
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



3 

Application of Enriched Stable Isotopes in 
Element Uptake and Translocation in Plant 

Shinsuke Mori1, Akira Kawasaki2, Satoru Ishikawa2 and Tomohito Arao2 
1NARO Western Region Agricultural Research Center  

2National Institute for Agro-Environmental Sciences  
Japan  

1. Introduction 

Isotope technique including radioisotopes and stable isotopes is useful and potent tool for 
various scientific areas. Especially, enriched stable isotopes are indispensable tools for 
researchers in biological systems (Stürup et al. 2008).  
 Stable isotope ratios are usually used in examining the biogeochemical cycling of light 
elements such as carbon(C), oxygen (O), nitrogen (N) and sulphur (S) in the environment. 
Thermal ionization mass spectrometry (TIMS) for the isotope analysis has been the most 
standard technique for many years. However, for TIMS analysis, time for sample 
preparation is needed because sample need to ensure efficient ionization. On the other hand, 
ICP-MS analysis has some advantages that sample preparation is simple and high sample 
throughput for isotope experiments where a large amount of samples need to be analyzed 
(Stürup et al. 2008). The disadvantage to resolve in isotope analysis using ICP-MS is 
spectroscopic interferences in the process of analysis. It is therefore needed to be resolved 
these interferences. 
When plant physiologists investigate mineral absorption mechanisms in roots of plant, 
evaluation of symplastic mineral absorption capacity in roots cell in kinetics and time course 
experiments is very important because mineral translocation in shoots is mainly contributed 
to capacity of symplastic absorption in roots. In these experiments, radioisotopes methods 
are mainly used for element uptake in plants.  Radioisotopes in solute were the most useful 
markers used in nutrient uptake and translocation in plants because they are chemically 
similar to the solute and can be distinguished from non-labeled solutes already contained in 
the roots (Davenport 2007). However, there are limitations to this method, including 
radioisotope administrative restriction and the restricted half-life of the radioisotope. 
Isotope tracer experiments, using a stable isotope, are very similar to those using a 
radioisotope on element to analyse plant mechanisms (Stürup et al. 2008). Accurate and 
precise determination of mineral isotope ratios is required for analysis of enriched stable 
isotopes. Inductive coupled plasma mass spectrometry (ICP-MS) has now become the 
effective and potent technique for enriched stable isotope tracer experiments due to 
increased availability. Therefore, the application of enriched stable isotopes in various 
biological systems increased rapidly.    
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There are so many research using enriched stable isotopes used as tracers aquatic and 
terrestrial ecosystems, animals and humans (See review of Stürup et al. 2008). However, 
there are a few researches using enriched stable isotopes element in plants. Recently, Stürup 
et al. (2008) reviewed that application of enriched stable isotopes as tracers in biological 
systems including aquatic ecosystem, terrestrial ecosystem, animals and humans in detail. 
Therefore, we did not focus on aquatic ecosystem animal and human in this chapter.  
In this chapter, we therefore provide a review of some example using isotope technique. 
Especially, we focus on the application of enriched stable isotopes element uptake and 
translocation in plants. Our new method for evaluation of symplastic absorption of roots 
introduced in Section 4 has some merits, compared to radioisotopes techniques. Application 
of stable isotopes will become a new tool to evaluate element behavior in plants.  

2. Application of stable isotopes in plants 

The biochemical cycling of light element such as carbon(C), oxygen(O), nitrogen(N) and 
sulphur(S) have been studying using stable isotopes. The mechanisms of photosynthesis 
and of element uptake and translocation in plants was clarified by these studies using stable 
isotopes ratios such as C,O,N and S. Recently, the application of enriched isotopes of such as 
Mg, Cu, Ca, K and Cd behavior in plants rapidly increased with the development of ICP-MS 
analysis techniques. There are several studies on element uptake and translocation in plant 
using enriched stable isotopes (Table1). 
 

Isotopes Aim of study and method Reference 

10B, 11B 

Characterization of boron uptake and translocation in 
sunflower plant.  After preculture under nutrient solution 
containing 11B,a short time experiment were conducted 
under nutrient solution containing low or high 11B. 

Dannel et al. 
(2000) 

10B 
After preculture grown in nutrient solution containing 
boron, uptake experiment was conducted in solution 
containing enriched stable isotopes of 10B. 

Takano et al. 
(2002) 

113Cd 

Intact leaves and cell sap of Cd accumulator plant were 
subjected to 113Cd-NMR and H-NMR analysis for 
identification of the form of Cd in leaves. 

Ueno et al. 
(2005) 

113Cd and 
114Cd 

To examine Cd uptake in roots of solanum species with 
different Cd accumulation in shoot, uptake experiments 
were conducted using 113Cd and 114Cd. 

Mori et al. 
(2009b) 

113Cd 
Cd accumulation stage in soybean seed was examined in 
hydroponic solution using enriched isotope of 113Cd. 

Yada et al. 
(2004), Oda et 

al. (2004) 

113Cd 
Cd uptake mechanisms in soybean was examined using 
113Cd isotopes in pot and field experiment 

Kawasaki et al. 
(2004,2005) 

Table 1. Element uptake and translocation in plant using enriched stable isotopes 
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Dannel et al. (2000) characterized the boron uptake and translocation from roots to shoots in 
sunflower using the stable isotopes 10 B and 11B. In the report, after sunflower plant was 
precultured with high(100μM) or low (1μM) 11B supply, plants were treated under 
differential 10B supply condition. The results suggested that B uptakes are mediated by two 
transport mechanisms. First mechanism is passive diffusion which is indicated by the linear 
components. Second mechanism is energy dependent process which is indicated by the 
saturated components. Kawasaki et al. (2004, 2005) conducted that an isotope tracer 
technique with 113Cd has been used in pot and field experiments. They examined that the 
most critical stages of soybean in which Cd absorbed via roots was transferred into the 
seeds. Cd absorbed before the beginning seed stage causes an increase of Cd concentration 
in seeds. Yada et al.(2004) reported that soybean plants were grown in hydroponic solution 
and supplied 113Cd via roots for 48 h at early growth stage to investigate Cd accumulation 
pathway in soybean seed using enriched isotope of 113Cd. Cd accumulated in leaves was 
translocated to seeds at seed beginning maturity stage. Oda et al. (2004) also indicated that 
the Cd absorbed from full pod to full seed was the most contributive to raise the Cd amount 
of seeds. Ueno et al. (2005) reported that Thlaspi caerulescens which is Cd hyperaccumulator 
plants have been grown hydroponically with a highly enriched 113Cd isotope to investigate 
the form of Cd in the leaves using 113Cd nuclear magnetic resonance (NMR) spectroscopy. 
They identified that cadmium binds with malate in the leaves. Several enriched isotopes 
such as 111Cd, 113Cd and 114Cd will become a new tool to evaluate Cd behavior in plants. 
Several studies stated above suggest that enriched isotope is a very potent technique for 
tracking the distribution, uptake, translocation and recycling in biological system. Now, 
many enriched element stable isotopes except B and Cd are able to purchase in chemical 
forms such as metallic or oxide. In the future, the benefit of enriched stable isotopes 
techniques would be paid much attention in plant and environmental science areas.   

3. Several methods for evaluating symplastic element uptake in plants 

Intensive studies on the absorption mechanisms of various elements by plant roots have 
been conducted. There are evidence on mineral uptake and translocation in plants. It is 
well known that ion absorption in plant roots shows a saturated curve in kinetics 
experiments, indicating that a type of proteinaceous transporter mediates ion absorption 
(Epstein and Hagen 1952). Plant physiologists examining ion absorption in plant roots 
have given much attention to ion transport via the symplast across the plasma membrane 
(Epstein 1973). However, when ion absorption experiments were conducted, it was found 
that the apoplastically absorbed ions needed to be washed out of the apoplast to 
determine the symplastically absorbed ions across the plasma membrane or the 
determination of absorption is overestimated (Glass 2007). Therefore, it is necessary to 
eliminate the apoplastically bound ions to evaluate the symplastically absorbed ion 
content in the roots. To evaluate symplastic cadmium(Cd) and other elements absorption 
in roots, several methods have generally been used in the past: (1) expose the plant 
material to Cd radioisotopes and subsequent desorption using unlabelled Cd in the root 
apoplast (Hart et al. 1998, 2002, 2006), (2) plant material is exposed to Cd radioisotopes 
under conditions at 2°C and 22°C (Zhao et al. 2002, Uraguchi et al. 2009), (3) metabolic 
inhibitors such as DNP or CCCP (Cataldo et al.1983, Ueno et al. 2009), (4) centrifuge 
method (Yu et al. 1999, Mitani and Ma 2005, Ma et al. 2004, Ueno et al. 2008), (5)estimation 
of desorption from roots with time(Lasat et al. 1998)  
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Regarding evaluation for symplastic element uptake in roots using radioisotopes, this 
method is used for symplastic element uptake in roots. Hart et al. (1998, 2002, 2006) reported 
that Cd uptake experiment was conducted in nutrient solution containing 109Cd-labeled 
CdSO4 and apoplastic 109Cd were desorbed using excessive nonlabelled Cd. As other 
method, Nakanishi et al. (2006) evaluated that apoplastic Cd in the roots was washed in 0.5 
mmol L−1 ethylenediaminefetraacetic acid (EDTA) for 1 min. Lasat et al. (1996) evaluated 
that symplastic Zn uptake in roots of Zn hyperaccumulator and nonaccumulator Thlaspi 
species apoplastic 65Zn in roots desorbed by excessive unlabelled ZnCl2 solution after Zn 
uptake experiment was conducted using 65Zn raidoisotopes. There is merit that this method 
is able to detect radioisotope element with high sensitivity. However, there are limitations to 
this method, including radioisotope administrative restriction and restricted half of the 
radioisotope. Additionally, the radioisotope technique has toxicological concern. It is 
required for handling its isotopes to be careful.  
Regarding evaluation of symplastic element uptake in roots using differences in the amounts 
of Cd absorbed at 2°C and 25°C. Uptake of element at 2°Cwas assumed to represent mainly 
apoplastic binding in the roots whereas the difference in uptake between 22°C and 2°C 
represented metabolically dependent influx. Zhao et al. (2002) reported that apoplastic and 
symplastic uptake in two Thlaspi species from Cd and Zn depletion in solution using 
radioisotope tracer. Uraguchi et al.(2009) reported that genotypic variation in cadmium 
accumulation in rice and evaluated that symplastic Cd uptake in roots of rice using the 
method of subtraction the Cd content in the roots at 2°C from the Cd content in the roots at 
25°C. This method using unlabeled Cd is easy to handle because there is no administrative 
limitation not using radioisotope elements. However, this method needs double seedlings for 
evaluation. Additionally, this method cannot be evaluated using same seedling. This method 
is not easy for dicotyledonous plant such as Solanum melongena to handle. 
As for methods using metabolic inhibitors, Cataldo et al. (1983) reported that Cd uptake 
dependent on energy in roots is suppressed by dinitrophenol as metabolic inhibitor. In this 
study, using dinitrophenol as a metabolic inhibitor, the 'metabolically absorbed' fraction was 
shown to represent 75 to 80% of the total absorbed fraction at concentration less than 0.5 
μmol, and decreased to 55% at 5μmol. 
Regarding centrifuge method, tap roots of plants were harvested and 2 cm root tips were 
excised. Then, cut ends were washed in distilled water and blotted dry. For each sample, 30 
roots were used. The cut ends were washed in distilled water quickly and blotted dry. The 
tips were placed in a 0.45 mM filter unit with the cut ends facing down and centrifuged at 
2,000g for 15 min at 4°C to obtain the apoplastic solution. After centrifugation, root 
segments were frozen at -80°C for 2 h and then thawed at room temperature. The symplastic 
solution was prepared from frozen-thawed tissues by centrifugation at 2,000g for 15 min at 
4°C. Ma et al. (2004) evaluated that symplastic Si uptake of wild type rice and mutant rice 
using this centrifuge method. Additionally, Mitani and Ma (2005) also evaluated that 
symplastic Silicon uptake in rice, tomato and cucumber which differ from Si accumulation 
capacity using this method. Ueno et al.(2009) reported that symplastic Cd uptake is 
estimated by cell sap obtained from centrifuge method. To check the purity of apoplastic 
solution, the activity of malic dehydrogenase in apoplastic and symplastic solution was 
determined. The activity of malic dehydrogenase in apoplastic solution was below one-
twentieth and approximately one-fortieth of symplastic solution. This method is valuable 
for evaluation of symplastic Cd concentration in roots because Cd concentration in roots cell 
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cap was directly determined. However, evaluation using root tips possibly is not 
representative of most root tissues. Rain et al.(2006) pointed out that there are the difference 
of Km value in kinetics experiment between whole roots and root tips.  
As other evaluation method of roots fraction, Lasat et al.(1998) evaluated that each fraction 
of cell wall, cytoplasm and vacuole by each efflux fraction from roots. They investigated that 
difference of Zn fraction in roots such as cell wall, cytoplasm and vacuole using this method. 

4. Application of enriched stable isotopes in element uptake and 
translocation in plant 

In this section, we introduce that our new method for evaluation of symplastic ion 
absorption, especially cadmium (Mori et al. 2009a). Several methods stated above is 
evaluation that apoplastically bound element is desorbed by some elements after element 
absorption experiment. Our method is that symplastic Cd absorption capacity is 
evaluated by difference of enriched isotope of 113Cd and 114Cd. Cadmium (Cd) is a 
hazardous heavy metal with regards to human health and is dispersed in natural and 
agricultural environments principally through human activities (Wanger, 1993). Arable 
land contains, to some extent, Cd, reportedly in the range, 0.04–0.32M, even in non-
polluted soil (Keller, 1995; Wanger, 1993). This results in Cd accumulation in the edible 
parts of crops. Recently, the Codex Alimentarius Commission (2005) adopted a maximum 
concentration of 0.05 mg Cd kg−1 (fresh weight) recommended for fruiting vegetables. 
Approximately 7% of 381 samples of eggplant (Solanum melongena), 22% of 165 samples of 
okra (Abelmoschus esculentus), and 10% of 302 samples of taro (Colocasia esculenta) 
contained Cd concentrations above this limit in a field and market-basket study during 
1998–2001 in Japan (Ministry of Agriculture Forestry and Fisheries of Japan, 2002); despite 
the fact that these crops were cultivated in non-polluted fields. Under these 
circumstances, new technologies for reducing the Cd level in crops are urgently required 
in Japan. Therefore, it is important to elucidate the mechanisms mediating Cd absorption, 
accumulation, and translocation in these crops. The crop conditions were represented by 
low Cd concentration experimental mediums.  

4.1 Validity of our method for evaluation of symplastic Cd uptake in roots using 
enriched isotopes of 

113
Cd and 

114
Cd 

When ion absorption experiments were conducted, it was found that the apoplastically 
absorbed ions needed to be washed out of the apoplast to determine the symplastically 
absorbed ions across the plasma membrane or the determination of absorption is 
overestimated(Glass 2007). Therefore, it is necessary to eliminate the apoplastically bound 
ions to evaluate the symplastically absorbed ion content in the roots. There are several 
methods to eliminate apoplastic ions as stated above. In this section, we introduced our new 
method for symplastic Cd absorption in roots of Solanum melongena using enriched isotopes 
of 113Cd and 114Cd.   
The enriched isotopes of 113Cd (106Cd, 0.16%; 108Cd, 0.135%; 110Cd, 0.81%; 111Cd, 2.53%; 112Cd, 
2.61%; 113Cd, 93.29%; 114Cd, 0.46%; 116Cd, 0.01%) and 114Cd (106Cd, 0.05%; 108Cd, 0.05%; 110Cd, 
0.05%; 111Cd,0.05%; 112Cd, 0.05%; 113Cd, 5.6%; 114Cd, 93.6%; 116Cd,0.8%) used in the present 
study were purchased from Isoflex (San Francisco, CA,USA) in metallic form and dissolved 
in diluted HNO3. The enriched isotopes of 114Cd contained the 5.6 % of 113Cd.  
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(modified from Mori et al. 2009a) 

Fig. 1. Absorption experiment procedure for evaluating symplastic 113Cd absorption in roots 

The procedure for evaluating symplastic Cd absorption in the roots, using enriched 
isotopes 113Cd and 114Cd, is illustrated in Fig. 1. The roots of intact seedlings were rinsed 
in ultrapure water for 2 min and then exposed to a 500 mL 113Cd solution containing 0.5 
mmol L–1 CaCl2 and 2 mmol L–1 2-morpholinoethanesulfonic acid monohydrate Tris 
(hydroxymethyl) aminomethane (MES–Tris) (pH 6.0) at 25°C for 30 min (Fig. 1). The 
levels of 113Cd were 40 nmol or 400 nmol in the 113Cd treatment. A-B shown in Fig.2 
indicates that 113Cd absorbed in roots consists of apoplastic 113Cd and symplastic 113Cd 
(Fig.2 A, B). To suppress metabolically dependent symplastic absorption from the 
apoplast, the roots were excised from each seedling and immersed in a cold Cd-free 
buffer solution (2 mmol L–1 MES–Tris [pH 6.0], 0.5 mmol L–1 CaCl2) at 2°C for 120 min 
(Fig. 1, Fig.2 C). The apoplastic-bound 113Cd in the roots from 40 or 400 nmol 113Cd 
treatment was then desorbed by immersing the roots in the same cold buffer solution at 
2°C containing a 50-fold concentration of 114Cd (2 or 20 μmol) for 120 min (Fig.1, Fig.2 D, 
E, F). The excised roots were then rinsed in ultrapure water for 2 min. Harvested samples 
were dried in an oven at 75°C for 3 days until dry. After digestion of dried sample, we 
then determined 113Cd and 114Cd contents in roots by ICP-MS analysis. To confirm the 
validity of this method, we compared our Cd absorption results with the Cd absorption 
results obtained at 25°C and 2°C using unlabeled CdCl2 reagent. The experimental 
procedure was as follows. The Cd-absorption experiments were conducted for 30 min 
using 500 mL solutions containing 2 mmol L–1 MES–Tris (pH 6.0), 0.5 mmol L–1 CaCl2 and 
different concentrations of Cd (40 or 400 nmol) at 25°C. After the absorption experiment, 
the excised roots from each seedling were rinsed with ultrapure water for 2 min. For the 
Cd-absorption experiment at 2°C, plants were transferred to an ice-cold pretreatment 
solution containing 2 mmol L–1 MES–Tris (pH 6.0) and 0.5 mmol L–1 CaCl2 for 120 min. 
The Cd-absorption experiment at 2°C was conducted for 30 min. In the unlabeled Cd-
absorption experiment at different temperatures, the amount of Cd reportedly absorbed 
into roots at 2°C was estimated to be apoplastically bound Cd on the assumption that 
metabolically dependent absorption would be suppressed at low temperature. Therefore, 
the difference in the amount of Cd absorbed at 2°C and at 25°C represents symplastic Cd 
absorption depending on metabolic energy. All absorption experiments were replicated 
three times. Each procedure illustrated in Figure1 signifies a schematic representation 
shown in Fig. 2.  
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Fig. 2. A schematic representation of Cd absorption and desorption in roots using different 
enriched isotopes 

4.2 Determination of 
113

Cd, 
114

Cd and the Cd contents in the roots  
Approximately 0.05–0.1 g of dried roots was transferred and digested in a 10 mL Teflon tube 
containing 3 mL HNO3. After digestion, the digested solution was diluted and 10 ng mL–1 of 
indium (In) was added to each diluted solution as an internal standard for 114Cd 
determination. For 113Cd determination, 10 ng mL–1 of tellurium (Te) was added as an 
internal standard. The concentrations of 113Cd and 114Cd in the digested solutions were 
determined by ICP-MS (ELAN DRC-e; Perkin Elmer SCIEX, Concord, ON, Canada). The 
concentrations of Cd in the digested solutions from the Cd-absorption experiment using 
unlabeled CdCl2 reagent were determined by ICP atomic emission spectroscopy (VISTA-
PRO; Varian, Palo Alto, CA, USA). It is well known that MoO interferes spectroscopically in 
determining the concentration of Cd in ICP-MS analysis (Kimura et al. 2003; May and 
Wiedmeyer 1998). In addition, it has been shown that it is necessary to remove Mo from the 
digested solution to avoid spectroscopic interference by molybdenum oxides (Oda et al. 
2004; Yada et al. 2004). Therefore, for the 113Cd and 114Cd count intensities, we monitored the 
spectroscopic interference of the molybdenum oxides (97Mo16O and 98Mo16O) detected in the 
10 ng mL–1 Mo standard solution. The contribution rate of spectroscopic interference of the 
putative 97Mo16O and 98Mo16O for 113Cd and 114Cd contents was negligibly small in both 
treatments (40 and 400 nmol). Therefore, we considered that we could ignore spectroscopic 
interference of oxidative molybdenum in determining the 113Cd and 114Cd contents in the 
ICP-MS analysis. 
As shown in Fig. 3, after desorption of apoplastic 113Cd by excessive 114Cd, distribution of 
113Cd and 114Cd in roots is as follow. (1) apoplastic bound 114Cd is derived from desorption 
solution of excessive 114Cd. (2) apoplastic bound 113Cd is derived from desorption solution of 
excessive 114Cd. (3) symplastic 113Cd is derived from 113Cd- uptake experiment. Therefore, 
113Cd content in roots is the sum of (1) and (2). Symplastic 113Cd is the subtraction between 
total 113Cd and 113Cd derived from an enriched stable of 114Cd.  As shown in Fig. 1, the total 
113Cd contents in the roots signifies the 113Cd contents in the roots after the desorption 
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experiment (Fig. 1). The total 113Cd content in the roots at 40 and 400 nmol Cd was 23.0 ± 4.3 
and 87.7 ± 5.6 mg kg–1 (dry weight), respectively (Table2). In contrast, the 114Cd content at 40 
and 400 nmol Cd was 117.3 ± 9.4 and 644.5 ± 33.7 mg kg–1 (dry weight), respectively 
(Table2). The purification rate of the 114Cd-enriched stable isotope used in the present study 
was 93.60%; whereas, the composition rate of 113Cd in the 114Cd-enriched stable isotope was 
5.6%. The total 114Cd content in the roots after desorption of 20 μmol 114Cd was 
approximately 5.5-fold higher than that using 2 μmol 114Cd (Table 2),suggesting that the 
apoplastically bound 113Cd content, derived from the enriched isotope 114Cd, increased with 
an increase in the concentration of 114Cd in the desorption solution. Actually, the 
apoplastically bound 113Cd contents, derived from the enriched isotope 114Cd (2 and 20 
μmol) were 6.6 ± 0.5 and 36.6 ± 1.8 mg kg–1, respectively (Table 2); these values were 
calculated using equation in Fig.3. The contribution rate of 113Cd content derived from the 
enriched stable isotope of 114Cd for total 113Cd in the roots was 28.6% for the 40 nmol 113Cd 
treatment. In contrast, the contribution rate of 113Cd content derived from 114Cd for total 
113Cd content in the roots was 41.8% for the 400 nmol 113Cd treatment (Table 2). These results 
indicate that the 113Cd derived from the enriched stable isotope of 114Cd must be subtracted 
from the total 113Cd content in the roots to evaluate the symplastic 113Cd in the roots. The 
symplastic 113Cd contents for the 40 and 400 nmol treatments, calculated using equation in 
Fig.3, were 16.4 ± 3.7 and 51.0 ± 3.8 mg kg–1, respectively (Table 2). In the present study, we 
disregarded the contribution of 114Cd derived from the enriched isotope of 113Cd because the 
composition rate of 114Cd in the enriched isotope of 113Cd was considerably lower than that 
of 113Cd in the enriched isotope of 114Cd. 
 

 
Fig. 3. Calculation of symplastic 113Cd content in roots. 

4.3 Comparison of the symplastic Cd contents in the roots between the two methods 
To examine the validity of the new method for evaluating the symplastic Cd content in roots 
using 113Cd and 114Cd enriched isotopes, we compared the symplastic Cd content in roots 
using differences in the amounts of Cd absorbed at 2°C and 25°C with unlabeled Cd with 
the results obtained in the present study using the new method. In conventional Cd-
absorption experiments, the Cd contents in roots at 40 and 400 nmol Cd in a 25°C treatment 
were 19.2 ± 1.6 and 84.4 ± 3.4 mg kg–1 (dry weight), respectively (Table 3). In contrast, the Cd 
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contents in roots at 40 and 400 nmol in the 2°C treatment were 4.1 ± 0.3 and 28.1 ± 0.73 mg 
kg–1 (dry weight), respectively. 
The symplastic Cd contents at 40 and 400 nmol were estimated to be 15.1 ± 1.3 and 56.4 ± 2.7 
mg kg–1, respectively, which was evaluated using the difference in the amount of Cd 
absorbed at 2°C and at 25°C. 
In the 113Cd-absorption experiment, the symplastic 113Cd contents in the roots at the 40 and 
400 nmol 113Cd treatments were 16.4 ± 3.7 and 51.0 ± 3.8 mg kg–1, respectively (Table 2, 3). 
Therefore, the symplastic 113Cd content after using the enriched isotopes was similar to the 
symplastic Cd content evaluated from the difference between the amount of Cd absorbed at 
2°C and at 25°C. These results indicate that it is possible to evaluate the contents of 
symplastic Cd in roots using 113Cd and 114Cd enriched isotopes using the method proposed 
in the present study. 
There have been many reports on Cd absorption in roots eliminating apoplastic bound Cd 
in Durum wheat, soybean and hyperaccumulator plants, such as Thlaspi caerulescens 

(Cataldo et al. 1983; Hart et al. 1998, 2002, 2006; Zhao et al. 2002). In these studies, the 
symplastic Cd content in the roots was determined by subtracting the Cd content in the 
roots at 2°C from the Cd content in the roots at 25°C; the Cd content was determined 
using a radioisotope of 109Cd or a metabolic inhibitor. These methods have frequently 
been used to evaluate nutrient element absorption in roots. Radioisotopes in solute were 
the most useful markers used in these studies because they are chemically similar to the 
solute and can be distinguished from non-labeled solutes already contained in the roots 
(Davenport 2007). However, there are limitations to this method, including radioisotope 
administrative restriction and the restricted halflife of the radioisotope. Although the 
method involving a temperature difference between 2 and 25°C that was used in the 
present study is easy to handle because there is no radioisotope administrative restriction, 
there is, however, a limitation to this method: the symplastic Cd content in the roots 
cannot be evaluated using the same seedlings. This method has the advantage of no 
radioisotope administrative restriction and no restrictive radioisotope half-lives. In 
addition, this method uses half the number of seedlings that are required for the method 
using the temperature difference between 2 and 25°C because the symplastically absorped 
Cd in the roots can be evaluated using roots from the same seedlings. In addition, the 
method proposed in the present study is applicable to other plants, not only S. melongena. 
We indicated that it is possible to evaluate symplastic Cd in roots using 113Cd and 114Cd 
enriched isotopes. The proposed method will contribute to research on symplastic ion 
absorption in plant roots stated below. 
 

40nM 

Total 114Cd Total 113Cd 
113Cd derived from 

enriched 114Cd 
Symplastic 113Cd 

117.3±9.3 23.0±4.3 6.6±0.53 16.4±3.7 
400nM 

Total 114Cd Total 113Cd 
113Cd derived from 

enriched 114Cd 
Symplastic 113Cd 

644.5±33.7 87.7±5.6 36.6±1.8 51.0±3.8 

Table 2. 114Cd and 113Cd content in roots (modified from Mori et al. 2009a ) 
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40nM 

Symplastic 113Cd Cd(25°C-2°C) Cd(25°C) Cd(2°C) 

16.4±3.7 15.1±1.3 19.2±1.6 4.1±0.3 
400nM 

Symplastic 113Cd Cd(25°C-2°C) Cd(25°C) Cd(2°C) 

51.0±3.8 56.4±2.7 84.4±3.4 28.1±0.7 

Table 3. Comparison of the symplastic Cd content in roots (modified from Mori et al. 2009a ) 

 

 
Fig. 4. Symplastic Cd absorption in roots of Solanum melongena and Solanum torvum with 
time. Experiment method is followed by the procedure illustrated in Fig.1 (modified from 
Mori et al.2009b) 

We used the new method using enriched stable isotopes for evaluation of symplastic Cd 
absorption in roots of solanaceous plants (Solanum melongena and Solanum torvum) with 
contrasting root-to-shoot Cd translocation efficiencies (Mori et al. 2009a,b). 
It is well known that efficiency of Cd translocation from roots to shoots is significantly higher 
in S. melongena than S. torvum (Arao et al. 2008, Mori et al. 2009a,b, Yamaguchi et al. 2011 ). 
Takeda et al.(2007) found that the Cd concentration in eggplant fruits could be reduced by 
grafting with Solanum torvum rootstock. Additionally, Arao et al.(2008) reported that although 
the Cd accumulation in shoots of S. torvum was lower than that found in S. melongena, there 
was no difference in the Cd content in roots of both plants when grown in culture solution. 
This result suggests that S. torvum develops noteworthy physiological mechanisms to suppress 
Cd translocation from roots to shoots, corresponding to the results observed in previous 
reports (Arao et al., 2008). Arao et al. (2008) suggested that symplastic Cd absorption and 
xylem loading capacity might be ascribed to the difference of Cd concentration in the shoots of 
S. melongena and S. torvum. We evaluated the symplastic Cd absorption rate in roots using 
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enriched isotopes 113Cd and 114Cd. In time course-dependent experiments, the symplastic 113Cd 
absorption rate for both plants increased with time (Fig. 4). In addition, the symplastic 113Cd 
absorption rate of S. melongena was slightly higher than that of S. torvum at 4 h (Fig. 4). We 
examined kinetics analysis by similar method using enriched stable isotopes of 113Cd and 114Cd 
(Mori et al. 2009b). A kinetic study revealed that the symplastic Cd concentrations in the roots 
increased with increasing external Cd concentrations, but saturated at a higher concentration. 
The saturated curve obtained in this study suggests that absorption in both cultivars is 
mediated by a transporter that exhibits a similar affinity for Cd.. Moreover, the symplastic Cd 
concentrations slightly differed between the roots of S. melongena and S. torvum. Based on the 
reaction curves obtained, the Km value was estimated to be 380 and 352 nmol L−1 for S. 
melongena and S. torvum, respectively. The corresponding Vmax values were 152 and 101.5μg 
root dw−1 0.5 h−1. The Vmax value of S. melongena was approximately 1.5-fold higher than that of 
S. torvum, which suggests that the density of the Cd transporter in the root cell membranes of S. 
melongena is higher than in S. torvum. In this experiments, If the symplastic Cd absorption in 
roots is estimated by the conventional method using the difference of temperature at 2 and 
25°C, it is required time consuming and double seedlings for experiment preparation.  

5. Conclusion 

For biological system analysis, the application of ICP-MS in enriched stable isotope tracer 
experiments has increased because ICP-MS has now become the preferred technique. An 
enriched stable isotope technique would be potent and useful tool for biological system 
experiments including element uptake, distribution and chemical form in plants. In this 
chapter, we introduced our one example of element uptake system using enriched isotope of 
113Cd and 114Cd. This method has several merits compared to conventional methods if ICP-
MS instrument is able to use. Application of enriched isotopes such as 113Cd and 114Cd 
would attain a new insight for plant biological system and will become a new tool to 
evaluate element behavior in plants. 
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