of BAV is probably far more complicated possibly due to mutations in 
different genes.  
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7. Conclusions and future directions 

To the best of our knowledge, simultaneous detection of six matrix protein levels was 

performed for the first time. This method is as accurate as old methods and minimizes the 

errors that occurred with those methods. Although we did not measure these proteins in 

blood or body liquids, the results obtained demonstrated that MMPs and matrix proteins 

can be differently elevated in ascending aortic aneurysms in BAV.  

Many factors, such as hemodynamics, environmental factors, and genetic factors (in part) 

appear to be involved in this process. Other modern technologies such as whole genome 

screening may identify additional risk factors (single nucleotide polymorphisms); however, 

these risk factors must also be considered on the basis of their functionality. Another 

interesting topic for the near future is the microRNAs (miRNAs). miRNAs, small 

approximately 22 nucleotides in length noncoding nucleotide RNAs, have been shown to 

modulate mRNA stability and translation. (Cordes and Srivastava, 2009; van and Olson, 

2007a; van and Olson, 2007b) In a pervious study, miR-26a was down-regulated in a fused 

aortic valve. (Nigam et al., 2010) Recently, this miR-26a was also found to be down-

regulated in aneurysms. (Leeper et al., 2011) 
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