
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



18 

The Potential Of I-129 as an  
Environmental Tracer 

Andrej Osterc and Vekoslava Stibilj 
Institute Jožef Stefan, 

Slovenia 

1. Introduction 

Iodine has two natural isotopes – the only stable iodine isotope is 127I, whilst 129I is the only 
radioactive iodine isotope that is formed in nature (T½ = 1.57 · 107 years). However, the main 
sources of 129I in the environment are anthropogenic from nuclear fuel reprocessing plants 
(NFRP) and nuclear accidents. Current levels of 129I do not represent any radiological hazard 
to humans, but the liquid discharges of 129I from reprocessing plants into the ocean makes it a 
unique oceanographic tracer to study the movement of water masses, transfer of radionuclides 
and marine cycles of stable elements such as iodine. The gaseous releases of 129I from 
reprocessing plants can be used as an atmospheric and geochemical tracer (Hou, 2004). 
129I and 127I have the same chemical properties and therefore it is expected that they also 
behave similar in environment. Lack of 129I and 127I speciation data makes it difficult to 
confirm or disprove this assumption. The main problem is the mobility – species of newly 

introduced and old − natural 129I. The old 129I is in equilibrium with 127I – natural 129I/127I 
ratio and this is disturbed with 129I from NFRP which is released to the environment in 
volatile form. As such it is rapidly transferred among surface compartments. Liquid 
discharges to oceans influence areas in accordance with marine currents. Wet and, to a lesser 
extent, dry depositions of atmospheric 129I are the main sources for 129I in terrestrial 
environment, which is distant from 129I sources such as NFRP. 
The biggest reservoir of iodine is the ocean with an average concentration of approximately 
50-60 µg L-1 seawater. From marine environment is iodine transferred to the atmosphere by 
volatilization mainly as iodomethane (CH3I) and then washed out to terrestrial environment 
by wet and dry deposition. It is accumulated in soils where it is strongly bound-adsorb to 
organic matter, and iron and aluminium oxides in soil (Fuge, 2005). In the accumulation 
processes of iodine in soil besides various physico-chemical parameters including soil type, 
pH, Eh, salinity, and organic matter content, soil microorganism – especially bacteria were 
found to play an important role (Muramatsu & Yoshida, 1999, Amachi, 2008). In this way 
the biogeochemical cycling of 129I is strongly connected to processes in ocean and soil 
systems – the atmosphere being the bridge between them. 

2. Sources, inventory and levels of 
129

I in marine and terrestrial environment 

All 129I formed in the primordial nucleosynthesis decayed to stable 129Xe. Two natural 
processes responsible for natural background levels of 129I are spallation of cosmic rays on 
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atmospheric Xe (cosmogenic) in the upper atmosphere and spontaneous fission of 238U 
(fissiogenic). 
Although 129I is produced naturally the main part is a consequence of human nuclear 

activities (Table 1). In this way the sources can be divided in natural and man-made or in 

pre-nuclear and nuclear era. From 1945 anthropogenic sources of 129I were nuclear weapons 

testing, nuclear accidents (Chernobyl) and at present marine and atmospheric discharges 

from NFRP. Operating plants in Europe are located in England (Sellafield), France (La 

Hague) and Russia (Mayak), and outside Europe in China, India, Pakistan and Japan 

(Tokaimura, Rakkasho). 129I is produced during the operation of a nuclear power reactor by 

nuclear fission of 235U(n, f)129I and 239Pu(n, f)129I. It was estimated that about 7.3 mg of 129I is 

produced per megawatt day. 129I is released during reprocessing of nuclear fuel – mainly by 

PUREX process. The fuel is first dissolved with nitric acid and at this step iodine is oxidized 

to volatile I2 and despite all efforts to trap and collect released iodine some part may be 

discharged from the NFRP (Reithmeir et al., 2006). 

 

Source Inventory/release (kg)** 129I/127I ratio in environment 

Nature 250 ~1 · 10-12 

Nuclear weapons testing 57 1 · 10-11−1 · 10-9 

Chernobyl accident 1.3−6 10-8−10-6 (in contaminated area) 

Marine discharges from 
European NFRP* by 2007 

5200 
10-8−10-6 (North Sea and Nordic 
Sea water) 

Atmospheric releases 
from European NFRP* by 
2007 

440 
10-8−10-6 (in rain, lake and river 
water in West Europe) 

10-6−10-3 (in soil, grass near NFRP) 

Atmospheric releases 
from Hanford NFRP* 

275 10-6−10-3 (in air near NFRP) 

*NFRP…nuclear fuel reprocessing plant; **Marine discharges are sum discharges from La Hague and 
Sellafield NFRP, Atmospheric releases are sum releases from La Hague, Sellafield, Marcoul and 
Karlsruhe-WAK (after Hou et al., 2009) 

Table 1. Sources and 129I/127I ratio in environment 

Until the beginning of the 1990s the total annual discharges from two European NFRP, La 

Hague and Sellafield, remained below 20 kg year-1. The discharges increased later 

considerable – up to 300 kg year-1 and accounted until 2000 for more than 95 % of the total 

inventory in the global ocean (Fig. 1) (Alfimov et al., 2004; Lopez-Gutierrez et al., 2004). 

The natural, pre-nuclear 129I/127I isotopic ratio was significantly influenced by releases of 

anthropogenic 129I to the environment. The estimated pre-nuclear 129I/127I isotopic ratio in 

marine environment was assessed with analysis of marine sediments and agreed to be 

1.5 · 10-12 (Table 2) (Moran et al., 1998; Fehn et al., 2000a; Fehn et al., 2007). For the terrestrial 

environment – pedosphere and biosphere no agreed data on pre-nuclear ratio exist. Human 

nuclear activity increased the 129I/127I ratio in marine environment to 10-11 – 10-10 and to 10-8 

– 10-5 (Table 3) in the Irish Sea, English Channel, North Sea and Nordic Seas which are 

influenced by liquid discharges from European NFRP (Frechou & Calmet, 2003; Alfimov et 

al., 2004; Hou et al., 2007). In the terrestrial environment the 129I/127I ratio increased to 10-9 – 
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10-7, even 10-6−10-4 in the vicinity of nuclear fuel reprocessing plants (Table 4) (Duffa & 

Frechou, 2003; Frechou & Calmet, 2003). 
 

 

Fig. 1. Liquid and atmospheric releases of 129I from NFRP in La Hague and Sellafield for 

period from 1952 to 2000 (compiled by Lopez-Gutierrez et al., 2004). 

Atmospheric releases are not plotted, but they are considered in the total amount. Annual 

atmospheric releases ranged from 1.19 to 9.58 kg 129I with a total amount of 235.5 kg in the 

period from 1952 to 2000. 

Anthropogenic 129I predominates in marine environment in biosphere and upper layers of 

the oceans and in terrestrial environment in soil, therefore it can be expected that the 

isotopic ratio 129I/127I is increasing in these compartments of the ecosystem. Precipitation 

and seawater are probably the main carriers for 129I exchange among different 

compartments in marine and terrestrial environment. Data from literature clearly show that 
129I levels in marine sediment, marine algae and soil are several times higher than in 

seawater or precipitation. Meaning that 129I is most probably chemically or biologically 

transformed to species which accumulate in those compartments (Tables 3 and 4). 

To summarize, different values of 129I/127I isotopic ratios in environment are today 

envisaged as 10-12 for pre-nuclear era, 10-9 in slightly contaminated regions and 10-9–10-6 in 

regions affected by the releases from NFRP. The highest ratios were found in the close 

vicinity of NFRP with values from 10-6 to 10-4 (Hou, 2009). 
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Sample 129I/127I (10-12) Reference 

TERRESTRIAL ENVIRONMENT 

Soil 

Russia, Moscow, 1910 168 

Szidat et al., 2000a Russia, Bogoroditsk, 1909 25 

Russia, Lutovinovo, 1939 5.7 
Thyroid powder 

Species not given (USA), 1947 4.6 

Szidat et al., 2000a USA, Pig, 1947 58 

USA, Horse, 1947 1230 
MARINE ENVIRONMENT 

Sediment   

Peru, depth: 155-199 cm 1.50 

Moran et al., 1998 
Mexico, Baja peninsula, depth: 415-420 
cm 

1.48 

Ecuador, depth: 315-320 cm 1.05 
Algae 

Japan 
Laminaria Japonica 

Hokkaido, 1883
Hokkaido, 1883

Miyagi, 1883
Miyagi, 1883

Pelvita 
Miyagi, 1904

 
 
1.40 
0.55 
0.52 
0.67 
 
1.87 

Fehn et al., 2007 

Russia 
Laminaria digitata 

Novaya Zemlya, 1930
Novaya Zemlya, 1931

White Sea, 1938
White Sea, 1930
White Sea, 1938

 
 
1.00 
3.69 
1.35 
1.37 
1.92 

Cooper et al., 1998 

Table 2. 129I/127I isotopic ratios in pre-nuclear age environmental and biological samples 

3. Factors affecting biogeochemical cycling of iodine 

Iodine is a trace element present in the hydrosphere, lithosphere, atmosphere and biosphere 
at different concentrations and as different iodine species (Table 5). Speciation analysis of 
iodine was mainly done on stable 127I (Hou et al., 1997; dela Veija et al., 1997; Sanchez & 
Szpunar, 1999; Hou et al., 2000c; Leiterer et al., 2001; Schwehr & Santschi, 2003; Shah et al., 
2005; Gilfedder et al., 2008), with some studies on 129I (Hou et al., 2001; Hou et al., 2003b; 
Schwehr et al., 2005; Englund et al., 2010b). Majority of researches performed on 127I and 129I 
are limited to fractionations of iodine – water soluble, exchangeable, bound to oxides, 
organic-inorganic fraction, etc. In general just the most abundant chemical forms of iodine – 
iodide (I-) and iodate (IO3-) are determined and the rest of total iodine content is associated 
with organic iodine. It is well known that organic iodine fraction mainly consist of iodine  
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Sample 129I/127I (10-8) Reference 

Sea water 

Germany, North Sea, 1999 153 Szidat et al., 2000a 

Greenland, 1999 (n = 5) 0.07−0.24 Hou, 2004 

England, Irish Sea, near Sellafield 2004-05 (n = 4) 89−820 Atarashi-Andoh et al., 2007 

Scotland, Scottish Sea, influence of Sellafield, 2003-
2005 (n = 14) 

7.2−336 Schnabel et al., 2007 

Israel, Sea of Galilee, June 1998 0.31 
Fehn & Snyder, 2000b 

Israel, Engedi, Dead Sea, June 1998 0.003 

Japan Sea, Toyama Bay, October 2006 0.0086 
Suzuki et al., 2008 

Japan Sea, Off Sekine, 2006-2007 (n = 2) 0.0063−0.0068 

Sediment 

Sweden, Baltic Sea, influence of La Hague and 
Sellafield, core sample –from 0 to 21 cm, 1997 

0.34−1.06 Aldahan et al. 2007 

Seaweed 

Greenland, 1997 (Fucus distichus, n = 7) 0.07−0.15 

Hou et al., 2000a 

Norway  
(Utsira), 1980-1995 (Fucus vesiculosus, n = 16) 

1.88−18.5 

Denmark (influence of liquid discharges from NFRP) 
Roskilde Fjord and Bornholm, 1995-1998 (Fucus 
vesiculosus, n = 8) 
Klint, 1986-1999 (Fucus vesiculosus, n = 39) 

 
 

2.50−9.12 
 

3.54−37.5 

France (vicinity of La Hague) 
Goury, 1998-1999 (Fucus vesiculosus, n = 3) 
Goury, 1998-1999 (Fucus serratus, n = 3) 
Goury, 1998-1999 (Laminaria digita, n = 2) 

 

1010−1940 

  930−1210 

  540−1270 

 
Frechou et al., 2003 

Goury and Dielette, 2003 (Fucus serratus, n = 12) 
Goury and Dielette, 2003 (Laminaria digita, n = 8) 

  496−1960 

  349−960 
Barker et al., 2005 

Ireland 
West and South coastline, Fucus vesiculosus 

1985, n = 7
1994, n = 7
2003, n = 9

East coastline (influence of liquid discharges from 
NFRP), Fucus vesiculosus 

1985, n = 8
1994, n = 7
2003, n = 8

 
 

0.08−0.73 

0.47−6.5 

0.21−5.0 
 
 

4.8−85 

0.83−30 

24−85 

Keogh et al., 2007 

Russia, Laminaria digitata 
Murmansk region, 1966
Murmansk region, 1967

White Sea, 1971
Novaya Zemlya, 1989
Novaya Zemlya, 1993

 
0.016 
0.034 
0.027 
0.48 
0.72 

Cooper et al., 1998 

Slovenia, Adriatic Sea, Fucus virsoides, September 
2005, five locations 

0.086–0.11 

Osterc & Stbilj, 2008 
Italy, Adriatic Sea, Fucus virsoides, June 2006, five 
locations 

0.068–0.15 

Croatia, Adriatic Sea, Fucus virsoides, October 2006, 
three locations 

0.15–0.31 

Table 3. 129I/127I isotopic ratios in nuclear age environmental and biological samples from 
marine compartments 
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Sample 129I/127I (10-8) Reference 

Aerosol 

Spain, Seville, 2001 (n = 12) 0.29−2.72 Santos et al., 2005 

Spain, Seville, 2001-2002 0.18−5.35 Santos et al., 2006 

Sweden, Kiruna and Ljungbyhed, 1983-2008 0.5−147 Englund et al., 2010a 

Gas 

Spain, Seville, 1993-1994 and 1998 0.01−0.80 Santos et al., 2006 

Precipitation 

Germany, Hanover, 1986 16.6
Szidat et al., 2000a 

Germany, Lower Saxony, 1997 83.4

Germany, Upper Bavaria, 2003 14.6−38.6 Reithmeier et al., 2005 

Spain, Seville, 1996-1997 0.23−52 Santos et al., 2006 

Antartica, McMurdo Station, snowmelt 1999 0.004
Snyder et al., 2004 

Antartica, Mt Erebus, snow, 2000 0.009

Shallow ground water

Germany, Lower Saxony, 1997 0.8 Szidat et al., 2000a 

Lake water 

Denmark, 2000 (n = 7) 2.5−27.3 Hou, 2004 

Lithuania, 1999 (n = 2) 6.6−7.3 Hou et al., 2002 

England, lakes near Sellafield, 2004-2005 (n = 7) 24.8−638 Atarashi-Andoh et al., 2007 

Germany, Munich, Kleinhesseloher See, July 1997 2.4
Fehn & Snyder, 2000b 

Germany, Malchow, Malchow See, July 1997 8.6

Germany, Harz, Okersee, June 1999 1.0
Snyder et al., 2004 

USA, Oregon, Crater Lake, September 1996 0.9

USA, Colorado, Navajo Lake, June 2000 0.25 Snyder et al., 2003a 

Central America, Nicaragua, Lake Managua, 1998 0.029 Fehn & Snyder, 2000b 

South America, Chile, Lago Verde, Februar 1999 0.24 Snyder et al., 2004 

Australia, New South Wales, Lake George, 1997 0.53 Fehn & Snyder, 2000b 

New Zealand, Lake Taupo, 1999 0.005

Snyder et al., 2004 Japan, Odanoike lake, May 2000 0.79

Indonesia, Bali, Lake Beratan 0.032
River water 

England, London, river Thames, March 1999 1.9
Snyder et al., 2004 

England, Cambridge, river Granta, March 1999 1.0

England, rivers near Sellafield 2004-2005 (n = 4) 158-825 Atarashi-Andoh et al., 2007 

USA, Colorado, Pine River, June 2000 0.13
Snyder et al., 2003a 

USA, Colorado, Animas River, June 2000 0.08

India, Tista River, 1999 0.18
Snyder et al., 2004 

India, Ganges River, 1999 0.03

Central America, El Salvador, Rio Lempa, 1999 0.058 Snyder et al., 2003b 

Africa, Botswana, Thamakkane river, May 2000 0.10

Snyder et al., 2004 Japan, Kugino river, May 2000 0.04

Mongolia, Tuyu Gol River, January 2000 0.068
Thyroid 

France, vicinity of La Hague (1−30 km), 1980-1999 
(Bovine, n = 19) 

100−25068* Frechou et al., 2003 

China (Tianjin), 1994-1995 (Human, male; n = 4) 0.04−0.09 
Hou et al., 2000b 

China (Tianjin),1995 (Human, female; n = 2) 0.16−0.20 

*The highest isotopic ratio (2.5 10-4) was obtained for an animal coming from Digulleville, a village 3 km 
to the north-east of the NFRP 

Table 4. 129I/127I isotopic ratios in nuclear age environmental and biological samples from 
terrestrial compartments 
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Compartment 
Main iodine species

Reference 
Concentration range

Atmosphere 

particle associated (aerosol);
inorganic gaseous: I2, HI, HIO; 
organic gaseous: CH3I, CH2I2, 
CH3CH2CH2I, etc.

Hou et al., 2009 

1–100 ng m-3 
Wershofen & Aumann, 
1989; Yoshida & 
Muramatsu, 1995 

Hydrosphere 

oceans 
inorganic: -

I , -

3
IO ; 

organic: CH3I
Hou et al., 2001 

45–60 ng mL-1 Hou et al., 2009 
fresh water 1–3 ng mL-1 Hou et al., 2009 

precipitation 1–6 ng mL-1 
Yoshida & Muramatsu, 
1995; Hou, 2004 

Lithosphere 

soil 

inorganic: -
I , -

3
IO , bound to 

metal oxides, carbonates and 
minerals; 
organic: bound to humic and 
fulvic acids

Schmitz & Aumann, 1995 

0.5–40 μg g-1 
Muramatsu & Yoshida, 
1999

surface sea sediment 1–2000 μg g-1
Muramatsu & Wedepohl, 
1998 

metamorphic and 
magmatic rocks

<0.1 μg g-1 

Biosphere 

seaweed 

inorganic: -
I , -

3
IO ; 

organic: iodo-amino acids 
(Laminaria japonica); bound to 
proteins, pigments, polyphenols*

Hou et al., 1997 
Hou et al., 2000c 
Shah et al., 2005 

10–6000 μg g-1 
Hou & Yan, 1998; Osterc & 
Stibilj, 2008

plants (terrestrial) <1 μg g-1 Hou et al., 2009 

thyroid gland 

inorganic: -
I  

organic: iodo-amino acids → 
iodo-thyronine and iodo-
tyrosine

dela Vieja et al., 1997 

500–5000 μg g-1 Hou et al., 2003a 

milk (bovine) 
inorganic: -

I  
organic: bound to proteins* Leiterer et al., 2001 

0.017−0.49 μg mL-1

*species not identified 

Table 5. Concentrations of stable iodine in environmental compartments 
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bound to proteins – but these are still not identified for most environmental and biological 
samples, not for 127I and certainly not for 129I. The main problem is lack of appropriate 
standards for speciation analysis and very small amounts of 129I in environmental and 
biological samples. 
Iodine is released from marine environment to the atmosphere partly as aerosols formed 
from the sea spray – inorganic iodide and iodate – and mainly as volatile organic iodine 
compounds (VOIC) such as iodomethane (Baker et al., 2000; Leblanc et al., 2006, Chance et 
al., 2009). Bacteria, phytoplankton and brown algae present in marine environment are 
capable to reduce the most thermodynamically stable form of iodine, the iodate to iodide. 
On the other hand microalgae and macroalgae-seaweed accumulate iodide and transform it 
into VOIC – the most important are CH3I, CH2I2, CH2BrI and CH2ClI (Leblanc et al., 2006). 
The emitted organic iodine is decomposed by sunlight into inorganic iodine compounds. 
The photolytic lifetimes of VOIC differ; CH2I2 has a lifetime of 5 minutes, followed by 
CH2BrI with a lifetime of 45 minutes and CH2ClI with a lifetime of 10 h (Stutz, 2000). The 
longest photolytic lifetime of 14–18 days has CH3I (Stutz, 2000). During this process of 
photolization reactive iodine oxides such as HOI, I2O2 and IO2 form, which either form 
condensable vapours as nuclei for aerosols or react with ozone. From the atmosphere iodine 
enters the marine and terrestrial environment by processes of wet and dry deposition. In the 
iodine terrestrial cycle interactions between water and soil are most important (Santschi & 
Schwehr, 2004). Beside physical and chemical factors, biological processes especially 
promoted by microorganism influence the cycling of iodine. Microorganisms are involved in 
environmental processes as primary producers and also as consumers and decomposers. 
They have bioremedial and biotransformable potential and in this way affect the mobility of 
elements. Oxidation and reduction mechanisms contribute to transformations between 
soluble and insoluble forms. Experiments with 125I tracer showed the importance of 
microbial participation in iodine accumulation – sorption and desorption processes – in soil. 
Muramatsu et al. (1996) observed desorption of iodine from flooded soil during cultivation 
of rice plants. Microorganisms created reducing conditions in the flooded soil and iodine 
once adsorbed on the soils was desorbed (Muramatsu et al., 1996). Amachi et al. (2001) 
reported a wide variety of terrestrial and marine bacteria that are capable to produce CH3I 
under oligotrophic conditions. Aerobic bacteria showed significant production of CH3I, 
whereas anaerobic did not produce it. The methylation of iodide was catalysed 
enzymatically with S-adenosyl-L-methionine as the methyl donor. 
The biding of iodine by organic matter and/or iron and aluminium oxides has the potential 
to modify the transport, bioavailability and transfer of iodine isotopes to man (Santschi & 
Schwehr, 2004). Because of the same chemical properties 129I and 127I should behave similar 
in environmental processes. Major pathways are the volatilization of organic iodine 
compounds into the atmosphere, accumulation of iodine in living organisms, oxidation and 
reduction of inorganic iodine species, and sorption of iodine by soils and sediments. These 
processes are influenced or even controlled by microbial activities (Amachi, 2008). 
129I is gradually released in trace quantities into the atmosphere and aquatic environment 
from reprocessing plants. It is then physically transported in the air or water media under 
the influence of chemical and biological processes. Newly introduced 129I from NFRP is in 
volatile form and as such more mobile compared to 127I. By taking this aspect into account 
one cannot be sure that biogeochemical behaviour of 129I and 127I is the same. Even more, 
Santschi & Schwehr (2004) discussed that biogeochemical behaviour of iodine and its 
isotopes appears to be different in North American and European waters. 
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4. Measurement of 
129

I 

129I decays by emitting beta particles (Eǃmax = 154.4 keV), gamma rays (EǄ = 39.6 keV) and X-
rays (29−30 keV) to stable 129Xe (Tendow, 1996). Therefore it can be measured by gamma 
and X-ray spectrometry and by beta counting using liquid scintillation counters (LSC). 
Another method for determination of 129I is neutron activation analysis (NAA) that is based 
on neutron activation of 129I(n, Ǆ)130I, which is measured by gamma spectrometry (EǄ = 
536 keV (99 %). In recent year’s mass spectrometry – such as accelerator mass spectrometry 
(AMS) and inductively coupled plasma mass spectrometry (ICP-MS) are also used. 
For determination of 129I levels in environmental samples only two analytical methods are 
available, radiochemical neutron activation analysis (RNAA) and AMS. The main advantage 
of the AMS is the detection limit that is close to 10-14 expressed as 129I/127I ratio. RNAA can 
only measure 129I at elevated levels – nuclear era. AMS enables measurement of 129I in all 
environmental samples, also the natural, pre-nuclear levels, and the needed amount of 
sample is 10-100 times smaller than in the case of RNAA. Detection limits for 129I using 
different analytical methods are compared in Table 6. 
 

Analytical method/Sample 
Detection limit

Reference 
g g-1 (10-12) 129I/127I (10-12)

γ-X spectrometry 
seaweed (400 g) 300 not given Lefevre et al., 2003 
LSC 
radioactive waste (coolant, 1 L) 23 not given Gudelis et al., 2006 
ICP-MS 
Aqueous solution 100 1000000 Muramatsu et al., 2008 
Aqueous solution 0.8 not given Izmer et al., 2003 
Aqueous solution (groundwater) 5 not given Brown et al., 2007 
Sediment 30 not given Izmer et al., 2003 
Sediment 0.4 not given Izmer et al., 2004 
RNAA 
soil (100 g) 0.05 5000 Osterc et al., 2007 

soil (100 g) 0.015 10000 
Muramatsu & Yoshida, 
1995

soil (80 g) 0.27 not given Michel et al., 2005 
soil 0.13 410 Szidat et al., 2000b 
AMS 
commercial AgI not given 0.44 Suzuki et al., 2006 

blank sample not given 0.50 
Gomez-Guzman et al., 
2011

blank sample not given 0.17
Muramatsu et al., 2008 

soil (1 g) 0.0015 40
soil (80 g) 0.00015 5 Michel et al., 2005 
Woodward Iodine* not given 0.023 Reithmeier et al., 2005 
Woodward Iodine not given 0.04 Buraglio et al., 2001 
oil and gas hydrates not given 0.20 Alfimov & Synal, 2010 
soil 0.000023 0.75 Szidat et al., 2000b 

*Woodward Iodine is elemental iodine mined by Woodward Iodine Corp. in Oklahoma for which the 
lowest ratio is reported. 

Table 6. Limits of detection for 129I in various samples using different analytical methods 
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4.1 Direct gamma and X-ray spectrometry 

Direct gamma-X spectrometry (EǄ = 39.6 keV; X-rays, 29−30 keV) is a non-destructive 

technique that is rapid and can be applied to different matrices. It is used for monitoring of 

environmental samples collected in vicinity of NFRP such as thyroid, urine, seaweed, and for 

nuclear waste by using high purity Ge or plenary Si detector (Suarez et al., 1996; Bouisset et al., 

1999; Frechou et al., 2001; Lefevre et al., 2003; Frechou & Calmet, 2003; Barker et al., 2005). To 

lower the detection limits normally big samples (50−500 g) are used, which induces 

considerable attenuation at low energies. The attenuation depends on the matrix composition 

of the sample and geometric parameters of the container. Therefor the mass energy-

attenuation coefficient (self-absorption correction) at a given energy must be measured for all 

sample matrices with respect to that of the standard source. Experimentally obtained self-

absorption correction factors are used to obtain accurate results (Bouisset et al., 1999; Lefevre et 

al., 2003, Barker et al., 2005). To quantify self-absorption correction factors 210Pb (46.5 keV) and 
241Am (59.6 keV), with gamma lines close to 129I are used. Detection limits as low as 2 Bq kg-1 

dry mass can be reached for Fucus sp. samples (Bouisset et al., 1999). 

Chemical separation of 129I from the sample matrix and interfering radionuclides – 

destructive method – improves the detection limit when using direct gamma-X 

spectrometry (Suarez et al., 1996). 

By using direct gamma-X spectrometry 129I was determined in seaweed sample FC-98 

Seaweed, which was prepared by Frechou et al. (2001), by using direct gamma –X 

spectrometry (Osterc & Stibilj, 2008). 

4.2 Liquid Scintillation Counting (LSC) 
Liquid scintillation counting is based on emissions of beta particles from radionuclides 

– beta decay (Eǃmax = 154.4 keV). 129I has to be separated from the sample matrix and 

other radionuclides and dissolved or suspended in a scintillation cocktail containing an 

organic solvent and a scintillator. Beta particles emitted from the sample transfer energy 

to the solvent molecules, which in turn transfer their energy to the scintillator which 

relaxes by emitting light - photons. In a liquid scintillation counter each beta emission 

(ideally) results in a pulse of light, which is amplified in a photomultiplier and 

detected. 

Recently extraction chromatographic resins for the separation and determination of 36Cl and 
129I have been developed. First results show a promising potential to use the resins within 

the context of the monitoring of nuclear installations – during operation and especially 

during decommissioning (Zulauf et al., 2010). 

4.3 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 
ICP-MS has been used to determine 129I in contaminated environmental samples with high 

level 129I content such as sediments, groundwater samples, soil and  seaweed (Izmer et al., 

2003; Izmer et al., 2004; Becker, 2005; Brown et al., 2007; Li et al., 2009). The lowest detection 

limit of the method reported as 129I/127I isotopic ratio is 10-7. 

The method is based on iodine separation and injection to the machine as solution or 

gaseous iodine, I2. Iodine is decomposed into iodine atom and ionized to positive iodine ion 

at a temperature ~6000−8000 K. It is then extracted from the plasma into a high vacuum of 

the mass spectrometer via an interface. The extracted ions are separated by mass filters of 
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either quadropole type time-of-flight or combination of magnetic and electrostatic sector 

and measured by an ion decetor (Hou et al., 2009). 

Difficulties encountered when determining 129I with ICP-MS are low 129I quantities 

present with high 127I concentrations, isobaric and molecular ions interferences (129Xe+, 
127IH2+), memory effects and tailing of 127I. To improve 129I/127I determination it was found 

that introduction of helium gas into collision cell reduces peak tail of a high-abundant 

isotope, 127I by up to three orders of magnitude. Detection limits have been improved by 

applying oxygen as collision gas for selective reduction of 129Xe (Izmer et al., 2003, Hou et 

al., 2009). 

4.4 Neutron Activation Analysis (NAA) 
NAA enables determination of 129I in environmental samples at 10-10 129I/127I isotopic ratios. 

The concentration levels of 129I in environmental samples are very low and chemical 

separation/pre-concentration procedures have to be developed which can be used for a 

wide variety of matrices. 

Neutron activation analysis is based on induction of 129I with thermal neutrons – irradiation 
in a nuclear reactor via following nuclear reaction: 

 ( ) ( )013129
½I n,  I  12.36 hours,  536.1 keVT Eγγ = =  (1) 

129I is determined by measuring of 130I activity on a high purity Ge detector. Interfering 

nuclear reactions induced during irradiation of sample from other nuclides resulting in 130I 

production can influence the correct determination of 129I. These undesired nuclides are 235U, 
128Te and 133Cs and nuclear reactions: 235U(n, f)129I(n,γ)130I, 235U(n,f)130I, 128Te(n,Ǆ)129mTe(ǃ-

)129I(n,Ǆ)130I and 133Cs(n,ǂ)130I (Hou et al., 1999). They have to be removed from the sample 

before irradiation to avoid nuclear interferences. 

During irradiation radioactivity in sample is produced mainly due to the radioisotopes 
23Na(n,Ǆ)24Na (T½ = 14.96 hours), 41K(n,Ǆ)42K (T½ = 12.36 hours) and 81Br(n,Ǆ)82Br 

(T½ = 35.30 hours) present in sample, which renders the direct measurement of 130I after 

irradiation and radiochemical separation of induced 130I after irradiation is necessary. 

Solvent extraction with CCl4 or CHCl3 are normally used to extract iodine (Osterc & Stibilj, 

2005; Osterc et al., 2007). 

In first step pre-concentration of iodine from large amounts of sample is performed. Solid 

samples, such as soil, sediment, vegetation, biological samples can be decomposed by 

alkaline fusion (Hou et al., 1999, Osterc et al., 2007). The sample is mixed with potassium 

hydroxide/alkali solution and then gradually heated to 600 °C. Iodine is leached from the 

decomposed sample with hot water, isolated with solvent extraction and precipitated as 

PdI2 or MgI2 or trapped on activated charcoal (Fig. 2) (Hou et al., 1999, Osterc et al., 2007). 

Another method to separate iodine from solid samples is combustion at high temperature, 

~1100 °C (Muramatsu & Yoshida, 1995). Released iodine is trapped in an alkaline solution or 

adsorbed on activated charcoal. 

The pre-concentrated iodine is than irradiated for up to 12 hours simultaneously with a 
129I/127I standard. After radiochemical separation the 130I induced from 129I (see nuclear 

reaction 1) is counted on a high purity Ge detector and compared to standard of known 

activity and corrected for chemical yield (Osterc et al., 2007). 
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Fig. 2. The scheme for pre-concentration of iodine from solid samples (Osterc et al., 2007) 

For liquid samples, such as milk, urine and water samples anion exchange method using 
anion exchange resins can be applied. Adsorbed iodide is eluted and isolated from the 
eluate with solvent extraction and precipitated as PdI2 or MgI2 (Parry et al., 1995; Hou et al., 
2001; Hou et al., 2003a). 
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4.5 Accelerator Mass Spectrometry (AMS) 
An AMS facility is set up off injector and analyser linked with a tandem accelerator. The 
detector is either a combination of time-of-flight and silicon charged particle detector or gas 
ionization energy detector. Iodine has to be separated from the sample with same 
techniques as used for NAA, such as pyrohydrolysis at 1000 °C, and prepared as AgI targets 
(Muramatsu et al., 2008). Negative iodine ions are produced from AgI targets by Cs sputter 
ion source and injected into the tandem accelerator. The formed 129I- and 127I- ions are 
accelerated to positive high-voltage terminal converting negative ions to I3+, I5+ or I7+. The 
positively charged ions pass through a magnetic analyser where ions of 129I and 127I based on 
charge state and energy are selected and directed to a detector. AMS measures the 129I/127I 
isotopic ratio and the 129I absolute concentration is calculated by the 127I content determined 
in the sample and the chemical yield for separation of iodine from sample – preparation of 
AgI targets (Hou et al., 2009). 
AMS is the only technique that enables measurement of pre-nuclear age samples and 
samples with low 129I content, below 10-10 129I/127I isotopic ratio (Moran et al., 1998; Fehn et 
al., 2000a; Buraglio et al., 2001; Alfimov et al., 2004; Santschi & Schwehr, 2004; Snyder & 
Fehn, 2004; Michel et al., 2005; Fehn et al., 2007; Hou et al., 2007; Keogh, et al., 2007; 
Muramatsu et al., 2008; Gomez-Guzman et al., 2011). Instrumental background of 10-14 
129I/127I has been obtained (Buraglio et al., 2000). But the detection limit depends on the 
chemical separation before measurement and especially on addition of iodine carrier. When 
carrier and chemical processing are included the typical reported blank 129I/127I isotopic 
ratio is 1 · 10-13 (Buraglio et al., 2000). For environmental samples with a very low 129I/127I 
isotopic ratio Hou et al. (2010) reported a method for preparation of carrier free AgI targets 
based on co-precipitation of AgI with AgCl to exclude the influence of interferences from 129I 
and 127I in the carrier. They calculated a detection limit of 105 atoms, which corresponds to 2 
· 10-16 g of 129I. 

4.6 Quality assurance of 
129

I analyses 
To be able to determine 129I by RNAA in environmental samples from nuclear era pre-
concentration of iodine from large amounts of sample (up to 150 g) is needed. In this pre-
concentration step contamination of sample with 129I is possible. It is important to make a 
blank control when establishing a new method and verify the method by reference materials 
to evaluate possible contamination during the entire analytical process; including pre-
concentration, irradiation, radiochemical separation and gamma activity measurement. 
Also analysis of 129I by AMS requires intensive and continuous control – control charts of the 
analytical blank and verification of accuracy by analysis of reference materials, which has to be 
continued periodically also during routine operation (Szidat et al., 2000a). Influence of sample 
mass – AgI targets on accuracy of 129I determination was studied by Lu et al. (2007). They 
found that samples with masses above 0.3 mg did not show an influence on accuracy – ion 
current of the sample was constant, but it fell strongly for samples with masses below 0.3 mg. 
Samples wit masses below 0.1 mg did not produced sustainable currents for 129I determination. 
Presence of 5000 129I atoms or 50 µg in the target is sufficient for a successful 129I determination. 
To validate and or evaluate an analytical method, to run a laboratory inter-comparison, to 
check accuracy of analytical method, and ensure globally comparable and traceable results 
to stated references, as the SI units, certified reference materials are needed. Environmental 
samples represent a huge variety of different combinations of substances to be analysed and 
the matrices in which they are embedded. This countless combinations of substances – 
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elements, radionuclides, contaminants – and matrices means that certified reference 
materials always lack. 
The only reference material with a recommended value for 129I available on the market was 
the reference material IAEA-375 Soil – Radionuclides and Trace Elements in Soil. Top soil to 
a depth of 20 cm was obtained from the “Staryi Viskov” collective farm in Novozybkov, 
Brjansk, Russia in July 1990. Unfortunately this reference material is now out of stock. 
Only informative and not certified values for 129I, determined in one laboratory, are reported 
for NIST SRM 4357 – Ocean Sediment Environmental Radioactivity Standard, which is a 
blend of ocean sediments collected off the coast of Sellafield, UK, and in the Chesapeake 
Bay, USA, and NIST SRM 4359 – Seaweed Radionuclide Standard, which is a blend of 
seaweed collected off the coast of Ireland and the White Sea. 
Recently a new reference material, with a certified value for 129I, IAEA-418: I-129 in 
Mediterranean Sea Water was characterised in an interlaboratory comparison exercise. The 
used method was AMS (accelerator mass spectrometry).  
Another new reference material for radionuclides in the mussel Mytilus galloprovincialis from 
Mediterranean Sea, IAEA-437 was characterised. They reported for the mussel sample 
collected in 2003 at Anse de Carteau, Port Saint Louis du Rhône, France an informative 
average massic activity of 0.8 ± 0.1 mBq kg-1 dry mass (Pham et al., 2010). 

5. Applications of I-129 as an environmental tracer 

Use of 129I as an intrinsic tracer for natural iodine kinetics was discussed as early as 1962 
(Edwards, 1962). Already at that time two reprocessing plants, one for military purposes in 
Marcoule, France (from 1958) and one for nuclear fuel in Thurso, United Kingdom (from 
1958) existed. 
To be able to use 129I as an environmental tracer certain conditions have to be met. These are: 
(1) 129I must trace a single environmental process with a defined time scale; (2) 129I must be 
equilibrated with 127I; (3) The predominant chemical species of 129I and their geochemical 
properties must be known (Santschi & Schwehr, 2004); (4) Conservative behaviour, meaning 
relatively constant concentration in a reservoir over time, is desirable. The natural 129I/127I 
ratio has been strongly shifted by continuous additions from anthropogenic sources, which 
still persists. To trace existing and future global changes in inventories of anthropogenic 129I 
continuous monitoring and revised budget calculation are indispensable (Aldahan et al. 
2007a). Recently also a prediction model system to better understand the dispersion of 129I 
from point sources (Sellafield and La Hague) to the northern North Atlantic Ocean has been 
developed (Orre et al. 2010). 
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2000) 
identifies as globally dispersed radionuclides 3H, 14C and 129I. Because of its very long half 
live is 129I one of the most important radionuclides in long-term radiological assessment of 
its discharges from nuclear fuel reprocessing plants. 129I is present in the environment in low 
quantities (in traces) and its increase in a particular compartment of the ecosystem can be 
instantly recognized. 

5.1 
129

I as an oceanographic tracer 
Transport, circulation and exchange of water masses in the Northeast Atlantic and Arctic 
Oceans has long been studied by using radionuclides such as 137Cs, 134Cs, 90Sr, 125Sb and 
99gTc originating from reprocessing of spent nuclear fuel. In recent years 129I became 

www.intechopen.com



 
The Potential Of I-129 as an Environmental Tracer 

 

381 

interesting as an oceanographic tracer, because the discharges from NFRP in La Hague and 
Sellafield increased since 1990 and highly sensitive analytical method, AMS, developed for 
analysis (Hou, 2004). 
Concentrations and species of 129I and 129I/127I isotopic ratio were determined in many 
environmental and biological samples from marine environment, especially in areas 
influenced by NFRP. Results for Northeast Atlantic, Arctic and Baltic Seas indicate a strong 
influence of liquid discharges from NFRP in La Hague and Sellafield. Hou et al. (2000a) 
determined 129I concentrations in archived time series seaweed Fucus vesiculosus samples 
from Danish, Norwegian and Northwest Greenland coast collected in a period from 1980 to 
1997 (Table 3). They used the 129I/99Tc ratio to estimate the origin of and transit times of 129I. 

Transit times were estimated to be 1−2 years from La Hague, 3−4 from Sellafield, to 

Denmark (Klint) and Norway (Utsira), and 9−14 years from La Hague, 11−16 from Sellafield, 
to NW Greenland. 
Iodine exists in seawater mainly as dissolved iodate and iodide, and a small amount of 
organic iodine (Wong, 1991). Chemical speciation of 129I can be used to investigate the 
transport, dispersion, and circulation of the water masses – especially at the boundary of 
two or more sources. (Hou et al., 2001). 

5.2 
129

I as a geochemical tracer 
129I was used in geochemical studies as a tracer for determining ages and migration of brines 
(Muramatsu et al., 2001, Snyder et al., 2003a, Fehn et al., 2007). Isolated system contain lower 
or close to estimated pre-nuclear 129I/127I ratio, 1.5 · 10-12. For correct interpretation of results 
– age calculation based on 129I one must consider the effect of possible fissiogenic production 
and initial concentration on isotopic ratios. The estimated pre-nuclear ratio can be disturbed 
along continental margins with lower isotopic ratios likely caused by releases of methane-
rich fluids with high stable iodine concentrations derived from old organic sources, where 
129I already partly decayed. The isotopic ratio of the open ocean is not disturbed, justifying 
the use of estimated pre-nuclear ratio (Fehn et al., 2007). 

5.3 
129

I in precipitation 
Atmospheric releases of 129I from European and Hanford NFRP were much higher than 

from nuclear weapons tests and Chernobyl accident together (Table 1). Measurement of 129I 
in atmosphere and precipitation can be used to investigate the transport pathways of 129I 

from point sources, such as NFRP. But it is important to be aware that 129I levels in 
atmosphere and precipitation can originate either directly from atmospheric releases from 

NFRP, and from volatilization from seawater and terrestrial environment. To study 
transport pathways of 129I all of this aspects have to be considered and obtained results for 

atmospheric and precipitation samples compared to reported releases from NFRP in 
particular timescale. Many precipitation and atmospheric samples have to be measured 

continuously to establish a pattern or trend. 

5.4 
129

I for reconstruction of 
131

I dose 
The same chemical and physical properties of isotopes of particular element enable to use 
129I as a tool for the reconstruction of 131I doses after a nuclear accident. This was done after 
the nuclear accident in Chernobyl. Levels of 129I were determined in soils and from the 

measured 129I/131I ratio, 12−19 (Kutschera et al., 1988; Mironov et al., 2002), the long-lived 
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129I can be used to reconstruct 131I dose to thyroids. This method is limited only to areas that 
were relatively strong contaminated by fallout from Chernobyl like areas in Ukraine and 
Belarus (Michel et al., 2005; Straume et al., 2006). 

6. Radiological hazard of 
129

I for man 

Transport pathways of iodine to human are ingestion and inhalation. Iodine present in food 
is adsorbed into blood in small intestine – inhaled iodine from the air is also transferred into 
blood. More than 80 % of iodine absorbed into the blood is concentrated in the thyroid 
gland, which is therefore the target organ of iodine – also radioactive 129I. Due to low beta 
and gamma energy of 129I and long half-life the radiation toxicity of 129I is mainly related to 
long term and low dose internal exposure of the thyroid to the beta radiation of 129I. An 

average iodine content in human thyroid is 10−15 mg. 129I and 127I are taken up by thyroid 
indiscriminately. The highest reported 129I/127I ratio was 10-4 in close vicinity of NFRP, 
which corresponds to 10-6 g or 6.64 Bq at 10 mg stable iodine content in thyroid. The 
corresponding annual radiation dose to thyroid would be 0.1 mSv year-1, which is 2.5 times 
higher than the dose regulation limit of 0.04 mSv year-1 set by the U.S. NRC for combined 
beta and photon emitting radionuclide to the whole body or any organ (Hou et. al., 2009). 
An annual thyroid equivalent dose of 1 mSv, which is comparable to the level of natural 
back-ground radiation, would only be reached by ratios exceeding 1.5 · 10-3 (Michel, 1999).  
Current concentrations of 129I in the environment do not represent any radiological hazard 
for man, even in the vicinity of nuclear fuel reprocessing plants. But to assess environmental 
impact and potential risk and consequences during long-term exposition information on the 
distribution and radionuclide species, speciation analysis, influencing the mobility, 
biological uptake and accumulation of radionuclides is needed (Salbu, 2007). Speciation 
analysis provides crucial information for evaluation of radionuclide transport mechanism in 
the environment and to the human body and accurate risk assessments (Hou et al., 2009). 

7. Conclusion 

Anthropogenic 129I considerable enriched pre-nuclear environmental levels. Presently the 
main sources of 129I in the environment are nuclear fuel reprocessing plants (NFRP). Global 
distribution of 129I is not uniform – concentrations are elevated near NFRP – but 
anthropogenic 129I was detected in remote areas such as Antarctic. 
Before the onset of nuclear age 129I and 127I were in equilibrium. Analysis of pre-nuclear 
material and deep layer of marine sediment gave the best estimated value for natural 
129I/127I ratio in surface reservoirs to be (1.5 ± 0.15) · 10-12. 
In transport and exchange of 129I among different compartments marine and soil ecosystems 
influenced by present biota – microorganisms play major role. Biogeochemical cycling of 
iodine is influenced by its strong association with organic material – ocean is the main 
reservoir of mobile iodine, where it is rapidly exchanged between biota, hydrosphere and 
atmosphere. 
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