
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



22 

U.S. Space Radioisotope Power Systems and 
Applications: Past, Present and Future 

Robert L. Cataldo1 and Gary L. Bennett2 
1NASA Glenn Research Center 

2Metaspace Enterprises 
USA 

1. Introduction 

Radioisotope power systems (RPS) have been essential to the U.S. exploration of outer 

space. RPS have two primary uses: electrical power and thermal power. To provide 

electrical power, the RPS uses the heat produced by the natural decay of a radioisotope 

(e.g., plutonium-238 in U.S. RPS) to drive a converter (e.g., thermoelectric elements or 

Stirling linear alternator).  As a thermal power source the heat is conducted to whatever 

component on the spacecraft needs to be kept warm; this heat can be produced by a 

radioisotope heater unit (RHU) or by using the excess heat of a radioisotope 

thermoelectric generator (RTG). 

As of 2010, the U.S. has launched 45 RTGs on 26 space systems. These space systems have 

ranged from navigational satellites to challenging outer planet missions such as Pioneers 

10/11, Voyagers 1/2, Galileo, Ulysses, Cassini and the New Horizons mission to Pluto.  In 

the fall of 2011, NASA plans to launch the Mars Science Laboratory (MSL) that will employ 

the new Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) as the principal 

power source. 

Hundreds of radioisotope heater units (RHUs) have been launched, providing warmth to 

critical components on such missions as the Apollo 11 experiments package and on the 

outer planet probes Pioneers 10/11, Voyagers 1/2, Galileo and Cassini. 

A radioisotope (electrical) power source or system (RPS) consists of three basic elements: (1) 

the radioisotope heat source that provides the thermal power, (2) the converter that 

transforms the thermal power into electrical power and (3) the heat rejection radiator.  

Figure 1 illustrates the basic features of an RPS. 

The idea of a radioisotope power source follows closely after the early investigations of 

radioactivity by researchers such as Henri Becquerel (1852-1908), Marie Curie (1867-

1935), Pierre Curie (1859-1906) and R. J. Strutt (1875-1947), the fourth Lord Rayleigh.  

Almost 100 years ago, in 1913, English physicist H. G. J. Moseley  (1887-1915) constructed 

the first nuclear battery using a vacuum flask and 20 mCi of radium (Corliss and Harvey, 

1964, Moseley and Harling, 1913).  

After World War II, serious interest in radioisotope power systems in the U.S. was sparked 
by studies of space satellites such as North American Aviation’s 1947 report on nuclear 
space power and the RAND Corporation’s 1949 report on radioisotope power. (Greenfield, 
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1947, Gendler and Kock, 1949).  Radioisotopes were also considered in early studies of 
nuclear-powered aircraft (Corliss and Harvey, 1964). 
 

 
 

Fig. 1. Cutaway view of a radioisotope power source (RPS) (Image credit: DOE). 

In 1951, the U.S. Atomic Energy Commission (AEC) signed several contracts to study a 1-

kWe space power plant using reactors or radioisotopes.  Several of these studies, which 

were completed in 1952, recommended the use of RPS (Corliss and Harvey, 1964). In 

1954, the RAND Corporation issued the summary report of the Project Feedback military 

satellite study in which radioisotope power was considered (Lipp and Salter, 1954).  

Paralleling these studies, in 1954, K. C. Jordan and J. H. Birden of the AEC’s Mound 

Laboratory conceived and built the first RTG using chromel-constantan thermocouples 

and a polonium-210 (210Po or Po-210) radioisotope heat source (see Figure 2).  While the 

power produced (1.8 mWe) was low by today’s standards, this first RTG showed the 

feasibility of RPS.  A second “thermal battery” was built with more Po-210, producing 

9.4 mWe.  Jordan and Birden concluded that the Po-210 “thermal battery” would have 

about ten times the energy of ordinary dry cells of the same mass (Jordan and Birden, 

1954).  
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Fig. 2. The first radioisotope thermoelectric generator (RTG).  

Figure from the Jordan and Birden 1954 report via (Corliss and Harvey, 1964).The heat 

source consisted of a 1-cm-diameter sphere of 57 Ci (1.8 Wt) of 210Po inside a capsule of 

nickel-coated cold-rolled steel all inside a container of Lucite. The thermocouples were 

silver-soldered chromel-constantan. The “thermal battery” produced 1.8 mWe. 

2. Early SNAP program 

The AEC began the Systems for Nuclear Auxiliary Power (SNAP) program in 1955 with 

contracts let to the Martin Company (now Teledyne) to design SNAP-1 and to the Atomics 

International Division of North American Aviation, Inc. to design SNAP-2.  (Under the AEC 

nomenclature system, the odd-numbered SNAPs had radioisotope heat sources and the 

even-numbered SNAPs had nuclear fission reactor heat sources.)  SNAP-1 was to provide 

500 We using the then readily available fission product radioisotope cerium-144 (144Ce) 

(Corliss and Harvey, 1964).  

The Martin Company began with a 133-We RPS design using 144Ce as the radioisotope fuel 

and a Rankine thermal-to-electric conversion system.  From this came the 500-We SNAP-1 

RPS design based on 144Ce fuel and a Rankine conversion system (see Figure 3) (Corliss and 

Harvey, 1964). The use of a dynamic conversion system in the first RPS is a key historical 

fact in understanding the current focus on developing an Advanced Stirling Radioisotope 
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Generator (ASRG) (see Section 10).  Depending on the design, dynamic conversion systems 

can provide double, triple and even quadruple the efficiency of state-of-practice 

thermoelectric conversion systems which means much less radioisotope fuel would be used 

to achieve the same electrical power (or, conversely, much more electrical power can be 

produced for the same quantity of radioisotope fuel used in an RTG). 

 

 

Fig. 3. SNAP-1 turbomachinery package with the shaft assembly shown separately, ruler 
dimensions are in inches (TRW via Corliss and Harvey, 1964). 

In parallel with the SNAP-1 program a series of radioisotope power sources were studied 
under the umbrella of the SNAP-3 program that was based largely on using thermoelectric 
elements in the converter.  The early SNAP-3 generators were to use 210Po as the fuel but by 
the late 1950s it was clear that sufficient quantities of 238Pu would be available to provide the 
fuel for small RTGs.  Plutonium-238 provided a number of features that made it more 
attractive than 144Ce or 210Po, including a longer half-life (87.7 years) and a more benign 
radiation emission (alpha particles, which can be stopped by material as thin as a sheet of 
paper) (Corliss and Harvey, 1964). 
Safety is the principal design requirement in the use of RPS, so the heat source is designed to 
contain or immobilize the fuel throughout a range of postulated accidents such as 
explosions and atmospheric reentries.  Over the years this safety design work has led to the 
development of the general-purpose heat source (GPHS) module, which is the basic 
building block of U.S. RPS (Bennett, 1995). 
All of the U.S. RPS that have flown have been either RTGs or RHUs, (see Fig. 4). 

www.intechopen.com



 
U.S. Space Radioisotope Power Systems and Applications: Past, Present and Future 477 

 

Fig. 4. Light-Weight Radioisotope Heater Unit (LWRU) (DOE) 

As of 2010, as shown in Table 1, the U.S. has launched 45 RTGs, hundreds of RHUs and one 
space nuclear fission reactor. Of the RTGs flown, two different types of thermoelectric 
materials have been employed: telluride-alloy based or silicon-germanium-alloy based. The 
following sections will discuss these RTGS to be followed by sections discussing current 
efforts in radioisotope power sources. 

3. The early telluride-based RTGs 

The initial and current thermoelectric material of choice is based on telluride technology 
alloyed with lead (Pb-Te) that, to a first approximation, can be used from room temperature 
to about 900 K before materials properties become an issue.  Above 900 K, the U.S. has had 
great success with a silicon-germanium alloy (Si-Ge) that has operated exceedingly well at 
temperatures of about 1300 K. 
For the upcoming Mars Science Laboratory (MSL) mission, the U.S. will use a telluride-
based thermoelectric material because it meets the requirements of being able to operate 

both in space on the way to Mars and on the surface of Mars with its dusty, cold, carbon 
dioxide atmosphere (see Section 8).  The successes of the earlier (1976 era) Viking Mars 

Landers 1 and 2 using SNAP-19 telluride-based technology support this decision. 

3.1 SNAP-3B RTGs 
The SNAP-3B RTG evolved out of the overall SNAP-3 program with the goal of providing 
2.7 We to the U.S. Navy’s Transit 4A and Transit 4 B navigational satellites.  In particular, 
the SNAP-3B RTGs were to provide power to the crystal oscillator that was the heart of the 
electronic system used for Doppler-shift tracking, a precursor of today’s global positioning 
system (Dick and Davis, 1962, JHU/APL, 1980).  Both RTGs provided power to their 
respective spacecraft for over 10 years (Bennett, et al., 1983). Figure 5 shows models of the 
SNAP-3B RTG and the successor SNAP-9A RTG. 
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Transit Navy Navigational Satellites 

 Transits 4A and 4B (1961) SNAP-3B (2.7 We) 

 Transits 5BN-1, 5BN-2 (1963) and *5BN-3 (1964)  SNAP-9A (>25 We) 

 Transit TRIAD (1972) Transit-RTG (35 We) 

SNAPSHOT Space Reactor Experiment 

 SNAP-10A nuclear reactor (1965) (≥500 We) 

Nimbus-B-1 Meteorological Satellite 

 *SNAP-19B RTGs (1968) (2 @ 28We each) 

Nimbus-3 Meteorological Satellite 

 SNAP-19B RTGs (1969) (2 @ 28 We each) 

Apollo Lunar Surface Experiments Packages 

 Apollo 12 (1969), *13 (1970), 14 (1971), 15 (1971), 16 (1972), 17 (1972) SNAP-27 (>70 We 
each) 

Lincoln Experimental Satellites (Communications) 

 LES 8 and LES 9 (1976) MHW-RTG (2/spacecraft @ ~154 We each) 

Interplanetary Missions 

 Pioneer 10 (1972) and Pioneer 11 (1973) SNAP-19 (4/spacecraft @ ~40 We each) 

 Viking Mars Landers 1 and 2 (1975) SNAP-19 (2/Lander @ ~42 We each) 

 Voyager 1 and Voyager 2 (1977) MHW-RTG (3/spacecraft @ >156 We each) 

 Galileo (1989) GPHS-RTG (2 @ 287 We each) 

 Ulysses (1990) GPHS-RTG (282 We) 

 Cassini (1997) GPHS-RTG (3 @ >290 We each) 

 New Horizons (2006) GPHS-RTG (1 @ 245.7 We) 
 
 
 
 
 

(Spacecraft/Year Launched/Type of Nuclear Power Source/Beginning-of-Mission Power) 

Note: SNAP is an acronym for Systems for Nuclear Auxiliary Power 

MHW-RTG = Multi-Hundred Watt Radioisotope Thermoelectric Generator 

GPHS-RTG = General-Purpose Heat Source Radioisotope Thermoelectric Generator 

* Denotes system launched but mission unsuccessful  

Table 1.  Uses of Space Nuclear Power By The United States 
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Fig. 5. Nobel Laureate Glenn T. Seaborg, Chairman of the U.S. Atomic Energy 
Commission, with his hands over a model of the SNAP-9A RTG and program manager 
Major Robert T. Carpenter holding a model of the SNAP-3B RTG (circa 1963), (AEC). The 
SNAP-3B RTG produced 2.7 We in a package 12.1-cm in diameter and 14-cm high with a 
mass of 2.1 kg.  The SNAP-9A RTG produced over 25 We at beginning of mission (BOM) 
within a mass of 12.3 kg and a main body that was 22.9 cm in diameter and 21.3 cm high. 
(Image credit: AEC) 

3.2 SNAP-9A RTGs 
The success of the SNAP-3B RTGs on Transits 4A and 4B gave the Johns Hopkins University 
Applied Physics Laboratory (JHU/APL) confidence to select the next-generation RTG, 

known as SNAP-9A, to provide all the power for its Transit 5BN-1 and 5BN-2 navigational 
satellites.  The objective for each SNAP-9A was to provide 25 We at beginning of mission 

(BOM) at a nominal 6 V for five years in space after one year of storage on Earth.  The two 
SNAP-9As showed that RTGs could be easily integrated into a spacecraft to provide all of 

the electrical power (Bennett, et al., 1984, JHU/APL, 1980). Figure 5 provides a size 
comparison between the SNAP-9A and its predecessor the SNAP-3B. 

4. SNAP-19 RTGs 

The development work on the SNAP-9A RTG provided the technology that led to the 
SNAP-19 RTGs which were the first use of nuclear power in space by NASA.   

4.1 Nimbus III 
In 1969, NASA successfully launched the Nimbus III meteorological satellite powered by 
two SNAP-19 RTGs and solar arrays.  The two SNAP-19 RTGs, which produced 56.4 We at 
launch, provided about 20% of the total power of the spacecraft.  Had the SNAP-19 RTGs 
not been onboard Nimbus III, the power would have fallen below the load line about two 
weeks into the mission because of solar array degradation (Bennett, et al., 1984). 
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4.2 Pioneers 10 and 11 
In 1972, NASA began its exploration of the outer Solar System with the launch to Jupiter of 
Pioneer 10 powered by four SNAP-19 RTGs which produced a total of 161.2 We at BOM.  
The next year Pioneer 10 was followed by the Pioneer 11 spacecraft which was also powered 
by four SNAP-19 RTGs.  In the cold, dark, radiation-rich environment of the Jovian system, 
nuclear power was the only viable option at that time. Because the SNAP-19 RTGs 
performed so well, NASA was able to retarget Pioneer 11 to go to Saturn after its flyby of 
Jupiter.  Again, the RTGs performed very well, providing steady power to the spacecraft 
and its scientific instruments, thus allowing scientists their first close-up measurements of 
the second largest planet in the Solar System (Bennett, et al., 1984). 

4.3 Viking Landers 1 and 2 
In anticipation of the 200th anniversary in 1976 of the signing of the U.S. Declaration of 
Independence, NASA launched the two Viking missions in 1975, each launch carrying an 
Orbiter and a Lander.  Each Lander was powered by two SNAP-19 RTGs specially modified 
to work on the surface of Mars (see Fig. 6).  The 35-We Viking SNAP-19 RTGs contained a 
special dome allowing an interchange of internal gases (initial fill 90:10 helium-argon; 
reservoir fill 95:5 argon-helium) during operation on the surface of Mars.  This allowed for 
reduced pre-launch temperatures and maximum power output on Mars. All four SNAP-19 
RTGs easily met the 90-day operating requirement of the Landers and went on to power the 
Landers for up to six years giving scientists their first extraordinary in-situ views of the 
surface of Mars (Bennett, et al., 1984). 
 

 

Fig. 6. Viking Lander model showing the location of the two SNAP-19 RTGs. The average 
power per RTG was 42.7 We at BOM. The overall RTG diameter (across fins) was 58.7 cm 
and the overall length was 40.4 cm. The mass was 15.2 kg. (Image credit: 
NASA/JPL/Caltech/ERDA/Teledyne) 
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The success of the Viking SNAP-19 RTGs was a key factor in the selection of the telluride-

thermoelectric-based Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) for 

the upcoming MSL mission (see Section 8). 

5. Transit RTG 

The successful use of the SNAP-9A RTGs on the Transit 5BN series of Navy navigational 

satellites led JHU/APL to use a new telluride-based RTG called the “Transit RTG” on its 

TRIAD navigational satellite.  The Transit RTG was based on the SNAP-19 radioisotope 

heat source design although in this case radiatively coupled to a telluride-based 

thermoelectric converter instead of being conductively coupled as in the SNAP-19 and 

SNAP-9A RTGs. 

The Transit RTG, which was designed to be modular, produced over 35 We at BOM within a 

mass of about 13.6 kg.  The use of a lower hot-junction temperature (~674 K for the Transit 

RTG versus ~790+ K for the SNAP-19 RTGs) in a vacuum environment eliminated the 

SNAP-19 practice of using hermetic sealing and a cover gas to inhibit the sublimation 

degradation that could cause a reduction in cross section and subsequent increase in 

electrical resistance of the thermoelectric material.  (Lowering the hot junction temperature 

is also one of the strategies adopted for the MMRTG.)  While the TRIAD spacecraft had 

various problems, the Transit RTG operated well beyond its five-year requirement (Bennett, 

et al., 1984). 

6. SNAP-27 on Apollo 

For the Apollo missions to the Moon, RTGs were a natural choice to power scientific 
instruments during the long (14-Earth-day) lunar night.  To provide this power, the U.S. 
Atomic Energy Commission (AEC) provided NASA with SNAP-27 RTGs built by General 
Electric (GE, now part of Lockheed-Martin). The SNAP-27 RTGs were designed to provide 
at least 63.5 We at 16 V one year after lunar emplacement. (In the case of Apollo 17, the 
requirement was 69 We two years after emplacement). Figure 7 shows Apollo 12 
astronaut Alan L. Bean removing the SNAP-27 fuel-cask assembly from the Lunar Module 
on 19 November 1969.  This was the first use of electricity-producing nuclear power on 
the Moon. 
All five SNAP-27 RTGs (Apollo 12, 14, 15, 16, 17) exceeded their mission requirements in 

both power and lifetime thereby enabling the Apollo Lunar Surface Experiment Packages 

(ALSEPs) to gather long-term scientific data on the internal structure and composition of the 

Moon, the composition of the lunar atmosphere, the state of the lunar interior, and the 

genesis of lunar surface features (Pitrolo, et al., 1969, Bates, et al., 1979).  On Apollo 11 the 

experiment package deployed on the lunar surface was named Early Apollo Scientific 

Experiments Package (EASAP) and consisted of the laser ranging retro-reflector (LRRR, also 

deployed on each following Apollo mission, and are still in use today) and the passive 

seismic experiments package (PSEP).  The PSEP utilized 2 RHUs called the Apollo Lunar 

Radioisotopic Heater (ALRH) for thermal control (Apollo 11 Lunar Landing Mission Press 

Kit, 1969) and also had a solar array power system that lasted three weeks. The ALRHs 

contained ~34 gm of 238Pu producing 15 Wth each. The subsequent PSEP stations utilized 

power from the SNAP-27 RTGs.  
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Fig. 7. Apollo 12 astronaut Alan L. Bean removing the SNAP-27 fuel-cask assembly from the 
Lunar Module. The SNAP-27 converter is shown in front of Bean ready to receive the fuel-
cask assembly. (NASA) 

 

 

Fig. 8. Artist’s concept of a Voyager spacecraft flying by Jupiter and Saturn. The three 
MHW-RTGs are shown on the boom above the spacecraft. The average power of each 
MHW-RTG was 158 We. The overall diameter was 39.73 cm and the length was 58.31 cm. 
The average flight mass for a Voyager MHW-RTG was 37.69 kg.  
(Image credit: NASA/JPL/Caltech) 
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7. Silicon-germanium RTGs 

With NASA developing the higher-powered Voyager 1 and Voyager 2 spacecraft (see 

Figure 8) as the next generation of outer planet explorers the bar was raised for RTG 

performance. To meet this demand, the AEC funded GE (now part of Lockheed-Martin) 

to develop the Multi-Hundred Watt Radioisotope Thermoelectric Generator (MHW-

RTG), which was based on the use of a silicon-germanium alloy.  Silicon-germanium, as 

noted earlier, can be operated at higher temperatures (~1300 K) than the telluride-based 

thermoelectrics (~800-900 K). Higher temperatures mean higher heat rejection 

temperatures, which mean smaller radiators hence lower unit masses. Combining the 

higher temperature with multifoil insulation (instead of bulk insulation) and vacuum 

operation (instead of using a cover gas) can yield a specific power that is 40% to over 

70% higher than that of a telluride-based RTG (Bennett, et al., 1984). The basic layout of a 

silicon-germanium RTG is shown in Figure 9. 

 
 
 
 
 

 
 
 
 
 

Fig. 9. Cutaway of the General-Purpose Heat Source Radioisotope Thermoelectric Generator 

(GPHS-RTG). 

The GPHS-RTG can produce over 300 We at initial fueling. The overall diameter is 42.2 cm 

and the length is 114 cm. The mass is 55.9 kg  (Image credit: DOE). 
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7.1 MHW-RTG 
The MHW-RTG objective was to provide at least 125 We after five years in space.  It was 
designed to produce at least 150 We at BOM, making it the highest-powered RTG at the 
time (1970s).  Once the program was under way, the U.S. Air Force requested four MHW-
RTGs for its communications satellites Lincoln Experimental Satellites 8 and 9 (LES-8/9) 
(Bennett, et al., 1984). As it turned out, LES-8/9 were launched prior to the Voyager 
launches (1976 versus 1977).  Each LES carried two MHW-RTGs.  The MHW-RTGs 
performed so well that the two communications satellites were used for years, including in 
the first Gulf War and to relay e-mail messages from stations in Antarctica. 
Each Voyager spacecraft carried three MHW-RTGs (see Figure 8).  The MHW-RTGs 

performed so well that Voyager 2 was retargeted after its flyby of Saturn (1981) to fly by 

Uranus and Neptune giving the human race its first close-up views of those distant worlds.  

Both Voyagers are still operating, almost 34 years after launch. 

7.2 General-purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-
RTG) 
For the Galileo and Ulysses missions the U.S. Department of Energy funded GE (now 

Lockheed Martin) to develop the General-Purpose Heat Source Radioisotope Thermoelectric 

Generator (GPHS-RTG), a power source essentially equivalent to two MHW-RTGs (see 

Figure 9). Where the MHW-RTG produced at least 150 We at BOM, the GPHS-RTG was 

capable of producing 300 We at BOM.  Where each MHW-RTG had 312 silicon-germanium 

thermoelectric elements (called “unicouples”), each GPHS-RTG had 572 unicouples 

(Bennett, et al., 1984, Bennett, et al., 2006). 

NASA’s Galileo Orbiter carried two GPHS-RTGs to power its successful exploration of the 

Jovian system. The Ulysses spacecraft, which was built by the European Space Agency (ESA), 

carried one GPHS-RTG for its exploration of the polar regions of the Sun (Bennett, et al., 2006). 

In 1997, NASA again used the GPHS-RTG, this time three of them to power the Cassini 

spacecraft that is still in orbit around Saturn.  The GPHS-RTGs have performed so well that 

the mission has been extended several times (Bennett, et al., 2006). Figure 10 illustrates the 

progress that has been made in RTG performance – in the span of a little over 30 years the power 
produced by a space RTG has increased over one-hundredfold! 

The most recent launch of the GPHS-RTG was in 2006 on the New Horizons  

spacecraft, which is traveling to Pluto. Because of the unavailability of a full 

complement of fresh Pu-238 fuel, the GPHS-RTG for New Horizons utilized some 

existing fuel that had decayed for 21 years since its production, yielding 245.7 We of 

power at BOM instead of the possible 300 We.  Still, it is expected that the GPHS-RTG 

will provide sufficient power (~200 We) at the time of Pluto encounter to meet all of the 

mission’s scientific and operational requirements. Once Pluto and its principal satellite 

Charon have been visited, New Horizons is designed to continue beyond to explore 

Kuiper Belt Objects (KBOs) (Bennett, et al., 2006). 

Changes have been made in the general-purpose heat source (GPHS) that is the heart of the 

GPHS-RTG. For New Horizons, additional aeroshell material was added which increased the 

mass of the RTG.  Additional material increases are planned for the GPHS modules to be used 

to power the MMRTG for MSL.  While these changes have the effect of increasing the mass of 

the GPHS-RTG over the Galileo/Ulysses GPHS-RTGs there are design improvements, which 

could recreate the high specific power of the GPHS-RTG (Vining and Bennett, 2010). 
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Fig. 10. Progress in RTG development. (Rockwell, 1992) 

8. Multi-mission Radioisotope Thermoelectric Generator (MMRTG) 

Following the successes of such flagship missions as Galileo and Cassini, NASA turned its 
attention to providing smaller “faster, better, cheaper” science spacecraft.  In looking for 
an RPS which would satisfy that mandate along with being able to operate both in space 
and on the surface of a planetary body (e.g., Mars), a joint NASA/DOE team 
recommended development of the Multi-Mission Radioisotope Thermoelectric Generator 
(MMRTG) along with the development of the higher efficiency Advanced Stirling 
Radioisotope Generator (ASRG) (see Section 10) (unpublished Report of the RPS 
Provisioning Strategy Team, 2001). 
The MMRTG, built by Rocketdyne and Teledyne, is based on the telluride thermoelectric 
technology used in the SNAP-19 RTG program which had shown that it could work in space 
(Nimbus III, Pioneers 10/11) and on a planetary surface (Viking Landers 1 and 2). The first 
mission to employ the MMRTG will be the Mars Science Laboratory (MSL), whose rover has 
been named “Curiosity” (see Figure 11). The 900-kg MSL is scheduled to be launched in the 
late fall of 2011 to arrive at Mars in August 2012. 
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Fig. 11. Artist’s concept of the Mars Science Laboratory (MSL) Curiosity rover with the 
MMRTG shown attached to the back end (right side in the picture). MSL is  ~3 m long (not 
including the arm), 2.7 m wide, 2.1 m tall with a mass of 900 kg. The arm can reach about 2.1 
m. (Image credit: NASA/JPL/Caltech). 

The overarching science goals of the MSL mission are to search for clues about whether 
environmental conditions (such as the existence of water for significant periods) could support 
microbial life today or in the past, and to assess whether the environment has favored the 
preservation of this evidence.  MSL will be the first interplanetary mission to use a sky crane to 
land and the first to use guided entry to land in a precise location.  MSL is designed to last for 
one Mars year (~687 Earth days) and to travel 20 km during its prime mission. 
The MMRTG is designed to provide about 110 We on the surface of Mars at 28 to 32 V. The 
conversion is achieved using 16 thermoelectric modules of 48 telluride-based thermoelectric 
elements (Hammel, et al., 2009).  The MMRTG is designed to have a minimum lifetime of 14 
years.  The MMRTG employs a flexible modular design approach that would allow the 
MMRTG concept to meet the power requirements of a wide range of missions. 
Figure 12 shows a cutaway of the MMRTG.  The MMRTG gets its ~2-kWt of thermal power 
from eight GPHS modules, the same heat source technology that was successfully used in the 
GPHS-RTGs and is planned for use in the ASRG.  Like the GPHS-RTG, the converter housing 
and the eight heat rejection (radiator) fins are made of aluminum. The core assembly with 16 
thermoelectric modules, each containing 48 couples (see Figure 13), are located under the eight 
fins with eight pairs of two modules aligned axially (Hammel, et al., 2009). 
The thermoelectric modules are spring loaded to enhance conduction of heat from the GPHS 
modules and to enhance conduction of heat from the cold junction of the thermoelectric 
elements into the module bar and then into the converter housing. A bulk insulation system 
composed of the material Min-K reduces heat losses, in effect forcing the heat to travel 
through the thermoelectric elements. To enhance reliability the thermoelectric couples are 
electrically arranged in series and parallel.  This redundant arrangement prevents loss of 
power should one or even several thermoelectric elements fail (Hammel, et al., 2009). 
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Fig. 12. Cutaway of the Multi-Mission Radioisotope Thermoelectric Generator (Hammel, 
et al., 2009) The MMRTG is designed to produce ~110 We at BOM with a mass of ~45 kg. 
The MMRTG is about 64 cm in diameter (fin-tip to fin-tip) by 66 cm long. (Image credit: 
DOE). 

 

 

Fig. 13. The MMRTG Thermoelectric (TE) Couple in illustration and in a Test Fixture (Image 
credit: NASA/JPL/Caltech) 

Like the SNAP-19 RTGs, the MMRTG is a sealed RTG with a cover gas. (The MHW-RTGs, 
GPHS-RTGs and Transit RTG were operated in a vacuum.)  The heat source is sealed from the 
converter by a thin metal liner.  Helium buildup from the natural decay of the Pu-238 fuel is 
prevented by venting it directly to the exterior of the MMRTG.  The hermetically sealed 
converter contains an argon cover gas that reduces parasitic heat losses and protects the 
thermoelectric elements.  With this venting and cover gas arrangement the MMRTG can 
operate in space or in an atmosphere (e.g., the surface of Mars or Titan) (Hammel, et al., 2009). 
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Modeling of the MMRTG performance indicates that the MMRTG will be able to provide 
the necessary power to enable MSL to achieve its objectives (Hammel, et al., 2009). 

9. Dynamic Isotope Power System (DIPS) 

The Dynamic Isotope Power System (DIPS) program was initiated in 1975 to provide increased 
power from radioisotope heat sources by using more efficient dynamic conversion systems 
(Brayton and Rankine). The precedent had been established in the 1950s with the SNAP-1 
program (see Section 2) with its mercury Rankine conversion system and the SNAP-2 (3 kWe) 
and SNAP-8 (30 to 60 kWe) mercury Rankine space reactor programs. In terms of mass and 
specific power DIPS fills the gap between RTGs and nuclear reactors; in short, it could be the 
next logical step for increased RPS power after RTGs.  Figure 14 illustrates the basic features of 
a representative DIPS (either Brayton or Rankine) (Bennett and Lombardo, 1989). 
 

 

Fig. 14. Functional diagram of a generic Dynamic Isotope Power System (DIPS) (Bennett and 
Lombardo, 1989).  

The original DIPS program was focused on producing a 1.3 kWe radioisotope power source 
with a mass of ≤204 kg using either a Brayton conversion system or an organic Rankine 
conversion system. The Brayton conversion system built upon the experience of NASA and 
its contractors (e.g., Garrett Corporation) dating from 1965 in developing a 2 to 10 kWe 
closed Brayton cycle (CBC) power system. In parallel, work on ground-based Rankine cycle 
systems led what was then Sundstrand Corporation to propose using Dowtherm A or 
toluene as a working fluid in order to avoid the corrosion issues with liquid-metal Rankine 
systems (Bennett and Lombardo, 1989). 
Based on actual hardware tests, both the CBC and the organic Rankine cycle (ORC) were 
shown to be capable of meeting the DIPS goals.  The organic Rankine cycle was chosen for 
further testing.  The lack of a mission led to the termination of the program in 1980 but in 
1986 the U.S. Air Force expressed interest in having a DIPS for its Boost Surveillance and 
Tracking System (Bennett & Lombardo, 1989).  The DIPS program was restarted with 
Rocketdyne as the systems contractor and Sundstrand and Garrett as subcontractors. 
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This time the CBC was chosen and Rocketdyne developed a basic 2.5-kWe DIPS module that 
could be used in space or on planetary surfaces.  Figure 15 illustrates the basic components of a 
2.5-kWe modular DIPS power conversion unit (PCU).  While again changing national priorities 
did not allow DIPS to be developed into a flight system, the basic technology exists to provide 
an RPS with powers spanning the range from 2 to ≥10 kWe (Rockwell, 1992). Section 10 
describes a lower power successor to DIPS, the Advanced Stirling Radioisotope Generator 
(ASRG) that will provide increased efficiency and use less Pu-238 fuel than existing RTGs 
 

 

Fig. 15. Components of the proposed 2.5-kWe modular DIPS Power Conversion Unit (PCU). 

Overall dimensions for the 2.5-kWe module are 2.44 m x 3.55 m x 0.5 m. (Image credit: 
Rocketdyne). 

10. Advanced Stirling Radioisotope Generator (ASRG) 

The ASRG employs an advanced, high efficiency, dynamic Stirling engine for heat-to-
electric power conversion. This process is roughly four times more efficient than presently 
utilized thermoelectric devices. As a result, the ASRG produces comparable power to the 
MMRTG with only one quarter of the Pu-238, extending the supply of radioisotope fuel 
available for future space science missions.  The higher efficiency provided by dynamic 
systems, such as the ASRG, could become an enabling power system option for higher 
power kilowatt class power systems envisioned for flagship class science spacecraft, large 
planetary rovers, and systems in support of human exploration activities.   
The ASRG utilizes an advanced Stirling free-piston heat engine consisting of two major 
assemblies, the displacer and piston, that reciprocate to convert heat to electrical power as 
shown in Figure 16. Heat from the GPHS module is conductively coupled to the heater 
head (not shown). Helium is used as the working fluid and is hermetically contained 
within the convertor enclosure. The displacer shuttles helium between the expansion 
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space where heat is received and compression space, where waste heat is removed. The 
changes in pressures and volumes of the convertor working spaces drive the power piston 
that reciprocates to produce AC electrical power via a permanent magnet linear alternator 
(Hoye, et al. 2011). 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Advanced Stirling Convertor (Image credit: Kristin Jansen, NASA Glenn). 
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Fig. 17.  Cutaway view of the ASRG (Image credit: Lockheed Martin). 

Figure 17 shows one of the two GPHS heat sources, one for each advanced Stirling convertor 
(ASC). Each GPHS module is surrounded by insulation to minimize heat leakage thus 
maximizing heat input to the convertors. The displacer side of the ASC is toward the GPHS 
module and cold-side is attached to the housing via the cold-side adapter flange (CSAF). 
The housing and attached fins provide a view to the environment to maintain sufficient heat 
rejection. During ground storage and launch pad operations a slightly positive pressure of 
inert gas is maintained via the Gas Management Valve. The gas within the housing helps 
dissipate heat not rejected by the ASC via the CSAF. This gas is permanently vented to 
vacuum by the Pressure Relief Device (PRD) to achieve full operating power in space 
vacuum.  
Operating frequency of the Stirling convertors is 102.2 Hz AC. The controller converts AC 
current to DC current for a typical 28-34 V spacecraft electrical bus. The shunt maintains a 
required load on the ASRG when it is not connected to a spacecraft, such as during 
storage or spacecraft integration. The controller also maintains synchronized 
displacer/piston movement of the two directionally opposed Stirling convertors to 
minimize induced disturbance to the spacecraft and its precision instrumentation. The 
ASRG is capable of producing 45% of total power should one ASC fail to operate. Health 
monitoring of the ASRG is provided by telemetry signals to the spacecraft and then 
transmitted back to Earth.  The ASRG has an autonomous control system since space 
distances do not allow for direct operator control.  The controller has electronics for each 
ASC plus a third redundant circuit to replace a failed card thus increasing overall system 
reliability.  
The ASRG is being developed under joint sponsorship by NASA and DOE for potential 
flight on a future NASA mission opportunity. Projected mass of the flight unit is 32 kg or 
less. The flight units are anticipated to produce over 130 We in the vacuum of space and at 
an effective sink temperature of 4 K (deep space). Other applications on planetary bodies 
would either increase or decrease the power output depending on the temperature and 
atmosphere of the environment. 
ASRG efforts leading up to its flight readiness began in 2000.  An engineering unit (EU) was 
built in 2008 by Lockheed Martin Space Systems incorporating the advanced Stirling 
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convertor manufactured by Sunpower.  Characterization testing was performed for typical 
launch and space environments.    
 

 

Fig. 18. ASRG engineering unit readied for extended testing at NASA Glenn Research 
Center (Photo Credit, NASA Glenn). 

After successful characterization tests the EU was put on extended operation with 
electrically heated GPHS simulators as shown in figure 18. A cold gas is passed over the EU 
to maintain proper thermal operating conditions.  The EU is planned to demonstrate 14,000 
hours of operation in validating the design’s viability for flight on a NASA science mission 
(Lewandowski and Schreiber, 2010). The EU has achieved over 11,000 hours (April, 2011) 
with a prototypical flight controller. 

11. Future radioisotope technologies 

In addition to the MMRTG and ASRG efforts are underway to develop other technologies 

such as advanced thermoelectric couples (ATEC), thermophotovoltaic (TPV) systems and 

the Stirling duplex system. 

The ATEC effort is developing and demonstrating thermoelectric couples with efficiencies 

greater than 10% with degradation losses less than 1% per year. Part of this effort is 

developing high temperature complex advanced materials with twice the state of practice 

efficiency. 

TPV uses photovoltaic cells tuned to certain spectra emitted by a radioisotope heat source. 

Development efforts include studies of the optical properties and optimization of the 

emitter, filters and collectors to achieve efficiencies of greater than 15% with low 

degradation rates. 
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The Stirling duplex concept combines a power convertor as in the ASRG with a 

thermodynamic Stirling cycle cooler.  This concept provides both power in the range of 100-

300 We and 1100 Wth cooling, allowing its potential use for missions in harsh high-

temperature environments. 

12. Human exploration missions 

To this point, discussions have focused on lower-power science mission objectives.  

However, the concept of high efficiency energy conversion could find application in human 

exploration, particularly relating to the Moon and Mars.  Multi-kilowatt power level 

radioisotope systems have application for the Moon due to its long 356-hour night period 

and on Mars due to its distance from the Sun, atmospheric dust attenuation and short 

winter day periods at higher latitudes. 

 

 

Fig. 19. A concept for a multi-Kilowatt radioisotope power system deploying a fission 

reactor on the surface of Mars, (Artist concept credit: Bob Souls, John Frassanito and 

Associates, Courtesy of NASA). 

Radioisotope power systems provide continuous power avoiding necessity of solar arrays 

and battery or fuel cell storage (for night time energy) and the wait to recharge them. 

Relative mission risk could also be reduced since solar array size for many of these 
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applications are too large and therefore require stowage during mobility and subsequent 

deployment for recharging multiple times. For Mars, radioisotope systems could be used in 

several applications (Cataldo, 2009).  Opportunities to travel to Mars occur every 26 months.  

Many human mission scenarios call for pre-deployment of equipment on the opportunity 

preceding the piloted flight to simplify launch and mission logistics.  One concept for a 

radioisotope system is a power cart capable of several applications with mobility as a key 

feature. For example, supplying power to deploy a shielded fission reactor several 

kilometers from a habitat could be accomplished in several days without the use of large 

solar arrays. The power cart would have communications capability to Earth via orbiting 

assets to control its movements and its re-location to future sites. 

Once the crew arrives on a subsequent opportunity, the power cart could be used with a 
pressurized rover. This scenario would allow the crew to perform long-range roving (over 
~100’s km) to significantly extend the scope of exploration from a single landing site. The 
power cart could also provide back-up power to the habitat should that become required. 
Should the base power system be solar instead of fission power a radioisotope-powered 
habitat back-up system could save significant mass during decreased array output during 
due to a global dust storm. A radioisotope power system could offer significant flexibility in 
mission planning for human missions as well as robotic science missions. In addition, since 
a crew would be available for repairs, maintenance or upgrades, the radioisotope fuel could 
be placed in a redundant cart with new conversion hardware extending the use of the fuel 
for many follow-on missions (Cataldo, 2009). 

13.Conclusions 

The U.S. has had a very successful 50 years of using RPS to power some of the most 
challenging and scientifically rewarding space missions in human history.  These RPS have 
provided power at or above that required levels, and generally for longer than the original 
mission specification.  RPS can truly be an enabling technology for both robotic probes and 
human exploration of the Solar System and beyond. 
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