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1. Introduction

Parkinson’s disease (PD) is the most diffuse movement disorder, affecting approximately 6
milion individuals worldwide and presenting tremor, rigidity and bradykinesia as the main
clinical features. The onset of PD typically occur in patients over the age of 50 years and its
incidence slowly progresses with increasing age. Neuropathologically, it is characterized by
loss of striatal-projecting dopaminergic neurons of the substantia nigra pars compacta, and
by the presence of Lewy bodies (LB) and Lewy neurites (LN) (Forno, 1996). To date, LB and
LN are the characteristic neuropathological alterations of another neurodegenerative
disease: Dementia with Lewy bodies (DLB), a form of late-life dementia which eventually
overlaps with Alzheimer’s disease.

It is noteworthy that, despite the staggering impact of PD on society, the available therapeutic
armamentarium for this disease is still limited. Indeed, the gold-standard treatment for PD
from the 60’- the dopamine precursor L-DOPA - induces severe motor side effects and its
efficacy declines with the progression of the disease. The rest of the pharmacological
treatments for PD mainly include drugs that are usually employed in association with L-
DOPA such as dopamine agonists, which however fail to match L-DOPA's efficacy. Best
results are currently achieved with invasive strategies via subcutaneous or intraduodenal
delivery of apomorphine or L-DOPA, or deep brain stimulation of the subthalamic nucleus.
Nonetheless, usually after 15 years of pharmacological and therapeutical interventions, most
of the patients start to present several motor complications, thus requesting multiple adjuvant
strategies such as physiotherapy, hospitalization or social assistance.

For these reasons, in recent years, much effort has been made in order to outline novel
therapeutical approaches to cure PD. In particular, interventions such as stem-cell based
approaches have been tested as potential treatments for PD. Although results indicate that
patients may gain a long-term clinical benefit from the intrastriatal transplantation of human
embryonic mesencephalic tissue (Piccini et al., 1999), part of the graft-derived dopaminergic
cells develop LB after 11-16 years (Li et al., 2008;Kordower et al., 2008a;Kordower et al., 2008b),
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probably because a-synuclein can be transmitted from cell to cell (Desplats et al., 2009), and
what’s more, the availability of human mesencephalic tissue is limited. Thus, it became clear
that lentiviral vectors are ideal candidates to design novel gene-based disease modifying
strategies for neurodegenerative diseases such as PD. Indeed, surgical infusion is currently
required for viral vector delivery into the brain and PD is the only neurodegenerative disorder
routinely treated with neurosurgery (Bjorklund et al., 2009;Bjorklund and Kirik, 2009;Kaplitt,
2010). Furthermore, several animal models of PD are available to test new therapies. Actually,
promising preclinical gene therapy studies focusing on the correction of dopamine deficiency
are currently in progress (Azzouz et al., 2002;Jarraya et al., 2009). However, a limitation with
this level of analysis is that it sidesteps the main goal that a current therapeutical approach for
PD should afford: to block and/or counteract dopamine neuron derangement. Indeed, a
disease modifying gene therapy approach is missing, as the mechanisms underlying
dopamine neuron derangement in PD are not yet completely clear. For these reasons,
unravelling the molecular mechanisms underlying PD onset is essential to discover new
therapeutic targets to cure the disease.

In recent years, the idea that a-synuclein is a causative agent of PD has spread upon the
scientific community, the link being that a-synuclein is deposited in the pathological
hallmark of PD, the LB and that a-synuclein mutations are responsible for the onset of
familial form of PD (Cookson and van der, 2008;Cookson, 2005). These considerations leave
us with the simplest possible sketch of the pathogenesis of PD: a-synuclein is an initiator of
damage and the final outputs, after many years, are cell loss and LB formation. However, it
has to be taken into account that the majority of PD cases are idiopatic, thus: what are the
causes underlying the pathological accumulation of a-synuclein? Many epidemiological
studies have been conducted to verify whether environmental or genetic factors may
predispose to the development of PD (Elbaz and Moisan, 2008). From these latter, it became
evident that a correlation exists between pesticide or chemicals exposure and PD onset.
Furthermore, besides a-synuclein, 12 other gene mutations, some of which with unknown
function (Belin and Westerlund, 2008) have been found to be responsible for the
development of early onset PD. Some of these genes encode mitochondrial associated
proteins or members of the ubiquitin-proteasome system. Remarkably, mitochondrial and
proteasomal dysfunctions have been linked to the onset of PD (Tritschler et al., 1994). Thus,
the overall conclusions of epidemiological studies indicate that PD is a complex,
multifactoriated disorder and that a-synuclein aggregation, mitochondrial and proteasomal
dysfunctions play central pathogenic roles. Noteworthy, the observation that both
mitochondrial and proteasomal inhibitors induce a-synuclein accumulation as well as
dysfunction and degeneration of nigrostriatal dopaminergic neurons “in vivo” (Xiong et al.,
2009;Xie et al., 2010) remind to the hypothesis that a-synuclein deposition is a central step
event during the pathogenesis of PD. This notion has been reinforced by findings showing
that the area that degenerate in PD (substantia nigra, striatum and ventral tegmental area)
express low levels of a-synuclein in physiological conditions (Wersinger et al., 2004), and
that a-synuclein levels in the substantia nigra decrease with age (Mak et al., 2009)
supporting the hypothesis that these regions may be more vulnerable to a pathological
increase of a-synuclein levels, especially during the aging process. At present, the
neuropathological diagnosis of PD and DLB is based on the detection and quantification of
LB (Beach et al., 2009b;Beach et al., 2009a;McKeith et al., 1996;McKeith et al., 2005;McKeith,
2006). Indeed, the spreading of LB pathology correlates with the progression of the disease
In PD, LB are mainly found at predilection sites of neuronal loss such as the substantia nigra
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(Braak et al., 2003;Jellinger, 2009;Halliday and McCann, 2010), thus indicating that LB may
be somehow related to nerve cell loss. Later on, it was shown that the number of LB in
patients with mild to moderate loss of neurons in the substantia nigra is higher than in
patients with severe neuronal depletion, thus indicating that LB-containing neurons may be
the dying neurons (Wakabayashi et al., 2007). Furthermore, it seems that the presence of LB
is not always related to nerve cell degeneration as every dying nerve cell does not
necessarely form LB. Indeed, LB-containing neurons of the substantia nigra don’t undergo
apoptotic cell death to a greater degree than the general population and most neurons that
undergo cell death do not contain LB (Schulz-Schaeffer, 2010;Tompkins and Hill, 1997).
Finally, substantia nigra neurons, whether they contain LB or not, are similarly affected by
morphological dendritic abnormalities or biochemical changes, thus indicating that the
neurons in general are involved in the disease process (Bergeron et al., 1996;Hill, 1996;Javoy-
Agid et al., 1990;Patt et al., 1991;Kramer et al., 2008;Schulz-Schaeffer, 2010).

In addition, recent findings indicate that in DLB 90% or even more a-synuclein aggregates
are located at presynapses in the form of very small deposits, pointing out that not cell
death but rather a-synuclein aggregate-related synaptic dysfunctions may cause the
neurodegeneration (Schulz-Schaeffer, 2010;Kramer et al., 2008). It may thus be feasible
that PD may be characterized by dying back mechanisms that begin at the synapse and
lead to axonal degeneration in the striatum as a consequence of the pathological
accumulation of a-synuclein at the synapse. These events may lately drive dopaminergic
cells of the substantia nigra toward neurodegeneration. Therefore, a-synuclein is central
to the pathogenesis of PD. This view opens the way to a novel question: is it the a-
synuclein deposition-associated synaptic pathology which may affect the function and
resilience of dopaminergic neurons?

Alpha-synuclein is a 140 amino acids protein, a fragment of which has been identified as a
non A-f component (NAC) in amyloid preparations of Alzheimer’s disease (Ueda et al.,
1993). It was firstly described as a brain specific protein (Nakajo et al., 1993;George et al.,
1995) and since the initial findings indicated that the protein localizes at presynaptic site and
portions of the nucleus in brain neuronal cells (Jakes et al., 1994;Iwai et al., 1995) it was
denominated with the acronym “synuclein”. Recombinant a-synuclein does not assume a
uniform consistent secondary structure in aqueous solution, thus the protein is said to be
natively unfolded (Weinreb et al., 1996). Several observations have shown that a-synuclein
is implicated in the control of synaptic membrane processes and biogenesis (Jenco et al.,
1998;Davidson et al., 1998). From these studies, it was hypothesized that a-synuclein could
play a key role in the modulation of synaptic activity. Consequently, it has been
demonstrated that a-synuclein interacts with- and modulates the expression, subcellular
distribution and activity of numerous synaptic proteins as well as cytoskeletal components
(Engelender et al., 1999;Bonini and Giasson, 2005;Chandra et al., 2005;Sousa et al., 2009;Scott
et al., 2010;Garcia-Reitbock et al., 2010;Darios et al., 2010;Burre et al., 2010). Alpha-synuclein
also shares numerous biochemical and functional similarities with synaptic proteins such as
synapsins. Furthermore, it has been found to be implicated in the control of
neurotransmitter release (Abeliovich et al., 2000;Gureviciene et al., 2007;Nemani et al., 2010)
and since the protein is specifically upregulated in a discrete population of presynaptic
terminals of the songbird during a period of song acquisition (George et al., 1995), it has
been hypothesized that it may be implicated in synaptic plasticity. Thus, it emerges that a-
synuclein has a critical role in the control of synaptic activity in specific neuronal
populations, rendering it possible to outline a whole new scenario to single out novel
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therapeutical targets among the a-synuclein synaptic partners. Modulation of these proteins
may open new ways toward the development of disease modifying strategies to cure PD-
related synaptic dysfunctions.

By performing a critical review of the PD-related a-synuclein proteome, this article will
outline the most relevant findings defining the specific modulatory effects exerted by a-
synuclein in the control of synaptic functions in physiological and pathological conditions.
The overall conclusions of these studies will spot novel potential therapeutic targets for the
development of pharmacological and gene-based strategies aimed at straightening a-
synuclein-related synaptic dysfunctions as new clues to cure PD.

2. Alpha-synuclein: Biophysical characteristics

Alpha-synuclein was first described in Torpedo californica (Maroteaux et al., 1988). It
belongs to the synuclein family, which includes - and y-synucleins. These proteins have a
common amino-terminal sequence containing a different number of repeat regions while
they differ in the carboxy-terminal part (Tofaris and Spillantini, 2005). Alpha-synuclein from
different organisms possesses an high degree of sequence conservation (Clayton and
George, 1998). Three a-synuclein isoforms are produced by alternative splicing (Bayer et al.,
1999) in humans. The best known isoform is 140 amino acids in length and constitutes the
whole and major transcript of the protein. Two other isoforms, of 126 and 112 amino acids in
length, derive from the selective deletion of exon 3 and 5, respectively.

The full length a-synuclein transcript (Figure 1) can be divided into three regions: 1) The N-
terminal region, residues 1-60, includes the sites of three familial PD mutations and contains
four 11-amino acid imperfect repeats with a highly conserved hexameric motif (KTKEGV).
This region is involved in the formation of amphipatic a-helices, similar to the lipid-binding
domain of apolipoproteins (George et al., 1995;Clayton and George, 1998); 2) The central
region, containing residues 61-95, comprises the NAC highly aggregation-prone sequence
(Ueda et al., 1993;Han et al., 1995); 3) The C-terminal region, from residue 96 to 140, is highly
enriched in proline acidic residues, and contains three highly conserved tyrosine residues,
which are considered a signature of the a- and B-synuclein family.

FULL LENGTH a-SYNUCLEIN

587 S129

Pathogenic mutations PHOSPHORYLATION SITE PHOSPHORYLATION SITE

A30P E46K AS53T
71-82

|« | |  arve
Proline enriched
v, (NN ki O+
Region 1 aa 1-60 i

Region 2 aa 61-95 Region 3 aa 96-140

Imperfect KTKEGV repeats

% T39 NITRATION SITE

Fig. 1. Schematic representation of the full length 140 amino acid a-synuclein transcript.
Pathogenic mutations as well as phosphorylation and nitration sites are indicated.
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The amino acid sequence and subcellular localization of a-synuclein indicate that it can
interact with lipid membranes. Indeed, the repeat region, mediates reversible binding to
acidic phospholipids by making up a conserved apolipoprotein-like class-A2 helix which
is associated with a large shift in protein secondary structure from around 3% to about
80% a-helical (Davidson et al., 1998). Consistently, it has been observed that a-synuclein
can inhibit a protein which is localized to plasma membrane and submembraneous
vesicles: phospholipase D2, whose activity produces phosphatidic acid, which is
implicated in vesicle budding (Jenco et al., 1998). Membrane-bound a-synuclein has an
high aggregation propensity and seeds the aggregation of the cytosolic form (Lee and Lee,
2002). Lipids can facilitate the incorporation of a-synuclein into membranes and influence
a-synuclein fibril elongation (Gai et al., 2000) suggesting that a-synuclein may be strongly
implicated in synaptic membrane biogenesis. Furthermore, the key role of a-synuclein in
membrane-associated processes is supported by findings indicating that a-synuclein
knock-out mice have enhanced dopamine release at nigrostriatal terminals in response to
electrical stimulation, indicating that a-synuclein is an activity-dependent negative
regulator of dopaminergic transmission (Abeliovich et al., 2000). On this line, it has been
shown that depletion of a-synuclein results in a decrease in the distal pool of presynaptic
vesicles in cultured hippocampal neurons (Murphy et al., 2000). Furthermore, its
overexpression reduces neurotransmitter release by inhibiting synaptic vesicle
reclustering after endocytosis (Nemani et al., 2010). Cytosolic proteins regulate a-
synuclein membrane interactions, thus suggesting that cytosolic cofactors may be
implicated in disease pathogenesis (Wislet-Gendebien et al., 2006;Wislet-Gendebien et al.,
2008). In particular, protein-protein interactions may affect a-synuclein ability to bind to
synaptic membranes, thus affecting its biochemical properties and modulating its
tendency toward aggregation, suggesting that, in the a-synuclein synaptic proteome, it
could be possible to modulate a-synuclein aggregation by selectively regulating the
expression of some o its protein partners.

The relevance of the formation of protein complexes in the modulation of a-synuclein
function is supported by several findings which suggest that the protein likely behave like a
molecular chaperone. Indeed, some studies have shown that a-synuclein shares functional
and physical homologies with a family of ubiquitous cytoplasmic chaperones: the 14-3-3
proteins (Ostrerova et al., 1999). Alpha-synuclein can bind 14-3-3 proteins as well as other
protein members of its family proteome such as protein kinase C. Thus, it was hypothesized
that an increase of a-synuclein levels could be harmful for the cells as it could affect signal
transduction pathways involved in cell differentiation and survival. On this line, in 2001,
Iwata and colleagues showed that a-synuclein inhibited mitogen-activated protein (MAP)
kinase signaling and accelerated cell death following serum reduction in neuro2a cells.
However, results from later studies indicated that overexpression of wild type a-synuclein
can protect neuronal cells from apoptotic stimuli and delay cell death induced by serum
withdrawal (Alves da Costa et al., 2000;Lee et al., 2001b), thus leading to controversial
conclusions. Indeed, it has also been reported that a-synuclein protects against oxidative
stress by inactivating c-jun-N-terminal kinase, which is strongly implicated in stress
responses (Hashimoto et al., 2002). However, it is likely that the neuroprotective/toxic
effects of a-synuclein may be ascribed to a different sensitivity of cells to a-synuclein levels.
Indeed, it has been shown that at a nanomolar scale TAT-a-synuclein is neuroprotective
against oxidative stress, while at a micromolar scale it is able to aggregate and trigger
neurotoxic mechanisms (Albani et al., 2004;Batelli et al., 2008).
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Finally, recent evidence showed that cells from transgenic mice expressing the truncated
form of a-synuclein are more susceptible to environmental conditions and that
overexpression of the wild type from of the protein in neuronal progenitor cells affect their
fate of differentiation, thus supporting the notion that full length a-synuclein is involved in
dopaminergic cell differentiation and survival (Michell et al., 2007;Schneider et al., 2007).

3. Alpha-synuclein pathology in PD and a-synucleinopathies

The term a-synucleinopathies is usually employed to define a group of neurodegenerative
disorders that show common pathologic proteinaceous accumulation of a-synuclein
aggregates. In these diseases, a-synuclein aggregates are deposited in selective vulnerable
populations of neuronal and glial cells (Goedert, 1999;Spillantini and Goedert, 2000;Galvin
et al., 2001;Trojanowski and Lee, 2003). From a clinical point of view, a-synucleinopathies
include symptomatically heterogeneous disorders, among them LB-associated diseased such
as PD, DLB, multiple system atrophy (MSA) LB dysphagia as well as neurodegeneration
with brain iron accumulation type I, pure autonomic failure, and the LB variant of
Alzheimer’s disease (Uversky, 2007).

However, since a-synuclein has been found to be the main component of LB and LN in the PD
brain (Spillantini et al., 1997), and it has been described that mutations in the gene encoding a-
synuclein (SNCA gene) are responsible for the onset of familiar forms of PD (Polymeropoulos
et al., 1997), in the last decade, much effort has been devoted to the characterization of the
molecular basis of a-synuclein-related neuronal degeneration in PD and DLB.

Missense mutations in the gene encoding a-synuclein, as well as duplication and
triplication of the locus containing the SNCA gene, have been identified in familial forms of
PD (Tofaris and Spillantini, 2007;Lee and Trojanowski, 2006). However, familial forms of PD
linked to missense mutations are extremely rare and have different clinical and
histopathological features, although they may provide insights into pathogenic mechanisms
leading to LB formation. Fibril formation is accelerated by the A53T mutated a-synuclein
with respect to A30P-mutated or wild type form of the protein. However, in fibril-producing
conditions, the A30P monomer is consumed more rapidly than the wild type monomer,
although less rapidly than the A53T monomer, thus indicating that both mutations trigger
the accelerated formation of pre-fibrillar a-synuclein oligomers (Conway et al., 2000). A30P-
mutated a-synuclein display a reduced binding to vesicles, thus increasing the
neuropathology and the bioavailability of the protein for aberrant interactions (Choi et al.,
2004). The E46K mutation significantly increases the binding of a-synuclein to negatively
charged liposomes and enhances the rate of filament assembly comparably to the A53T
mutation (Greenbaum et al., 2005). The deleterious effects of point mutations and the effect
of high expression levels have been investigated “in vivo” in transgenic and viral infected
animals. Transgenic mice where the expression of A53T a-synuclein has been driven by the
mouse prion protein promoter (mPrP) showed accumulation of a-synuclein in cell bodies
and dystrophic neuritis as well as motor impaiment (Neumann et al., 2002). However, these
transgenic mice showed an extensive a-synuclein pathology in motor neurons and axons
which may account for their behavioural phenotype. Other studies showed that transgenic
overexpression of the wild type form of a-synuclein under the guidance of the mPrP was
not associated to protein accumulation or behavioural deficits. Conversely, transgenic mice
overexpressing the A30P mutant a-synuclein under the guidance of the Thyl promoter
developed age dependent LB-like changes such as proteinase K-resistant protein aggregates,
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neuritic pathology and formation of some argyrophilic and thioflavin S-positive a-synuclein
inclusions. Remarkably, although mPrP but not Thyl promoter drives high expression of
the transgene in the substantia nigra neurons, the tyrosine hydroxylase (TH)-positive
neurons of this area in the mPrP-driven transgenic mice were devoid of a-synclein
aggregates, and didn’t show loss of striatal dopamine or DAT (Giasson et al., 2002;Lee et al.,
2002). In line with these findings another study showed that TH-driven expression of wt or
mutant a-synuclein didn’t result in the formation of intracellular a-synuclein aggregates.
From these studies, it became evident that adeno- or lentiviral-mediated expression of a-
synuclein may represent a powerful tool to induce the selective expression of the protein in
dopaminergic neurons of the substantia nigra of adult rodents (Kirik et al., 2002;Klein et al.,
2002;Lo et al., 2002). Indeed, overexpression of either wild type or mutant form of the
protein led to cellular and axonal pathology associated with loss of nigral neurons,
reduction in striatal dopamine levels and motor deficits without the formation of fibrillary
inclusions (Lo et al., 2002), thus contradicting evidences from studies on transgenic animals.
These observations suggest that dopaminergic neurons are vulnerable to high levels of
human a-synuclein and that wild type or mutant form of the protein are both toxic.
Nonetheless, it may be taken into account that these discrepancies may be related to the
high rate of transgene expression that can be achieved by either technology or by the high
toxicity which is induced by gene transfection in viral models. To date, neither transgenic
nor viral-mediated rodent models expressing wild type or mutated a-synuclein show
fibrillary inclusions. Thus the mechanisms by which wild type human a-synuclein
assembles in LB in the substantia nigra of PD patients hasn’t been clarified by using these
models. Nonetheless, filamentous a-synuclein inclusions have been observed in a Drosophila
model in association with loss of dopaminergic cells and locomotor defects (Feany and
Bender, 2000).

Although studies of genetic mutations in a-synuclein helped in the understanding some of
the function and pathogenic properties of a-synuclein, they only account for a very small
proportion of PD cases. Indeed, more than 90% of PD cases are sporadic, thus characterized
by the accumulation of insoluble fibrils of WT a-synuclein (Spillantini et al., 1997;Spillantini
et al., 1998). Therefore, much effort has been made in order to understand what are the
alterations which convert wild type a-synuclein to a toxic species. It has been shown that
wild type a-synuclein aggregates form fibrils identical to those isolated from disease brains,
even though the rate of fibril formation is slower than that of the mutant form (Serpell et al.,
2000;Conway et al., 1998). To date, several post-translational modifications of a-synuclein
can alter its biophysical properties. Thus, it has been hypothesized that these modifications
are implicated in the induction of the fibrillation process (Oueslati et al., 2010). These studies
indicate that a-synuclein has numerous potential sites for post-translational modifications
such as phosphorylation, tyrosine nitration or protein cleavage. In transfected cells, it is
constitutively phosphorylated at serine residues 87 and 129, with the latter being the
predominant site (Okochi et al., 2000). Residue 129 in a-synuclein lies a consensus sequence
for casein kinase 1, which is also present in - and y-synuclein, and casein kinase 1 and 2
have been found to phosphorylate this site. Alpha-synuclein can be phosphorylated also by
several G-protein-coupled receptor kinases, events which reduce the ability of the protein to
interact with phospholipids and PLD2 (Pronin et al., 2000). Tyrosine kinase 72syk can
phosphorylate the tyrosine residues in the carboxy-terminus of the protein both in vitro and
in CHO cells (Negro et al., 2002). The specific phosphorylation of serine 129 in the C-
terminal region can decrease the ability of this portion to prevent fibril formation (Fujiwara
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et al., 2002). Other post translational modifications, such as tyrosine nitration of a-synuclein,
which have been reported in LB, seem to promote fibril formation (Giasson et al.,
2000;Hodara et al., 2004). Indeed, it has been shown that the specific nitration of the tyrosine
at position 39 in the N-terminal region of a-synuclein decreases its ability to bind to lipid
vesicles and shows the efficiency of both the proteasome and calpain I to degrade the
protein, thus fostering its accumulation. Thus, collectively it seems that modifications of
specific regions of a-synuclein may differentially affect its tendency toward aggregation. In
particular, modifications in the C-terminal part of a-synuclein are likely. This is confirmed
by the fact that modifications in this region, such as oxidation, nitration and
phosphorylation, may influence the propensity of a-synuclein to aggregate “in vivo” in a
similar way to truncation (Giasson et al., 2000;Fujiwara et al., 2002;Hashimoto et al., 1999).
Similarly, polyamines, dopamine or other positively charged molecules can interact with the
C-terminal portion of a-synuclein and promote its aggregation (Antony et al.,
2003;Fernandez et al., 2004;Goers et al., 2003;Norris et al., 2005).

Remarkably, it has been reported that LB are rich of C-terminally-truncated a-synuclein
(Campbell et al., 2001;Baba et al., 1998) which derives from proteolitic cleavage operated by
calpain I (Mishizen-Eberz et al., 2005;Dufty et al., 2007). Several studies demonstrated that
C-terminally truncated a-synuclein has an high tendency towards aggregation both “in
vitro” and “in vivo” (Crowther et al., 1998;Tofaris et al., 2003;Tofaris et al., 2006;Bellucci et
al., 2011) thus indicating that these a-synuclein species could play a role in inducing LB
formation. On this line, other findings (Murray et al., 2003) indicate that, while the middle
region of a-synuclein forms the core of filaments, the negative charges in the carboxy-
terminal part of a-synuclein counteract its aggregation, thus implying that a lack or
biochemical modifications of this region may increase the propensity of the protein to
aggregate.

It is noteworthy that abnormal protein degradation is another process which has been
involved in the formation of LB. Indeed, accumulation of misfolded proteins can overwhelm
the ubiquitin-proteasome system, leading to aberrant degradation (Bence et al.,
2001;Venkatraman et al., 2004) and binding of a-synuclein filaments and soluble oligomers
to the proteasome results in marked inhibition of chymotrypsin-like hydrolytic activity
(Lindersson et al., 2004). Monomeric WT a-synuclein can be directly degraded by the 20S
proteasome in a ubiquitin-independent manner (Tofaris et al., 2003) a process that is slowed
down by nitrosylation of monomeric a-synuclein (Hodara et al., 2004) and that can lead to
generation of incompletely degraded, C-terminally truncated a-synuclein species (Liu et al.,
2005). Furthermore, it has been described that in LB diseases a modified form of a-synuclein
of 22-24 kDa is the substrate of predominantly mono- or di-unbiquitination (Tofaris et al.,
2003). Thus, ubiquitin-dependent degradation is probably not involved in the physiological
degradation of a-synuclein but rather represents a disease specific pathway activated as a
last attempt to unfold and/or degrade misfolded proteins either through the 26S
proteasome via poly-ubiquitination, or the lysosome by mono-ubiquitination.

This notwithstandings, it has been showed that the direct expression of the chaperone Hsp70
prevents dopaminergic neuronal loss associated with a-synuclein toxicity in Drosophila
(Auluck et al., 2002) like the overexpression of the co-chaperone carboxyl-terminus of Hsp70-
interacting protein (CHIP) decreases the levels and the formations of intracellular a-synuclein
inclusions via the proteasome and lysosome systems (Shin et al., 2005).

Interaction with lipid membranes could also play a role in the conversion of wild type a-
synuclein to a pathogenic protein, as detergent stable oligomers of a-synuclein have been
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found in the brains of patients with PD and recombinant a-synuclein forms multimers “in
vitro” upon exposure to vesicles polyunsaturated fatty acids (PUFA) acyl groups (Perrin et
al., 2001). Moreover, exposure of mesencephalic neurons to PUFA increases a-synuclein
oligomerisation “in vivo” (Sharon et al., 2003). These oligomers precede the formation of
insoluble fibrillar aggregates and can bind and permeabilize membrane bilayers through
electrostatic and hydrophobic interactions (Volles et al., 2001;Zhu et al., 2003). Conversely,
more recent studies have shown that association of a-synuclein with biological membranes
can also protect the protein from oxidation and nitrosylation, decreasing the formation of
aggregates (Trostchansky et al., 2006) .

Finally, it has been found that overexpression of wild type and mutant a-synuclein in cells
isolated from transgenic mice disrupted the vesicular pH and increased cytosolic catechol
species, which in turn could trigger oxidative damage (Mosharov et al., 2006). Dopamine, on
the other hand, has been found to stabilize oligomeric intermediates (Conway et al.,
2001;Mazzulli et al., 2006) which can further disrupt the integrity of synaptic vesicles, thus
initiating a vicious circle that eventually leads to aggregation and cell death. Dopamine
overload can exacerbate the formation of insoluble a-synuclein-positive inclusions and cell
death induced by nutrient starvation (Bellucci et al., 2008). Overexpression of wild type,
A53T and A30P a-synuclein in human dopaminergic neurons led to 2-2.5-fold increase in
apoptosis (Xu et al.,, 2002;Zhou et al., 2002). Thus, from these findings, it seems that
dysregulation of dopamine homeostasis may underlie the vulnerability of dopaminergic
neurons in PD. However, the possibility that post-translational modifications during disease
process may at least partly be a secondary phenomena resulting from aggregation of a-
synuclein cannot be excluded at present.

4. The a-synuclein synaptic proteome

Several lines of evidence indicate that a-synuclein is critically involved in the regulation of
synaptic functions (Fortin et al., 2010;Bellani et al., 2010;Sousa et al., 2009;Tofaris and
Spillantini, 2007). In particular, it has been shown that a-synuclein is loosely associated with
the distal pool of synaptic vesicles (Kahle et al., 2000;Lee et al., 2008;Zhang et al., 2008) and
with the lipid rafts of the plasma membrane (Fortin et al., 2004), thus indicating that the
protein is able to associate with membranes, as confirmed by other studies (Chandra et al.,
2003;Davidson et al., 1998;Eliezer et al., 2001;Jo et al., 2000). Nonetheless, it seems that the
distribution of a-synuclein at synapses is very dynamic and dependent upon neuronal
stimulation, with rapid exchanges taking place among neighbouring synapses (Fortin et al.,
2005). The critical importance of a-synuclein in the modulation of synaptic functions is
confirmed by numerous studies shading light upon the a-synuclein synaptic proteome.
Numerous observations indicate that a-synuclein is crucially involved in the regulation of
synaptic functions as it interacts with- and modulates key synaptic components including
lipidic and protein molecules.

Yet, in 2003 Sharon and colleagues (2003) elegantly showed that a-synuclein accumulation
can influence cellular and brain phospholipids levels, including certain PUFA, thus affecting
membrane fluidity and synaptic membrane trafficking. Later on, Jo and coauthors (2004)
found that wild type a-synuclein does not penetrate to the fatty acyl chains and in isolated
synaptosomes, while the A53T mutated form of the protein binds to synaptosomal
membranes, increases lipid headgroup packing, induces subtle changes in the lipid
interfacial space and decreases the fluidity of the fatty acyl chains. However, a recent
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investigation concerning the lipidomic profiling of different mouse strains showed age and
gender related differences that were poorly associated with a-synuclein genotype thus
weakening the idea that a-synuclein-synaptic membrane interactions may underlie the
onset of PD-related alterations (Rappley et al., 2009). However, these observations may be
justified by the fact that a-synuclein is engaged in a foudamentally different mode of
membrane interaction than the charge-dependent artificial membrane binding, and the
mode of interaction is determined by the intrinsic properties of a-synuclein itself and by
cytoplasmic context (Kim et al., 2006). Furthermore, it has been shown that nutrient
starvation, a condition that mimics the impaired energy metabolism occurring in the aging
brain (Bowling and Beal, 1995) induces a-synuclein pathological changes, that may lately
affect the correct trafficking of synaptic proteins such as the DAT (Bellucci et al., 2008). Thus,
we can’t exclude that this effect can be related an a-synuclein accumulation-mediated
change in synaptic membrane fluidity and composition.

This notwithstandings, the modulation of synaptic activity by a-synuclein is not solely
mediated by the fact that the protein regulates some of the lipidic components of synaptic
membrane. Hence, a-synuclein has been found to interact with numerous synaptic proteins,
and it seems that this critical interaction may affect their specific localization and function.
Indeed, a-synuclein binds to the actin cytoskeleton (Sousa et al., 2009) and modulates its
dynamics, thus participating in the tuning of vesicle release process (Bellani et al., 2010). In
2007, Woods et al. described several new protein partners of a-synuclein by phage display
and NMR spectroscopy, and among them a key protein implicated in the regulation
synaptic vesicle release was identified: synapsin 1a. As a further indication of the occurrence
of a-synuclein-synapsin 1 interaction, it has been shown that these two proteins are co-
trasportated from the cell body to the axon by the slow component-b (Roy et al., 2007;Roy et
al., 2008). These observations were lately confirmed by other findings indicating that a-
synuclein transgenic overexpression results in a significant reduction of synapsin 1, thus
impairing vesicle reclustering after exocytosis (Nemani et al., 2010). The authors elegantly
discuss that since 1) synapsin 1 and 2 knock out mice show a reduction of the total number
of synaptic vesicles, distinct from the primary defect in recycling pool size observed with a-
synuclein overexpression, and 2) the overexpression of a-synuclein causes a more severe
defect in recycling pool than the complete loss of synapsins and what’s more, the transgenic
mice only show a partial loss of synapsins, the effect of a-synuclein is unlikely to reflect the
sole loss of synapsin. Rather, the inhibitory effect exerted by a-synuclein, may be related
also to the modulation of other proteins, such as complexins, proteins involved in a step at
or close to fusion with the plasma membrane (Sudhof and Rothman 2009), which have also
been found to be reduced by a-synuclein overexpression. However, complexins levels are
moderately changed in a- and B-synuclein knockout mice (Chandra et al., 2004), implying
that a-synuclein is not strikingly involved in their physiological regulation at synaptic sytes.
Thus, besides synapsin 1, the expression and subcellular localization of other proteins seem
to be affected by a-synuclein accumulation. Remarkably, it has been shown that a-synuclein
is able to restore N-ethylmaleimide sensitive fusion attachment protein receptor (SNARE)
proteins (SNAREs) assembly induced by the cysteine-string protein-a (CSP-a) knockout by
acting through a downstream mechanism that requires phospholipids binding, thus
protecting nerve terminals against CSP-a deletion-induced injury (Chandra et al., 2005). The
modulation of SNARE complex formation by a-synuclein likely occur through a direct
interaction with synaptobrevin-2, which involves the C-terminal portion of a-synuclein as
recently postulated by Burre et al. (2010). Therefore, C-terminally truncated a-synuclein is
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likely unable to interact with synaptobrevin-2, and to regulate SNARE complex assembly.
Furthermore, a-synuclein can indirectly affect SNAREs activation by sequestering
arachidonic acid (Darios et al., 2010). Another study showed that transgenic overexpression
of a-synuclein resulted in the selective reduction of synaptobrevin-2 and synapsin 1 as well
as of other synaptic proteins playing a role in exocytosis and endocytosis such as piccolo or
endocytosis-regulating proteins such as amphiphysin (Scott et al., 2010).

Synphilin, an adaptor molecule which anchors a-synuclein to intracellular proteins involved
in vesicle transport and cytoskeletal functions (Lee et al., 2004), is another protein member
of the synaptic proteome (Engelender et al., 1999;Neystat et al., 2002;Alvarez-Castelao and
Castano, 2010). In particular, it has been shown that synphilin-1 binds to a-synuclein thus
promoting the formation of cytosolic inclusions (Engelender et al., 1999). This effect may be
due to the fact that the interaction of the central region of synphilin-1 with the N-terminal
region of a-synuclein prevents a-synuclein degradation by the proteasome (Alvarez-
Castelao and Castano, 2010).

More recently, a broad proteomic analysis investigated the serine 129 and serine 125
phosphorylation-dependent a-synuclein interactions (McFarland et al., 2008). In this paper,
authors singled out several other synaptic protein partners such as synaptophysin, SNAP-
25-interacting protein, vesicle-associated membrane protein-associated protein (VAPA) A
and B and syntaxin-binding protein 1.

Finally, it has been shown that a-synuclein interacts with and modulate the membrane
trafficking of several neuron-specific transporters implicated in neurotransmitter re-uptake
from synaptic clefts, among them the DAT (Sidhu et al., 2004;Lee et al., 2001a;Bellucci et al.,
2008) as well as the noradrenalin transporter (NET) (Wersinger et al., 2006a) and serotonine
transporter (SERT) (Wersinger et al., 2006b). Remarkably, besides dopaminergic neurons of
the substantia nigra, the noradrenergic locus ceruleus (oral parts) and motor vagal nucleus
as well as serotonergic neurons of the Raphe nuclei are among the most vulnerable neurons
in the PD brain (Jellinger, 1991), thus, a loss of DAT, NET or SERT synaptic membrane
content, may critically be involved in the onset of PD.

5. Alpha-synuclein-related synaptic pathology at the synapse: Biochemical
characteristics and functional consequences

Since many recent reports have highlighted that a-synuclein plays a crucial role in the
regulation of synaptic functions by modulating lipid synaptic membrane composition and
fluidity as well as the trafficking and function of several key synaptic proteins, it has been
hypothesized that a-synuclein loss of function at the synapse may be one of the
pathophysiological mechanisms of PD. Thus, many post-mortem studies on the brain of PD
patients as well as investigations on “in vitro” and “in vivo” models of PD showing a-
synuclein accumulation have been focused on the evaluation of the biochemical and
functional consequences of a-synuclein accumulation at synaptic sites.

Numerous findings indicate that transgenic overexpression of wild type, A53T, A30P and
truncated a-synuclein results in the degeneration of TH-positive terminals with a reduction
of striatal dopamine levels (Rockenstein et al., 2002;Fernagut et al., 2007;0no et al., 2009;Gao
et al., 2008;Gomez-Isla et al., 2003;Nieto et al., 2006;Chen et al., 2006). Interestingly, a couple
of these reports described specific alterations of crucial synaptic proteins for dopaminergic
neuronal functions such as the DAT (Chen et al., 2006;Magen and Chesselet, 2010).
However, results of these studies had different conclusions, with the first one showing a

www.intechopen.com



148 Etiology and Pathophysiology of Parkinson's Disease

reduction of DAT levels in the striatum and nucleus accumbens while the second one
demonstrating an increase in DAT density. More recently, it was shown that DAT co-
immunoprecipitates with both full length and C-terminally truncated a-synuclein in
dopaminergic differentiated SH-SY5Y cells and its membrane levels are decreased in
parallel with an increase of a-synuclein levels and aggregation (Bellucci et al., 2008). In this
same research report, authors described that the DAT is retained into a-synuclein-
immunopositive inclusions following a-synuclein aggregation. In addition, the DAT is
specifically redistributed in striatal synapses in the brain of a human (1-120) C-terminally-
truncated transgenic mouse model of PD (Garcia-Reitbock et al., 2010), thus suggesting that
alterations in its subcellular distribution, mediated by the pathological aggregation of a-
synuclein within striatal dopaminergic synapses, may underlie the beginning of the nigro-
striatal dopaminergic loss of function. Hence, a decrease of DAT membrane content due to
the fact that the protein is retained into a-synuclein intracellular inclusions, may be one of
the first central pathologic events leading to dopaminergic neuron loss of function and
degeneration. Most importantly, a reduction of the membrane content of the DAT may
underlie the onset of PD-related motor symptoms. The critical relevance of a-synuclein in
modulating DAT levels is also confirmed by recent findings describing that DAT expression
is specifically decreased in fetal embryonic nigral grafts showing LB-like pathology, while
TH and VMAT?2 expression are unaffected (Kordower et al., 2008a). Thus, it emerges that the
DAT is one of the protein member of the a-synuclein-related synaptic proteome which
could be pivotally involved in the onset of PD-related synaptic dysfunctions.

However, alterations in other neurotransmitter systems relevant for PD, such as reductions
in striatal serotonin (5-HT) or cortical noradrenalin (NE) levels, as well as increased cortical
5-HT and NE levels have also been detected in several a-synuclein transgenic mouse models
(Magen and Chesselet, 2010). This is a crucial point, as cell loss in PD occurs not only in
basal ganglia circuits. Indeed, changes in both 5-HT and NE levels are thought to underlie
the manifestation of early symptoms of PD (Simola et al., 2010;Barone, 2010). Furthermore,
a-synuclein knock out has been demonstrated to impair mobilization of glutamate from the
reserve pool, thus confirming that the protein may play a role in the regulation of synaptic
exocytotic mechanisms (Gureviciene et al., 2007). However, transgenic overexpression of
either wild type or A30P mutated a-synuclein does not perturbe the functions of
endogenous mouse a-synuclein in glutamate mobilization (Gureviciene et al., 2007), thus
indicating that the effect of a-synuclein-mediated synaptic control is specific for each
neurotransmitter pathway, and that monoaminergic neurons are significantly more
sensitive to its pathological changes and accumulation. This notwithstandings, it emerges
that a-synuclein is critically involved in the induction of synaptic dysfunctions not
necessarily implicating a direct correlation with the dopaminergic system, because it could
affect the basal molecular machinery involved in synaptic release. Remarkably, Garcia-
Reitbock and colleagues (2010) have shown that overexpression of C-terminally truncated
(1-120) human a-synuclein (hsyn120) impaired synaptic vesicle release “in vitro”. In parallel,
they found that transgenic overexpression of hsyn120 resulted in the redistribution of
SNARE proteins at striatal dopaminergic terminals and coincided with a reduction of
dopamine release (Garcia-Reitbock et al., 2010) further supporting that a-synuclein can
regulate SNARE complex assembly. SNAREs are pivotally involved in synaptic vesicles
release. In particular, vesicular (synaptobrevin-2 and synaptotagmin) SNAREs (V-SNAREs)
and target membrane-localized (SNAP-25 and syntaxin-1) SNAREs (T-SNAREs) zipper up
into an a-helical bundle that pulls the two membranes tightly together to exert the force
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required for fusion, thus leading to neurotransmitter release (Sudhof and Rothman, 2009).
Authors found a co-localization between truncated a-synuclein-immunopositive aggregates
and SNARE proteins and they showed that both the target-membrane localized SNAREs
SNAP-25 and syntaxin-1 were accumulated in the striatum of PD patients, thus indicating
that the observations in the SYN120 transgenic mice are of significance for human disease.
In line with these findings, Burre and coauthors (2010) found that triple-knockout mice
lacking synucleins develop age dependent neurological impairments, exhibit decreased
SNARE-complex assembly, and die prematurely, suggesting that synucleins may function to
sustain normal SNARE-complex assembly in presynaptic terminals during aging. However,
these results are in conflict with other findings by Darios and colleagues (2010) which
showed an inhibitory action of a-synuclein on SNAREs which is mediated by its
sequestration of arachidonic acid. Indeed, arachidonic acid-stimulated glutamate release
from isolated synaptosomes is enhanced in a-synuclein C57BL/6S null mice. Thus, these
latter two findings display controversial conclusions, although it is clear that, since hsyn120
overexpression results in a redistribution of SNAREs, the formation of these species of the
protein may contribute to the induction of synaptic hypofunctions in a-synuclein-related
diseases.

5.1 Putative pharmacological interventions for a-synuclein-related synaptic
dysfunctions

It has to be taken into account that the identification of a disease modifying therapy to slow,
delay or stop the progression of pathology is one of the unmet needs in the management of
PD. Multiple candidate targets and neuroprotective drugs have been proposed in recent
years as disease-modifying agents by the analysis of their potential functions in
experimental models of PD (Olanow and Kieburtz, 2010). Among these agents, molecules
acting at synaptic sites have been investigated. In recent years, much research has been
dedicated to dopaminergic agonists that have been hypothesized to possess disease-
modifying actions. In particular, several studies in experimental models of PD have shown
that, beside their dopamine-like effect on striatal neurons, they may display neuroprotective
actions on dopaminergic neurons (Sethy et al., 1997;Le and Jankovic, 2001;Schapira, 2002),
and they are also able to block a-synuclein aggregation “in vitro” (Ono et al., 2007;Bellucci et
al., 2008). In particular, we recently showed that dopamine D2/D3 receptor agonists can
reduce the formation of a-synucleintDAT-immunopositive inclusions in experimental
models of PD (Bellucci et al., 2008) an effect which may be due to the fact that D2 receptors
are able to stimulate DAT membrane translocation (Bolan et al., 2007). Thus, it emerges that
the critical interaction of a-synuclein with synaptic proteins in dopaminergic terminals may
underlie the specificity of a-synuclein toxicity in PD. On this line, in the above cited research
report we found that cocaine is also able to prevent the formation of a-synuclein+DAT-
immunopositive inclusions likely acting through three possible mechanisms: 1) the block of
dopamine uptake and the consequent formation of dopamine-toxic metabolites that can
exacerbate a-synuclein aggregation, 2) the increase of extracellular dopamine that may
result in an higher stimulation of D2/D3 receptors or 3) the direct stimulation of the
membrane translocation of DAT and a-synuclein. Indeed, increased DAT and a-synuclein
membrane translocation occur in the striatum of cocaine abusers, thus indicating that DAT
blockers can modulate the trafficking of both proteins and confirming that a-synuclein plays
a key role in the control of dopamine synaptic tone (Qin et al., 2005). Interestingly, DAT
inhibitors have been shown to be able to alleviate specific parkinsonian motor deficits in 1-
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methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys (Madras et al., 2006). Thus,
drugs acting on protein members of the a-synuclein synaptic proteome may be effective for
PD. However, the risk for abuse liability strongly unwarrant the establishment of clinical
trials with DAT inhibitors. Furthermore, positive trial results with dopaminergic agonists
using surrogate neuroimaging biomarkers as primary endpoints could not determinate with
certainty if reduced rate of decline of the biomarker was due to a drug-mediated protective
effect on dopamine neurons or pharmacologic effects on the biomarker that had nothing to
do with their integrity (Rascol and Montastruc, 2000). In addition, a recent clinical report,
has shown that dopamine agonist treatment of PD carries a substantial risk of pathological
behaviors (Hassan et al., 2011;Ceravolo et al., 2009). These evidences are complicated by the
fact that these drugs are usually associated with a wide panel of unwanted side effects such
as cardiovascular and gastrointestinal troubles, fibrosis and sudden sleep attacks (Simola et
al., 2010).

Among the PD-related therapeutic agents monoamine oxidases-B (MAO-B) inhibitors are
widely used to attenuate dopamine catabolism and increase dopaminergic tone (Magyar et
al., 2004;Simola et al.,, 2010). Selegiline is the most used MAO-B inhibitor since it can
ameliorate motor impairments in early and moderate PD although its efficacy is weaker
than L-DOPA (Caslake et al., 2009;Simola et al., 2010) and it has been recently shown to
prevent a-synuclein aggregation (Ono et al., 2007;Braga et al., 2011), thus opening the way
to the possibility that this agent may effectively display disease modifying properties by
slowing a-synuclein-aggregation and the related synaptic pathology.

Entacapone and tolcapone, two Catechol-O-Methyl Transferase (COMT) inhibitors that
also counteract dopamine metabolism, have shown to be effective as L-DOPA adjuvant
for the control of motor symptoms and of the wearing off on fluctuations phases of PD.
Remarkably, both these drugs are able to block fibril formation of a-synuclein (Di
Giovanni et al., 2010) and therefore could display some beneficial effects by slowing a-
synuclein-related pathology. However, a strong limitation for the employment of these
drugs derives from the fact that they display a wide panel of untoward effects such as
vomiting, nausea and hypotension, or in the sole case of tolcapone, hepatotoxicity (Simola
et al., 2010).

Finally, in line with previously cited evidences indicating that cholesterol metabolites can
accelerate a-synuclein fibril formation, cholesterol lowering agents have been shown to
reduce a-synuclein accumulation and the associated neuronal pathology “in vitro” and “in
vivo” (Koob et al., 2010). Thus it is likely that these compounds may be able to exert their
effects by lowering the a-synuclein-related pathology at the synapse, but further
investigation is needed in order to clarify these aspects.

Nonetheless, these considerations leave us with the simple conclusion that none of the
compounds which has been shown to be effective in reducing PD symptoms could slow or
delay disease progression. In particular, alternative therapeutic strategies aimed at
counteracting the a-synuclein-related derangement of dopaminergic synapses may
represent a powerful tool to slow or delay PD progression and correct the related
simptomathology.

Finally, numerous agents have been shown to counteract a-synuclein aggregation, ranging
from antioxidants, sex hormones or receptor agonists such as nicortine. Thus, it can be
hypothesized that these compounds may affect the related synaptic pathology in PD.
However, at present, none of these molecules has been demonstrated to be effective in
modifying or slowing disease progression.
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5.2 Gene-based strategies to block or delay synaptic dysfunctions in PD

Since dopaminergic neuronal dysfunctions are central to the pathogenesis of PD, it has been
recently hypothesized that a restoration of the correct function of dopamine neurons may be
achieved by the employment of gene based strategies. In particular, a multicistronic
lentiviral vector encoding three crucial genes involved in dopamine synthesis: TH, aromatic
L-amino acid decarboxylase and guanosine 5'-triphosphate cyclohydrolase has been
produced and tested in experimental models of PD, including MPTP-treated primates.
Results of these studies indicate that this gene-based dopamine replacement may be able to
correct motor deficits. However, the models used to test these compounds do not exactly
reproduce all the features of PD. Indeed, toxin-based models don’t show a-synuclein
inclusions, or at least significant pathological modifications of a-synuclein has been reported
only by one group in MPTP-treated squirrel monkeys (McCormack et al 2008). This is not
surprising, as mitochondrial dysfunctions have been linked to the induction of a-synuclein
aggregation, but these features doesn’t necessarily resemble the disease. Indeed,
dopaminergic degeneration in toxin-based models is achieved through methods that rapidly
and drastically lead to neuronal death and thus they don’t reproduce the exact pathological
series of event that leads to this phenomenon in PD patients. Therefore, whether PD onset
and progression are dependent on the pathological accumulation of a-synuclein at striatal
terminals, the gene-based dopamine replacement approach may reproduce the effect of L-
DOPA therapy without affectively modifying the pathophysiological aspects of the disease.
Indeed, in light of the relevant role played by a-synuclein in the control of synaptic activity,
a putative disease modifying intervention for PD should block a-synuclein-related synaptic
dysfunctions. Indeed, its pathological accumulation impairs synaptic release through
multiple mechanisms (Figure 2), thus implying that even in the presence of dopamine, the
synaptic terminals containing a-synuclein aggregates still don’t act.

A concept that is reinforced by the fact that a-synuclein can be transmitted from cell to cell,
thus implying that correction of dopamine deficiency may be uneffective also because of the
spreading of a-synuclein through adjacent synapses. Thus, again, targeting the a-synuclein-
related synaptic proteome may represent a powerful tool to block or delay disease
progression. As previously described, a-synuclein is able to interact with key synaptic
proteins, such as DAT and synapsin 1. The synapsins are a family of neuron-associated
proteins involved in the regulation of synaptic vesicle release (Cesca et al., 2010;Kile et al.,
2010). Synapsin 3 is likely the only isoform which is present in striatal dopaminergic
terminals. Indeed, synapsin 1 and 2 have been found to miscolocalize with VMAT?2 in the
neostriatum of mice (Bogen et al., 2006) although the mRNA for either forms is present in
the striatum (Kile et al., 2010). Remarkably, synapsin 3 is a negative regulator of striatal
dopamine release (Kile et al., 2010). Although studies reporting a possible involvement of
synapsin 3 in the pathogenesis of a-synuclein-related disease are lacking, previous studies
(Galvin et al., 1999) have shown that synapsin 1 appears to accumulate in a-synuclein-
immunopositive lesions in axon terminals of the hippocampus of PD patients. Furthermore,
synapsin 1 and a-synuclein share numerous functional and biochemical similarities. Indeed,
besides being both part of the DAT (Maiya et al., 2007) and synaptic proteome (Burre and
Volknandt, 2007), they are co-transported from the cell body to the axon by the slow
component b as multiprotein complexes without being affected by actin depletion (Roy et
al., 2007;Roy et al., 2008) and they can bind to synaptic vesicles and interact with
presynaptic membranes and actin cytoskeleton, modulating the dynamics of the actin-based
network during the exo-endocytotic cycle (Cesca et al., 2010;Tofaris and Spillantini, 2007).
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Noteworthy, despite their different localization in subregions of the adult brain (Pieribone et
al., 2002;Cesca et al., 2010) synapsin 1 and 3 share a strong structural homology in their
functional domains (Hosaka and Sudhof, 1998), suggesting that they may likely interact
with similar proteins and cytoskeletal components, although they differentially regulate
neurotransmitter release (Kile et al., 2010;Feng et al., 2002;Cesca et al., 2010).
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Fig. 2. Schematic representation of the physiological and pathological localization of a-
synuclein within dopaminergic synapses. Alpha-synuclein aggregation may compromise
dopaminergic synaptic release by altering the subcellular localization of key proteins
involved in this process.

Thus, it is likely that a-synuclein can also interact with- and modulate synapsin 3. As a
support to this notion, previous reports have shown that synapsin 1 levels in the striatum of
PD patients are comparable to those of control subjects (Girault et al., 1989), thus suggesting
that synapsin 1 is not specifically implicated in the pathophysiology of nigrostriatal
dopamine deficiency in PD. Thus, a-synuclein and synapsin 3 likely share common
regulatory roles in nigrostriatal dopaminergic synapses suggesting that a-synuclein
accumulation may critically affect the function of synapsin 3 by altering its levels and
distribution. In particular, an increase and redistribution of a-synuclein and synapsin 3
complexes in striatal dopaminergic synapses could be associated to deregulation or loss of
dopamine release as both proteins are negative regulators of this event. Furthermore,
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synapsin 3 increase and redistribution may mechanistically induce the misregulation of
other a-synuclein/synapsin 3 protein partners such as DAT and synaptobrevin-2 as
suggested by recent findings.

Therefore, in the scenario of the dopaminergic synapse, deregualtion of synapsin 3 by the
pathological aggregation of a-synuclein may be a key event compromising synaptic
functions as well as the correct tethering and fusion of synaptic vesicles.

Another way to improve dopaminergic neuronal functions in relation to a-synuclein toxicity
at the synapse could be the gene-based delivery of the DAT. Nonetheless, it should be taken
into account that, since the DAT can precipitate with a-synuclein within intracellular
inclusions, delivery of this protein may also foster the pathological aggregation of a-
synuclein, an event which may be controlled by the administration of dopaminergic
agonists which are known to prevent the formation of DAT/a-synuclein-immunopositive
inclusions.

6. Conclusions

A large body of evidence strikingly indicate that a-synuclein pathology at the synapse may
be crucially involved in PD pathophysiology. Indeed, a-synuclein accumulation,
pathological modifications and aggregation are able to significantly impair synaptic
functions in experimental models of PD. In particular, it appears that a-synuclein
aggregation at dopaminergic synaptic sites may damage neuronal functions by affecting the
correct subcellular distribution of several molecular members of its lipidome and proteome,
thus leading to synaptic vesicle stall and to the consequent block of synaptic release. This
event may underlie the onset of a perilous axonal degeneration which may retrogradely
compromise neuronal resilience, thus leading to dopaminergic cell dysfunctions and death.
This view opens the way to the discovery and characterization of novel possible targets to
develop drug- and gene-based therapeutical strategies to cure the disease, possibly by
modifying and/or slowing disease progression. This is a crucial point, as current
therapeutical approaches for PD are aimed at ameliorating disease simptomathology, but
none of the present known agent is able to block the progression of the disease. Targeting
the a-synuclein-related synaptic proteome by drug-based or gene-based therapeutical
interventions may thus represent a new frontier to develop disease modifying strategies for
PD and other a-synucleinopathies.
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