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1. Introduction 

Mutations in the LRRK2 gene were first described in 2004 and have now emerged as the 

most important genetic finding in Parkinson’s Disease (PD) (Paisan-Ruiz et al., 2004, 

Zimprich et al., 2004). Incredibly, they account for up to 40% of familial parkinsonism in 

certain ethnic populations (Ishihara et al., 2007; Kachergus et al., 2005; Ozelius et al., 2006).  

Moreover LRRK2 mutations also are responsible for about 2 % of PD in sporadic (idiopathic) 

patients and two risk factors increase the risk for sporadic PD in Asian populations by two-

fold (Di Fonzo et al., 2006; Farrer et al., 2007; Ross et al., 2008; Tan, 2006). While the precise 

functional role of LRRK2 protein is still emerging, it has attracted intense pharmaceutical 

interest as a highly “druggable” target. This, and other unique properties including variable 

penetrance and pathologies that overlap with other neurodegenerative disorders, have 

fueled theories that a LRRK2 therapeutic will benefit not just familial parkinsonism, but also 

sporadic parkinsonism and perhaps even neurodegeneration in general. Development of 

LRRK2 agents relies on the availability of animal models, which provide not only 

information of physiological and pathological functions but also a means for testing and 

phenotypic reversal. In this chapter we summarize the progress to date for both invertebrate 

and vertebrate models of LRRK2 parkinsonism and briefly discuss opportunities for 

therapeutic development.  

2. Background 

2.1 LRRK2 mutations 
There are five LRRK2 mutations (R1441C, R1441G; Y1699C; G2019S; I2020T) proven to 
segregate with disease and cause pathogenicity (Paisan-Ruiz et al., 2004; Zimprich et al., 
2004) and two variants that are considered risk factors (LRRK2 G2385R and R1628P) (Farrer 
et al., 2007; Ross et al., 2008; Tan, 2006). While all leading to the same disease, the 
substitutions are not all found in the same functional domain. LRRK2 R1441C and G 
substitutions affect the Roc domain, a ‘Ras-like’ part of the protein (Mata et al., 2005).  The 
LRRK2 Y1699C substitution and the R1628P risk factor are found in the COR domain and 
LRRK2 G2019S and I2020T are encoded within exon 41 at the ‘activation hinge’ of the 
MAPKKK domain (Mata et al., 2005). To date, the only substitution affecting risk of disease 
in the WD40 domain is the G2385R risk factor. The most common substitution, LRRK2 
G2019S, originates from a common founder and presents with variable, age-dependent 
penetrance (Healy et al., 2008; Hulihan et al., 2008; Kachergus et al., 2005).  
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2.2 Clinical and neuropathological features of LRRK2 parkinsonism 
The overall clinical profile in individuals with LRRK2 mutations is similar to that of typical 

late-onset PD (Aasly et al., 2005; Djaldetti et al., 2008; Healy et al., 2008).  In agreement with 

observations in idiopathic PD, individuals with LRRK2-parkinsonism are generally 

responsive to levodopa treatment.  While tremor, bradykinesia, and rigidity occurs in 

individuals with idiopathic PD, tremor is more frequently observed in individuals with 

LRRK2 G2019S (Djaldetti et al., 2008; Healy et al., 2008; Hulihan et al., 2008).   

Disease duration, severity and response to treatment do not differ between G2019S 

carriers, regardless of zygosity (Ishihara et al., 2007, (Djaldetti et al., 2008) Individuals 

harboring LRRK2 G2019S present with similar non-motor features to idiopathic PD with 

the exception of a lower rate of cognitive impairment and hyposmia (Healy et al., 2008; 

Hulihan et al., 2008). Remarkably, there are aged G2019S carriers that escape disease 

(Carmine Belin et al., 2006; Kay et al., 2005). The LRRK2 G2019S mutation is primarily 

associated with transitional or brainstem Lewy body pathology, reminiscent of typical, 

late-onset idiopathic PD (Ross et al., 2006). LRRK2 mutation carriers presenting with 

tauopathy or ubiquitin-positive inclusions, with nigral neuronal loss and gliosis, have also 

been described (Wszolek et al., 2004; Dachsel et al., 2007; Rajput et al., 2006) 

Neuropathologic studies of affected individuals from other PARK8-linked kindreds, 

including Family A (Y1699C), Family D (R1441C), and the Sagamihara family (I2020T) 

have presented with pleomorphic pathology, including neuronal loss without co-existing 

pathology or with α-synuclein, ubiquitin-positive inclusions or tau pathology (Taylor et 

al., 2006).   

2.2.1 LRRK2 expression  
LRRK2 mRNA is highly expressed in the lungs, kidney, spleen and leucocytes; (Biskup et 
al., 2006; Li et al., 2007; Westerlund et al., 2008; White et al., 2007; Zimprich et al., 2004) 
however, its expression profile suggests that LRRK2 is unlikely to be an essential 
developmental protein (Biskup et al., 2007). In adult rodent brain, LRRK2 mRNA is 
somewhat restricted, with highest levels found in dopamine receptive areas but 
surprisingly low levels in the dopamine synthesizing areas (Biskup et al., 2006; Galter et 
al., 2006; Melrose et al., 2006; Simon-Sanchez et al., 2006; Taymans et al., 2006). LRRK2 
protein levels do not entirely correlate with mRNA levels, suggesting transport 
following synthesis. LRRK2 protein is highly expressed in the spiny neurons in the 
striatum and in the dopamine neurons of the substantia nigra, (Biskup et al., 2006; 
Melrose et al., 2007) but robust expression is also found in many non-dopaminergic areas 
throughout the brain, for example the hippocampus and cerebellum (Biskup et al., 2006; 
Greggio et al., 2006; Higashi et al., 2007a; Higashi et al., 2007b; Melrose et al., 2007; 
Miklossy et al., 2006).   

2.3 Predicted function 
LRRK2 protein contains a GTPase domain as well as a kinase domain containing homologous 
sequence to tyrosine-like kinase (TLK), including mixed-lineage kinases (MLKs) and receptor-
interacting kinases (RIPKs) (Mata et al., 2006).  Given the size of the protein monomer (286kDa), 
its protein-protein interaction domains (ANK, LRR, WD40) and its propensity to dimerize, 
(Greggio et al., 2008) it is reasonable to postulate LRRK2 is part of a larger scaffolding complex.  
While in silico modeling suggests that LRRK2 mutations may have increased kinase activity and 
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act through a dominant “gain-of-function”, data on kinase activity across the different 
mutations has been controversial, with only the G2019S mutation consistently reported to 
enhance kinase activity compared to wild-type activity (Adams et al., 2005; Jaleel et al., 2007; 
Luzon-Toro et al., 2007; MacLeod et al., 2006; Smith et al., 2006; West et al., 2005).  
LRRK2 has been characterized extensively in vitro. Although it is beyond the scope of this 
review to discuss these studies detail, several lines of evidence several lines of evidence point 
to a role in synaptic function (possibly by regulation of vesicle synthesis or transport and/or 
regulation of membranous structure) and as a regulator of neuronal outgrowth and guidance.   

3. Invertebrate models 

3.1 LRRK2 worm models 
LRK-1, the paralogue of LRRK2 in Caenorhabditis elegans, shares ~35% identity and 57% 

similarity with the enzymatic GTPase and kinase domains (Samann et al., 2009) and is 

expressed ubiquitously, including in muscle, intestine and importantly in neurons 

(Sakaguchi-Nakashima et al., 2007; Samann et al., 2009). Experimental approaches to study 

LRRK2 in worms have included loss of LRK-1 function, over-expression of LRK-1 and 

transgenic insertion of human wild type and mutant LRRK2. 

3.1.1 LRK-1 loss of function worm models 
Sakaguchi-Nakashima et al first described loss-of-function LRK-1 mutants, the km17 line, 

which has a deletion in the kinase and WD40 domains, and km41 line that has the GTPase 

and kinase domain deleted (Sakaguchi-Nakashima et al., 2007). A third deletion strain, 

tm1898 ( also lacking the GTPAse and kinase domain) was later described (Saha et al., 2009).  

All three deletion mutants result in mislocalization of  synaptobrevin to dendrites, 

suggesting that normally LRK-1 plays a role in sorting and/or localization of synaptic 

vesicle proteins (Sakaguchi-Nakashima et al., 2007; Samann et al., 2009) possibly by 

excluding them from dendrite-specific transport machinery in the Golgi (Sakaguchi-

Nakashima et al., 2007). Loss-of-function LRK-1 (km17 and km41) worms also exhibited 

defects in movement and chemotaxis (Sakaguchi-Nakashima et al., 2007). Both the km41 and 

tm1898 mutants were reported to have increased sensitivity to endoplasmic reticiulum 

stress, following tunicamycin exposure but were resistant to mitochondrial stress via 

paraquat (Samann et al., 2009). Conversely, Saha reported that RNAi knockdown of LRK-1, 

while not affecting baseline viability, did sensitize nemotodes to mictochrondrial 

dysfunction via rotenone treatment, a response that was confirmed in the km17 deletion line 

(Saha et al., 2009). Interestingly, loss of LRK-1 has been found to suppress the neurite 

outgrowth defects, mitochondrial abnormalities and increased paraquat sensitivity in PINK-

1 loss-of-function mutants. Additionally, the increased sensitivity of LRK-1 loss-of-function 

worms to tunicamycin was reduced in PINK-1 loss-of-function mutants, suggesting an 

antagonistic role of PINK-1 and LRK-1 (Samann et al., 2009). Curiously, loss of LRK-1 also 

attenuates transgenic LRRK2-induced DA neurodegeneration and basal slowing behavioral 

phenotype (Yao et al., 2010)  

3.1.2 Transgenic worm models 
Transgenic worms have been created by either overexpressing wild-type (WT) LRK-1 
and/or comparable mutant LRK-1 or by overexpressing human WT or mutant LRRK2 with 

www.intechopen.com



  
Etiology and Pathophysiology of Parkinson's Disease 

 

74

fluorescent tags (Sakaguchi-Nakashima et al., 2007; Samann et al., 2009) driven by tissue-
specific promoters whereas others have over-expressed human LRRK2 WT and pathogenic 
mutants via the dopamine neuron-specific DAT promoters (Saha et al., 2009; Wolozin et al., 
2008; Yao et al., 2010). 
Over-expression of endogenous WT and mutant LRK-1 in neurons resulted in axon guidance 
defects and embryonic lethality (Samann et al., 2009). Surprisingly, worms expressing human 
LRRK2 had increased longevity and reduced vulnerability to mitochondrial toxicity, with 
human WT LRRK2 offering more protection than mutant G2019S, R1441C or R1441C kinase 
dead LRRK2 (Saha et al., 2009; Wolozin et al., 2008). Despite this protection, transgenic LRRK2 
WT and G2019S worms exhibited DA neuron degeneration and decreased dopamine levels, 
with G2019S mutants exhibiting more severe phenotypes (Saha et al., 2009). These findings 
were confirmed by Yao et al, who also demonstrated that G2019S and R1441C mutant worms 
displayed progressive behavioral and locomotor dysfunction, which could be rescued by 
exogenous dopamine (Yao et al., 2010). 
Taken together, the data from worm models of LRRK2 suggests that WT LRK/LRRK2 may 
work in a gain-of-function manner which is antagonistic to DA neuronal survival. While it 
does seem likely that LRK-1 is linked to mitochondrial pathways in some manner, the 
contrasting data makes any inferences difficult.   

3.2 Fruit fly models 
The Drosophila melanogster paralogue of human LRRK2, dLRRK (CG5483) has similar GTPase 
and kinase domains among others, with 46% and 44% homology respectively. Expression of 
LRRK is ubiquitous in the adult fly brain, which suggests that Drosophila is a good model for 
LRRK2 (Imai et al., 2008). As with the worm models, fly modelers have employed a number 
of similar experimental approaches including deletion and manipulation of dLRRK and 
overexpression of WT and mutant human LRRK2. 

3.2.1 dLRRK loss of function  
Several groups have used the loss of function  e03680 line which has a piggyback transposon 

that results in kinase-null dLRRK2 (Imai et al., 2008; Kanao et al., 2010; Lee et al., 2010b; Lee 

et al., 2007; Lin et al., 2010; Tain et al., 2009; Wang et al., 2008) or a chromosomally deficient 

line dLRRKdf  (Imai et al., 2008; Lee et al., 2007). Additionally, loss of dLRRK activity has 

been achieved by RNAi knock-down (Gehrke et al., 2010; Imai et al., 2008) and by 3KD 

kinase-dead mutation (Imai et al., 2008; Kanao et al., 2010; Lee et al., 2010b). Results have 

been contrasting, even between groups using the same line. For example, the e03680 line 

was reported to have no loss of dopaminergic neurons (Wang et al., 2008, Imai et al , 2008), 

however locomotive impairment (Lee et al., 2007; Tain et al., 2009), degenerative changes in 

DA neurons (Lee et al., 2007), irregular nerve terminal morphology/overgrowth and 

changes in neurotransmission (Lee et al., 2010b) were also reported in this line. Interestingly, 

Imai and colleagues did report increased levels of dopamine in the e03680 line, supporting 

neurotransmission or storage changes (Imai et al., 2008). Additionally, heterozygous e03680 

flies expressing toxic Tau-GFP had longer dendrites and branching and decreased Tau 

inclusions (Lin et al., 2010). 

Data on second hit response has also been contradictory, with the e03680 flies exhibiting 
increased (Wang et al., 2008) and decreased sensitivity (Imai et al., 2008) although both 
groups reported resistance of this line to paraquat. Chromosomally deficient line dLRRKdf 
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was also resistant to hydrogen peroxide, and RNAi knockdown of LRRK2 decreased 
sensitivity to both hydrogen peroxide and paraquat (Imai et al., 2008).  

3.2.2 Transgenic fly models 
Many transgenic models of Drosophila employ the bipartite GAL4/UAS system (Brand and 
Perrimon, 1993) giving rise to tissue-specific gene expression. Some groups have used 
dLRRK WT and comparable mutant ectopic expressors utilizing GAL4 drivers directed to 
pan neuronal- and dopaminergic neuronal-specific expression among others (Gehrke et al., 
2010; Imai et al., 2008; Kanao et al., 2010; Lee et al., 2010b; Lee et al., 2007; Lin et al., 2010). 
Some studies showed no deleterious effects, such as with locomotion or DA neuronal 
changes (Lee et al., 2007), whereas others showed that dLRRK mutants and/or WT 
overexpressors had decrease in dopamine and DA neurons (Imai et al., 2008) decreased 
dendrite arborization (Lee et al., 2010b; Lin et al., 2010) and neuromuscular junction (NMJ) 
bouton loss (Lee et al., 2010b). Other groups have utilized transgenic human LRRK2 GAL4-
driven Drosophila models (Gehrke et al., 2010; Kanao et al., 2010; Lee et al., 2010b; Lin et al., 
2010; Liu et al., 2008; Ng et al., 2009; Venderova et al., 2009). Significant retinal degeneration 
and other eye abnormalities were observed in eye-specific hLRRK2 WT- and mutant-
expressing cells (Liu et al., 2008; Venderova et al., 2009) whereas others did not observe this 
effect (Kanao et al., 2010; Ng et al., 2009).  
Flies with ectopic neuronal expression of mutant and/or WT transgenes exhibited 
locomotive impairment and DA neuron loss (Lin et al., 2010; Liu et al., 2008; Ng et al., 2009; 
Venderova et al., 2009) and decreased boutons, NMJ length and arborization (Lee et al., 
2010b). Endogenous dLRRK (Imai et al., 2008) and transgenic WT hLRRK2 (Ng et al., 2009) 
protein appeared punctate and localized to the cytoplasm and exogenous dLRRK 
colocalized to endosomal structures that partially overlapped with synaptic markers (Imai et 
al., 2008). Interestingly, transgenic mutant LRRK2 tended to form intracellular aggregates 
(Ng et al., 2009). Lin et al expressed hLRRK2 WT and mutants in Drosophila with GAL4 
drivers specific for DA neuron dendrites and showed their degeneration (Lin et al., 2010). 
The hLRRK2 G2019S fly showed the most severe defect, including aberrant localization of 
axonal proteins, including microtubule-associated protein tau, to dendrites. Dendrite 
degeneration was exacerbated by overexpression of tau and conversely rescued by knock-
down of tau in the transgenic mutant flies, this toxic effect being attributed to increased tau 
phosphorylation phosphorylation through Sgg (GSK3b homologue) (Lin et al., 2010). Both 
dLRRK mutants and/or WT overexpressors were significantly sensitive to oxidative 
stressors paraquat and hydrogen peroxide (Imai et al., 2008). Additionally, transgenic 
hLRRK WT (Venderova et al., 2009) and mutant (Ng et al., 2009) flies had increased 
sensitivity to mitochondria Complex I toxin rotenone and WT hLRRK2 flies had a decrease 
in the number of mitochondria at presynaptic nerve terminals (Lee et al., 2010b).  
Taken together, dLRRK2 appears to have some role in the maintenance of dopaminergic 

neurons and the over-expression of LRRK2 results in locomotive impairment, DA neuron 

loss, decreased dendrite arborization, protein sorting or trafficking defects and increased 

sensitivity to oxidative stress. Although mortality rates differed among the studies, most 

groups saw that the hLRRK2 pathogenic mutants tended to have a more severe phenotype, 

providing evidence for the gain-of-function hypothesis. Like the worm models, the second 

hit data, while somewhat contrasting, do go some way to support LRRK2 involvement in 

stress response and mitochondrial pathways. 
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3.2.3 Fly interactor studies 
Studies have been performed utilizing double transgenic hLRRK2 flies concomitantly 

expressing human PINK1, DJ-1 or Parkin. These fly models exhibited various eye 

abnormalities and some had decreased DA neuron survival (Venderova et al., 2009) whereas 

coexpression of Parkin with mutant LRRK2 provided significant protection against DA 

neuron degeneration that occurs with age or in response to rotenone (Ng et al., 2009) Also, 

loss-of-function dLRRK suppressed Parkin and PINK1 pathology in flies (Tain et al., 2009). 

Thus, this data further supports the observations that wild-type dLRRK negatively regulates 

DA neuron survival and provides evidence that there is some sort of relationship between 

LRRK2 and these other PD-associated genes.   

Drosophila models have been utilized for the search and characterization of LRRK2 

substrates and/or interacting proteins (Imai et al., 2008; Lee et al., 2010b; Tain et al., 2009; 

Venderova et al., 2009). Imai and colleagues showed that both Drosophila and human LRRK2 

phosphorylate 4E-BP (a negative regulator of translation and mediator of stress response), 

and that pathogenic mutations caused hyper-phosphorylation of 4E-BP, which led to 

reduced resistance to oxidative stress and increased dopaminergic neurodegeneration in 

flies (Imai et al., 2008). Likewise, loss-of-function e03680 flies had a decrease in the amount 

of phosphorylated 4E-BP (Tain et al., 2009). This association was confirmed in a study that 

not only showed that LRRK2 interacted with 4E-BP at the postsynaptic compartment, but 

also found that hLRRK2 phosphorylated Futsch (MAP1b homolog) and possibly interacted 

with Tubulin (Lee et al., 2010b). Another study found that dLRRK/hLRRK2 phosphorylated 

FoxO (a transcription factor involved in cell metabolism and oxidative stress which 

regulates 4E-BP), which subsequently activated downstream cell death regulators and 

resulted in neurodegeneration (such as eye defects and DA neuron loss) in dFoxO 

overexpressing flies (Kanao et al., 2010). However, it has been found that LRRK2 

phosphorylates itself and other substrates more strongly than 4E-BP in mammals (Kumar et 

al., 2010), so the negative effects may be Drosophila specific. Another study recently reported 

that dLRRK/hLRRK2 targeted microRNA pathways and that pathogenic LRRK2 

antagonized these miRNAs, which negatively affected cell cycle and DA neuron survival 

(Gehrke et al., 2010). Additionally, the group found that LRRK2 associated with and 

negatively regulated Argonaute (dAgo1/hAgo2) RISC proteins and LRRK2 mutants 

promoted the association of phospho-4E-BP1 with hAgo2. Thus, it appears that WT LRRK2 

can regulate protein expression by targeting microRNA silencing pathways, and mutations 

in LRRK2 can upset a delicate balance.  

4. Rodent LRRK2 models 

While invertebrate LRRK2 models have been and will continue to be highly informative, it is 
important to remember that the LRRK genes are not true orthologues of LRRK2 (Marin, 
2008). In addition, physiological limitations include not only the lack of basal ganglia but 
also their short lifespan, leaving the effects of aging impossible to determine. Given that age 
is the biggest risk factor for development of LRRK2 parkinsonism, the development of 
mammalian LRRK2 models is key for understanding pathophysiology and for drug 
screening. 
To date a number of rodent models have been published in the literature, with experimental 
approaches Including knock-out of LRRK2, over-expression of human wild-type and 
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mutant LRRK2, over-expression of mouse wild-type and mutant LRRK2 and targeted 
knock-in of human mutations into the murine genome.  

4.1 Murine LRRK2 knockouts 
Several groups have reported LRRK2 knockout mice in varying detail. In 2009, Andreas-Mateo 
et al reported that mice with partial knockout of exon 39 and complete knockout of exon 40 are 
viable, grossly normal and have completely intact dopaminergic system in terms of dopamine 
levels and neuronal number up to 2 years of age and show no altered sensitivity to 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Andres-Mateos et al., 2009). Around the same time 
Lin et al also reported that no pathological or behavioral abnormalities were observed in their 
knockout mice that lack LRRK2 exon 2 (Lin et al., 2010). Interestingly, when they crossed the 

LRRK2 knockout to conditional A53T mice, a complete amelioration of α-synuclein mediated 
neuropathological abnormalities was observed. The third report which described two lines of 
knockout mice (one with ablation of exon 1, the other ablation of exons 29/30) also reported a 
lack of any dopaminergic phenotypes or brain neuropathology (Tong et al., 2010). 
Surprisingly, a major renal phenotype was found in these mice which included dramatic 
morphological changes and shrinkage, accumulation of alpha-synuclein and pSer 129 alpha-
synuclein, impaired ubiquitin degradation, impaired autophagy, apoptosis and inflammation. 
Interestingly, in a different exon 1 knockout model, yet to be fully described, decreased 
phospho-tau levels and concurrent increased soluble tubulin levels were reported, implying a 
role for LRRK2 in regulation microtubule dynamics (Gillardon, 2009). 
Our group has also created LRRK2 KO mice, which are in the final stages of 
characterization. Microdialysis in these mice has revealed that while the dopamine release 
following KCl stimulated is not different in magnitude to the wild-type controls, it appears 
to be slightly delayed. Starting from about 4 months we have also seen progressive 
darkening of the kidneys and histopathological analysis reveals severe inflammation.  

4.2 Over-expression of LRRK2 
The first rodent over-expression models were described by McLeod et al in 2006 (MacLeod 

et al., 2006), whose group investigated both embryonic cDNA electroporation and adult 

adeno-associated viral expression of WT and mutant LRRK2 kinase domain constructs in 

rats. A reduction in neurite outgrowth and branching was observed in the embryos 

expressing mutant G2019S and Y1699C in periventricular layer neural progenitors. In adult 

rats, viral expression of WT and G2019S in the nigra resulted apotosis in nigral neurons and 

striatal abnormalities including phospho-tau increases.  

Three years later, Chenjian Li’s group published the first bacterial artificial chromosome (BAC) 

mouse models, using human WT and ROC domain mutant R1441G BACs (Li et al., 2009). The 

mice showed an expression pattern of transgenic LRRK2 that mirrored endogenous expression 

patterns at levels around 5–fold on an FVB/N background. Striking phenotypes were reported 

including progressive levodopa-responsive slowness of movement associated with ~33% 

decreased dopamine release following nomifensine treatment and axonal pathology of 

nigrostriatal dopaminergic projection. While nigral neuronal loss was absent, the R1441G mice 

displayed a marked reduction in the number of tyrosine hydroxylase–positive nigral dendrites 

and accumulation of microtubule associated protein tau pathology in the striatum. Extensive 

characterization of their expression matched human WT BAC model model was not 

presented, however no overt phenotypes were noted.  
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Two groups have since published data on BAC models expressing the kinase domain 
mutant G2019S. Li et al expressed a murine wild type and mutant G2019S BAC on a 
C57BL/6 background, with expression levels around 6 fold over endogenous LRRK2 (Li et 
al., 2010). Total dopamine content in the striatum was normal in WT BAC mice and G2019S 
mice at 6 months but declined by 25% in G2019S BAC mice by 12 months, suggesting an age 
related decline. Despite normal striatal dopamine levels, voltammetry in brain slices derived 
from 12 month old wild-type BAC transgenic mice showed a 25% increase in evoked 
dopamine release following a single pulse, whereas the decline in DA release following 
repeated stimulation was comparable to non-transgenic controls, as was their dopamine 
transporter (DAT)-mediated uptake.  Conversely, the G2019S BAC mice displayed a 35% 
decrease in dopamine release by voltammetry, poorly sustained evoked dopamine release 
after repeated stimulation and a lower rate of dopamine uptake, presumably as a 
compensatory mechanism. No dopamine neuronal loss was seen in either model. 
Behaviorally the wild-type transgenic mice displayed enhanced ability on the beam test and 
increase spontaneous activity, whereas the G2019S BAC mice did not display any 
abnormalites. While no overt pathological lesions were reported, the authors did reveal that 
phospho- tau was decreased in the WT transgenic mice.  
Our group (Melrose et al., 2010) also reported WT and mutant G2019S BAC mice, utilizing a 

human LRRK2 BAC rather than a murine BAC. Using in vivo microdialysis we demonstrated 

that basal extracellular dopamine levels were reduced by ~33% in G2019S BAC mice at ~8 

months and an enhanced response to amphetamine challenge was noted. Total striatal 

dopamine, dopamine neuronal number, DAT levels and D1 and D2 receptor density were all 

unchanged up to 22 months. Behaviorally, the G2019S mice displayed some abnormal open 

field behavior but no motor deficits. Surprisingly, and in contrast to Li et al, we found that our 

human WT BAC mice also displayed reduced basal dopamine levels, even more pronounced 

(~66% versus 33%) than in our G2019S BAC mice. While this is likely attributed to differential 

expression levels in the two lines (WT BAC mice around 3.5 fold overexpression in half brain 

extracts and 2.5 fold in G2019S mice) it nevertheless supports a gain of function mechanism. 

Interestingly, D1 receptors were slightly upregulated in aged human WT BAC mice, although 

no changes were found in D2 receptors or DAT levels. Pathologically we did not detect any 

alpha-synuclein pathology in either line, but we did see changes in the phosphorylation of tau. 

Modest phosphorylation changes, detected by immunohistochemistry, were restricted to the 

hippocampus in the human WT BAC mice (the area of highest expression). In the G2019S mice 

however, tau alterations were much more pronounced and widespread. Biochemical analysis 

of tau revealed enhanced phosphorylation at several phospho-epitopes and upon de-

phosphorylation the tau species distribution was still different from the non-transgenic 

controls, suggesting that other post-translational modifications may be altered in G2019S mice 

and we hypothesize that these processing changes may increase the likelihood of abberant 

phosphorylation. One final observation worth noting is that we recently showed that 

neurogenesis is altered in our G2019S mice (Winner et al., 2011). Proliferation and migration of 

new neurons was impaired in the subventricular zone/rostral migratory stream and in the 

subgranular zone of the hippocampus. Furthermore, new neurons in the hippocampus had 

impaired outgrowth and a diminished number of spines. Curiously, exercise was found to 

partially recover the neuroblast deficit in the hippocampus, which may suggest that exercise 

induced signaling can at least partially compensate abberant LRRK2 activity caused by the 

G2019S mutation. 
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In a different transgenic approach Lin et al generated hemagglutinin tagged conditional 
human WT and G2019S using cDNA fragments inserted into the mouse prion protein 
expression vector controlled by the tetracycline-responsive promoter (tetP) (Lin et al., 2009). 
Expression levels were between 8-16 fold for the human WT and G2019S lines and mice 
were on a C57BL/6 background. Human WT mice were behaviorally normal, but G2019S 
mice were found to gain less weight than controls and had increased ambulatory and 
rearing activities. One month old human WT and G2019S and mice were also reported to 

have perturbed microtubule dynamics, evidenced by a dramatic shift of β-tubulin from 
soluble to insoluble fractions prepared from brain lysates. Finally, ubiquitin staining 
increased in cortical neurons of 6 month old human WT and G2019S mice and by 20 months 
this increase became more pronounced and was clustered with LRRK2 staining, which the 
authors suggest may hint to inhibition of ubiquitin-proteasome activities.  Interestingly, 

both the human WT and G2019S mice enhanced α-synuclein pathology when crossed with 
inducible A53T mutant mice. Curiously, double A53T/ kinase dead G2019S mice also 
exhibited similar enhanced phenotype, suggesting that kinase activity was not involved in 

α-synuclein mediating toxicity. The authors instead attributed the synergistic effects to 
impairment of golgi function, microtubule transport and the ubiquitin-proteasomal 
pathway, which occurred when LRRK2 was co-expressed, regardless of the transgene type 
or expression level.  
Two recently described viral models are the only LRRK2 models to date that document 

dopamine neuronal loss. Lee et al (Lee et al., 2010a) developed herpes simplex virus (HSV) 

amplicon-based mouse models expressing either human WT, G2019S and G2019S-D1994A 

(kinase dead) LRRK2, in which up to 75% of nigral neurons were infected after injection. 

HSV amplicon–mediated delivery of LRRK2 G2019S induced significant loss (~50%) of 

tyrosine hydroxylase–positive neurons 3 weeks after stereotaxic injection into the ipsilateral 

striatum of mice compared to control viruses expressing WT LRRK2 and eGFP and G2019S-

D1994A. This model is the first model that directly implicates kinase activity being 

responsible for toxicity in vivo in a mammalian model, supported by the lack of effect in the 

kinase dead model, as well as attenuation of the neuronal loss by kinase inhibitors GW5074 

and indirubin-3′-monooxime. The second viral model, the only published rat model to date, 

used a second generation adeno-viral serotype 5 vector, with transgene expression driven 

by the neuronal-specific human synapsin-1 promoter to express human WT and G2019S 

LRRK2 in rat brain (Dusonchet et al., 2011). Injections were delivered to the striatum and 

retrograde expression in the nigra was around 2 fold expression level overall, although with 

only 30% of all neurons transduced, this suggested very high levels in individual neurons. 

G2019S, but not WT mice exhibited a progressive neuronal loss that reached ~20% by 42 

days as well as a 10% decrease in tyrosine hydroxylase fiber density. No alpha- synuclein 

pathology was observed but the authors noted some transient abnormal phosphorylation of 

tau for both WT and G2019S which did not correlate with neuronal cell death in G2019S.  

4.3 Targeted knockin of LRRK2 
For large proteins such as LRRK2, the over-expression approach is not without caveat and 
within the field there has been much concern about over-expession artifacts. To circumvent 
this, targeting the models’ own genome, known as “knockin” is an alternative and 
potentially more physiological approach, since gene expression is recapitulated in the 
correct temporal, anatomical and quantitative manner and under the endogenous 
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transcriptional and translational controls. Nevertheless, many would still argue, justifiably, 
that over-expression models and their phenotypes, even if exaggerated, often give vital 
clues to normal and pathological functions. Equally, the risk with the knockin approach is 
that the relatively low mutant expression levels, within a species that doesn’t normally 
develop the disease, may yield no or very subtle phenotypes. 
To date only one knockin model has been published, by Tong et al, who created a ROC 

domain R1441C mutant (Tong et al., 2009). Whilst the homozygous knockin mice were 

grossly normal and did not exhibit dopamine neuronal loss, amperometric recordings in 

chromaffin cells derived from the R1441C, stimulated with high KCl, revealed significant 

reductions in the total catecholamine release per cell, quantal size and the frequency of 

release events. Slice recordings from dopaminergic neurons in the nigra of R1441C mice also 

exhibited smaller amplitude and duration of hyperpolarization after dopamine application, 

as well as slower recover times, and reduced responses to amphetamine and the D2 agonist 

quinpirole, compared with WT controls. Locomotor testing in the open field also revealed 

the knockin mice had a reduced behavioral response to amphetamine and quinpirole, 

providing in vivo evidence that dopamine release and D2 autoceptor feedback mechanisms 

may be impaired. No neuropathology was noted in these mice. 

4.4 What do the models tell us about LRRK2? 
At first glance, the success of the LRRK2 models appears to be nominal, with not a single 

model recapturing all the key features desired for a PD model – dopamine cell loss, motor 

impairment and alpha-synculein pathology. However, independent of the approach, a 

unifying theme is emerging from both invertebrate and vertebrate LRRK2 models, 

suggesting an important role for LRRK2 in dopaminergic neurotransmission, even in the 

absence of dopamine neuronal loss. Several other genetic PD mouse models also have 

abnormalities in dopamine transmission without neuronal loss including PINK1, parkin, DJ-

1 and SNCA knockouts and SNCA WT over-expression mice (Abeliovich et al., 2000; 

Goldberg et al., 2003; Goldberg et al., 2005; Kitada et al., 2009; Nemani et al., 2010). Imaging 

studies have long established that in asymptomatic PD, the earliest detectable changes occur 

in the dopamine transporter and the same holds true for asymptomatic LRRK2 

(Nandhagopal et al., 2008; Sossi et al., 2010) and SNCA patients (Bostantjopoulou et al., 2008; 

Perani et al., 2006; Samii et al., 1999).  Thus, the data evolving from LRRK2 models (and 

other PD genetic models) may be recapturing early preclinical events. In reality this may 

make the models more valuable because the onset of motor symptoms in PD is only after 50-

70% of the dopamine neurons are lost, by which point neuro-protective therapy would be 

futile. Understanding these early events in disease is key to allow us identify biomarkers to 

detect at risk patients and design neuro-protective therapies.  

Aside from the effects on dopamine neurotransmission, the other consistent theme arising 
from LRRK2 in vivo data appears to be the impairment of cytoskeletal function, evidenced 
by the alterations observed in tau phosphorylation and perturbed microtubule dynamics. 
Although tau pathology is rare in LRRK2 brains, there is mounting evidence of the 
involvement of tau in PD in general, with over 15 genetic studies in small populations 
implicating variability in the tau gene with Parkinson’s disease and a recent study of a large 
number of European PD samples unequivocally showing that tau gene (MAPT) variability is 
a major risk factor for PD, along with the alpha-synculein gene (SNCA) (Simon-Sanchez et 
al., 2009). Even though it has been proven already that there is no direct interaction between 
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tau and LRRK2 protein, there appears to be an indirect link that warrants further 
investigation. If LRRK2 regulates tau physiology, this could have important implication for 
LRRK2 therapies in Alzheimer’s disease. 
Less consistent/investigated in vivo, but nevertheless still compelling are the changes in the 
inflammatory, autophagy/lysosomal, apoptotic, mitochondrial and proteosomal pathways 
observed in some models. These pathways may be particularly important in unraveling how 

LRRK2 leads to α-synuclein pathology in humans. While studies in invertebrates are 
suggestive of a potential role for LRRK2, more mammalian studies are needed into the role 
of LRRK2 in mitochrondrial/stress pathways.  As it stands, there is no evidence for a direct 

interaction between LRRK2 and α-synuclein and the only instance of in vivo α-synuclein 
pathology in a LRRK2 model is in the kidneys, but not brain, of the LRRK2 knockout model 
(Tong et al., 2010). Notably, accumulation was accompanied by autophagic, proteasomal 

and inflammatory changes. Furthermore in double LRRK2 and α-synuclein A53T mice, 

enhancement of α-synuclein pathology was attributed to impairments in microtubule 
dynamic, golgi organization, mitochondrial toxicity and ubiquitin-proteasomal pathway 
(Lin et al., 2009). What is difficult to resolve though, is that double LRRK2 KO/ A53T mice 

have ameliorated α-synuclein brain pathology (Lin et al., 2009). These complex findings 
reiterate the notion that LRRK2 is likely a multi-faceted protein, which may have distinct 
cellular specific roles.  

4.5 The future for LRRK2 therapeutics 
Intense pharmaceutical interest has surrounded LRRK2 since its discovery and many 
companies are developing inhibitors of LRRK2 and screening is already underway in many 
of the models described above. It is still not clear exactly what function of LRRK2 mediates 
its toxicity and data attributing it to enzymatic kinase activity is conflicting. Although the 
general consensus appears to be that LRRK2 pathogenicity is a toxic gain of function, the 
kidney phenotype in LRRK2 KO mice suggests that peripheral effects may be an important 
loss-of-function consideration. A highly selective LRRK2 inhibitor (LRRK2-IN1) was 
recently developed by Nathaniel Gray and colleagues (Deng et al., 2011) which abolished 
Ser910 and Ser935 phosphorylation of LRRK2 in the kidney of mice after 1 hour.  No 
changes were observed in brain because the compound is unable to cross the blood brain 
barrier. Once CNS drug delivery issues are overcome, it will be interesting to see the effects 
of LRRK-IN1in in vivo LRRK2 models. 
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