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1. Introduction  

This chapter applies the laws of thermodynamics to problems in continuum mechanics. 

Initially these are applied to a monophasic medium. The case of a biphasic porous medium 

is then treated with the aim of illustrating how a framework may be established for 

capturing possible couplings in the pertinent constitutive relationships. This approach is 

founded on the two laws of Thermodynamics. The first law expresses the conservation of 

energy when considering all possible forms while the second law postulates that the quality 

of energy must inevitably deteriorate in relation to its transformability into efficient 

mechanical work.  

2. The principles of thermodynamics in the case of monophasic media 

In order to simplify matters so that the reader can have a good intuitive understanding on 

the fundamental principles, in particular their physical contents, we begin with the simplest 

case of a monophasic continuous media. 

Consider a solid body in movement, with mass density ߩ and a velocity field ࢜ (figure 1). 

Our attention will be focused on an arbitrarily chosen part of this body, which occupies a 

volume Ω୲ at time ݐ. For ordinary problems of solid mechanics, we are concerned with 

mechanical and thermal energies. We therefore suppose that the body inside Ω୲ is subject to 

a distributed body force ࢌ (for example gravity) and surface tractions ࢚ on its boundary 

surface, noted ∂ȳ୲. At the same time, the body is subject to a heat flux ࢗ on ∂ȳ୲ and an 

internal heat source ݎ௤. 

To begin with, we consider the energy and entropy balance of all the matter inside the 

volume ȳ୲, using the two principles of thermodynamics. 

3. The first principle of thermodynamics  

The first principle stipulates that energy must be conserved under its different forms. 

Limiting our study here to thermal and mechanical energies, we can write: 
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Fig. 1. ȳ୲ is a generic part of a body in movement, with distributed body forces ࢌ, surface 
tractions ݐ inward heat flux ࢗ, and distributed heat source ݎ௤, ݊ is the outward unit normal. 

  
ௗௗ௧ ሺܧ + ሻܭ = ௫ܲ + ܳ (1) 

In the above equation, ܧ and ܭ are the global internal and kinetic energies, while ௫ܲ and ܳ  

are the total external supply of mechanical and thermal power for all matters inside ȳ୲. The 

time derivative refers to the rate of increase of the energy content by following the same 

ensemble of material particles in their movement. This equation simply states that heat and 

mechanical energies received by a body which are not converted into kinetic energy become 

the internal energy. In continuum mechanics, physical quantities vary spatially from one 

point to another. The global quantities can be expressed in terms of the sum of local 

quantities: 

ܧ  = ׬ ȳ୲ஐ౪݀	݁ߩ   

ܭ  = ׬ ଵଶ࢜ߩ ∙ ȳ୲ஐ౪݀	࢜  (2) 

 ௫ܲ = ׬ ࢌ ∙ ȳ୲ஐ౪݀	࢜ + ׬ ࢚ ∙ Sபஐ݀	࢜   

 ܳ = ׬ ௤ݎ 	݀ȳ୲ஐ౪ − ׬ ࢗ ∙ Sபஐ݀	࢔   

where 	݁, the specific internal energy is defined as the internal energy per unit of mass. 

Substitution of equation (2) into (1) and on account of the classic equation ࢚ = ࣌ ∙  relating ࢔

the surface traction 	࢚  to the second order symmetric stress tensor ࣌, we get after some 

simplifications: 

ߩ  ሶ݁ = :࣌ ሶࢿ + ௤ݎ −  (3) ࢗݒ݅݀

where ࢿ denotes the strain tensor and a dot above a variable denotes the material derivative 

(i.e. total derivative with respect to time) by following the movement of an elementary solid 
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particle. Internal energy is the energy content within a given mass of material. This includes 

the (A) kinetic energy due to the disordered thermal agitation and the (B) interaction, or 

potential, energy between molecules due to their relative positions (for example the elastic 

strain energy). It is the macroscopic description of (A) that leads to the introduction of the 

absolute temperature. The internal energy can also be the energy stored due to 

concentration of solutes (osmotic potential), but is outside the scope of this presentation. 

However, it should be noted that the following energies are not counted as internal energy: 

1. Kinetic energy due to the macroscopic (ordered) movement of a material body 
2. Potential energy due to the position of a body relative to an external field such as 

gravity 
The last form of energy, namely the macroscopic potential energy, is accounted for by 

considering conservative body forces derivable from a potential, such as the gravity force 

per unit volume ࢍߩ, in the term ࢌ in the definition of ௫ܲ. Note that relative to the first 

principle, all forms of energy have an equal status. 

4. The second principle of thermodynamics  

The second principle of Thermodynamics confers a special status to heat, and distinguishes 

it from all other forms of energy, in that: 
1. Once a particular form of energy is transformed into heat, it is impossible to back 

transform the entire amount to its original form without compensation.  
2. To convert an amount of heat energy Δܳ into useful work, a necessary condition is to 

have at least two reservoirs with two different (absolute) temperatures ଵܶ and ଶܶ 
(suppose ଵܶ > ଶܶ to fix ideas). 

3. Moreover, the above conversion can at best be partial in that the amount of work Δܹ 
extractable from a given quantity of heat Δܳ admits a theoretical upper bound 
depending on the two temperatures: 

 
୼ௐ୼ொ ൑ భ்ି మ்మ்  (4) 

 

 

Fig. 2. The heat engine represented by the circle takes a quantity of heat ΔQ from the hotter 
reservoir ଵܶ and rejects ΔQ′ to the colder reservoir ଶܶ, while it performs an amount of useful 
work	Δܹ. The first principle requires Δܹ = ΔQ − ΔQ′ and the second principle sets a 
theoretical upper bound on the efficiency Δܹ/ΔQ attainable by heat engines. 

Note that real efficiencies obtainable in practical cases are far less than that suggested by 

equation (4) due to unavoidable frictional losses. In the limit when the temperature becomes 

uniform, no mechanical work can be extracted anymore and this corresponds to some kind 

of thermal-death. In technical terms, when a particular form of energy is transformed into 

W 

Q' Q T1 T2
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heat, the energy is degraded and becomes less available to perform useful work. The second 

principle gives a systematic and consistent account of why heat engines have theoretical 

upper limits of efficiency, and why certain phenomena can never occur spontaneously. For 

example, we cannot extract sea water at 20°C, cool it down to 0°C by extracting heat from it, 

and use that heat to drive the turbine and advance a ship! The theoretical formulation of the 

second principle via the concept of entropy derives its basis from a very large quantity of 

observations. The counter-part of the generality of its validity is the high level of abstraction, 

making it difficult to understand. Classical irreversible thermodynamics formulated directly 

at the macroscopic scale has an axiomatic appearance. The entropy change is defined 

axiomatically with respect to heat exchange and production. To understand its molecular 

original requires investigations at the microscopic scale. This is not necessary if the objective 

is to apply thermodynamic principles to build phenomenological models, although such 

investigations do contribute to a better understanding of the physical origin of the 

phenomena. Clausius (1850) invented the thermodynamic potential - the entropy - to 

describe this uni-directional  and irreversible degradation of energy. Formulated in terms of 

entropy, the second principle of thermodynamics says that whenever some form of energy 

is transformed into heat, the global entropy increases. It can at best stay constant for 

reversible processes but can never decrease. If we denote ݏ  the specific entropy (per unit 

mass), the second principle writes: 

  
ௗௗ௧ ׬ ȳ୲ஐ౪݀	ݏߩ ൒ ׬ ௥೜் 	݀ȳ୲ஐ౪ − ׬ ்࢔∙ࢗ 	݀Sபஐ౪  (5) 

In other words, for a fixed quantity of matter, the entropy increase must be greater than 
(resp. equal to) external heat supply divided by the absolute temperature in irreversible 
(resp. reversible) processes. The difference is due to other forms of energy being 
transformed into heat via dissipative processes. In our study here, this corresponds to 
internal frictional processes transforming mechanical energy into heat. Once this occurs, the 
process becomes irreversible. The previous inequality can be simplified to the following 
local form using Gauss' theorem: 

ሶݏߩ  + ݒ݅݀ ்ࢗ − ்ࢗ࢘ ൒ Ͳ (6) 

As a macroscopic theory, irreversible thermodynamics does not give any explanation on the 
origin of entropy. Similarly to the case of plastic strains, the manipulation of entropy and 
other thermodynamic potentials will rely on postulated functions, valid over finite domains 
and containing coefficients to be determined by experiments. 

5. Clausius-Duheim (CD) inequality  

Combining the first and the second principle, we obtain the classic Clausius-Duhem (CD) 

inequality in the context of solid mechanics (electric, magnetic, chemical or osmotic terms 

etc. can appear in more general problems): 

 Φ = :࣌ ሶࢿ + ሶݏሺܶߩ − ሶ݁ሻ − ଵ் ࢗ ∙ ܶࢊࢇ࢘ࢍ ൒ Ͳ (7) 

In the limiting case when the temperature field is uniform and the process is reversible, the 
above inequality becomes equality: 
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ଵఘ࣌: ሶࢿ + ሶݏܶ − ሶ݁ = Ͳ					or					d݁ = ଵఘ࣌: dઽ + ܶ݀s (8) 

Since the specific internal energy is a state function and is supposed to be entirely 
determined by the state variables, we conclude from the differential form in (8) that ݁ 
depends naturally on ߝ and ݏ (i.e. ݁ = ݁ሺࢿ,  :ሻ) and that the following state equations holdݏ

࣌   = ߩ డ௘డࢿ 			 ; 			ܶ = డ௘డ௦ (9) 

However, the specific entropy ݏ is not a convenient independent variable as it is intuitively 
difficult to comprehend and practically difficult to control. The classical approach consists of 
introducing another state function, the specific Helmholtz's free energy, via the Legendre 
transform: 

 ߰ = ݁ −  (10) ݏܶ

to recast inequality (7) to the following form: 

 Φ = :࣌ ሶࢿ − ൫ߩ ሶ߰ + ݏ ሶܶ ൯ − ଵ் ࢗ ∙ ܶࢊࢇ࢘ࢍ ൒ Ͳ (11) 

Again, in the absence of dissipative phenomena and a uniform temperature field, we have: 

 
ଵఘ࣌: ሶࢿ − ݏ ሶܶ − ሶ߰ = Ͳ					or					d߰ = ଵఘ࣌: dઽ −  T (12)݀ݏ

via the same reasoning as previously, we deduce that the specific free energy ߰ depends 
naturally on ߝ and ܶ and satisfies the following state equations: 

࣌   = ߩ డటడࢿ 			 ; ࢙			 = − డటడ்  (13) 

The Legendre transform (10) thus allows one to define a thermodynamic potential with 

natural independent variables which are more accessible (ܶ instead of ݏ in the present case). 

The quantity Φ, having the unit of energy per unit volume per unit time, is called total 

dissipation. It represents the transformation of non-thermal energy into heat via frictional 

processes, which then becomes less available. 

6. How to use the second principle  

There are two ways to make use of the second thermodynamic principle. We can first of all 
verify the consistency or the inconsistency of a given model with respect to the 2nd principle, 
in an a posteriori manner, in the sense that the construction of the model does not rely in any 
way on the 2nd principle. On the other hand, we can actually construct a model, starting 
from the Clausius-Duhem inequality, by specifying appropriate functional forms for the 
Helmholtz's free energy and the dissipation. Naturally, there is no unique way to achieve 
this goal since thermodynamics does not supply any information on the specific behavior of 
a particular material under study. This process must therefore integrate experimental data 
so that the model predictions are consistent with the reality. Among different 
representations (or models) consistent with thermodynamic principles, the best is the one 
with a clear logical structure and comprising a minimum number of parameters (simplicity). 
This last criterion allows to minimise the amount of experimental work necessary to identify 
these parameters, which is always a very time-consuming task. 
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7. Implicit but essential assumptions  

All classic developments based on irreversible thermodynamics assume implicitly that the 
process does not deviate significantly from thermodynamic equilibrium. In consequence, 
despite the fact the system is in evolution therefore in non-equilibrium, the state equation 
expressing the condition of thermodynamic equilibrium can still be used to reduce the number 
of independent state parameters by one in complex problems (for example, the density, 
pressure and temperature of the pore fluid transiting a porous solid is related by a state 
equation). This is strictly speaking an approximation. Its efficiency can only be assessed a 
posteriori by the results. 
 In a heterogeneous system, the thermodynamic state hence the state parameters are 
position-dependent. This heterogeneity (hence non-equilibrium) is the driving force which 
tends to restore the system back to thermodynamic equilibrium. However, it is assumed that 
the (spatial) variation is sufficiently mild so that every elementary particle can be considered 
as under thermodynamic equilibrium. Its state parameters are therefore linked by the state 

equation expressing this equilibrium requirement. This assumption is called the “hypothesis 
of local equilibrium”. This assumption excludes the treatment of fast processes (for example 
explosions) under the framework of classic irreversible thermodynamics.  

8. Applications to plasticity and viscoplasticity: General equations 

To illustrate how thermodynamic principles can be used to formulate physical laws, let us 
consider the particular case of the inelastic behaviour of solids. The classic partition: 

ࢿ  = ௘ࢿ +   ௣ࢿ

Is assumed, where ࢿ௘ is the elastic strain and ࢿ௣ denotes for the time being all forms of 
irreversible (i.e. inelastic) strains. In order to satisfy the CD inequality (11), a common 

practice is to assume that ߰ = ߰ሺࢿ௘ , ܶ, ௞ሻ, so that ሶ߰ࢂ = డటడࢿ ௘ሶࢿ + డటడ் ሶܶ + డటడࢂೖ ሶࢂ ୩. The scalar 

variables grouped into a tensor ࢂ௞ are internal variables introduced to account for the state-
dependent non-linear inelastic behaviour. In practice, this is often the irreversible strains or 
their scalar invariants. The CD inequality then becomes: 

  Φ = ቀ࣌ − ߩ డటడࢿቁ : ሶࢿ ࢋ 	+ :࣌ ࢖ሶࢿ − ߩ ቀݏ + డటడ் 	ቁ ሶܶ − ߩ డటడ࢑ࢂ ∙ ሶࢂ ୩ − ்்ࢊࢇ࢘ࢍ∙ࢗ ൒ Ͳ (14) 

Consider the particular case of elastic (reversible) evolution corresponding to stationary 

values of the internal variables ࢂ and plastic strains, with uniform temperatures. We then 

have zero dissipation, retrieving the classic state equations (13). In the sequel it will be 

assumed that these state equations remain valid even under irreversible inelastic evolutions, 

so that the CD inequality becomes: 

  Φ = Φ୑ +Φ୘ = :࣌ ሶ௣ࢿ − ࢑࡭ ∙ ሶࢂ ୩ − ்்ࢊࢇ࢘ࢍ∙ࢗ ൒ Ͳ (15) 

Under a simplified framework, we require the mechanical and thermal dissipations to be 
separately non-negative (this reduces the amount of coupling to account for in the model): 

 Φ୑ = :࣌ ሶ௣ࢿ − ࢑࡭ ∙ ሶࢂ ୩ ൒ Ͳ					; 				Φ୘ = − ்்ࢊࢇ࢘ࢍ∙ࢗ ൒ Ͳ (16) 

The thermodynamic force  ࡭௞, the conjugate variable to the thermodynamic flux  ࢂ௞, is “defined” as: 
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࢑࡭  = ߩ డటడ(17) ࢑ࢂ 

In practice, ࡭௞ is often the variable which determines the size (isotropic hardening) or the 
amount of translation (kinematic hardening) of the yield surface and represents in a 
simplified manner all the effects of the loading history. One particular example is the pre-
consolidation pressure which determines the current yield envelope of clays (as in Camclay 
model). 
The non-negativity of the thermal dissipation can be satisfied by the classic Fourier Law: 

ࢗ  = ࡷ− ∙  (18) ܶࢊࢇ࢘ࢍ

where the thermal conductivity tensor ࡷ must be symmetric and strictly positive, so that: 

  Φ୘ = ்்ࢊࢇ࢘ࢍ∙ࡷ∙்ࢊࢇ࢘ࢍ ൒ Ͳ (19) 

It remains to satisfy the non-negativity of the mechanical (or intrinsic) dissipation:  

  Φ୑ = :࣌ ሶ௣ࢿ − ௞࡭ ∙ ሶࢂ ୩ ൒ Ͳ (20) 

The non-negativity of the mechanical dissipation forms the basis for the construction of the 

material behavioral laws. Note that the equation  ࡭௞ = ߩ డటడࢂೖ  only “defines” the variable ࡭௞ 

but does not contain any rule to calculate its evolution. Similarly, we need a rule to calculate 

the plastic strain rate  ࢿሶ௣. 

9. Onsager’s principle 

In many physical problems, the total dissipation can be written as the sum of the products 

between a set of thermodynamic forces ܺ and theirs conjugates, the thermodynamic flux ݔ: 

  Φ = ܺ ∙ ݔ = ௜ܺݔ௜ ൒ Ͳ (21) 

Onsager, based on theoretical studies at molecular scales where all phenomena are 

reversible, suggested when the physical process only deviates slightly from the 

thermodynamic equilibrium, the thermodynamic forces and flux can be related by a set of 

phenomenological coefficients: 

  ௜ܺ =  ௝ (22)ݔ௜௝ܮ

Onsager showed theoretically that the coefficients ܮ௜௝ must be symmetrical. To ensure the 

non-negativity of the dissipation, it suffices to require ܮ௜௝ to be definite positive, other than 

being symmetrical. The off-diagonal coefficients allow to account for cross-couplings. This 

formulation seems to be better suited to moderately non-linear problems. For example, it 

cannot lead to the classical plastic flow rule in solids. 

10. Dissipation potentials  

Another, more general, way to satisfy automatically the non-negativity of Φ୑ is  
to introduce dissipation potentials. This can also handle more general non linear 
behaviours. 
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In the case of inelastic behaviour, we define a scalar function called the dissipation potential ߮ሺࢿሶ௣, ሶࢂ ୩ሻ, convex and continuously differentiable with respect to both its arguments, 

positive everywhere and null at the origin, such that: 

࣌   = డఝడࢿሶ೛ 			 ; ࢑࡭		 = − డఝడࢂሶ ౡ (23) 

We get immediately: 

   Φ୑ = :࣌ ሶ௣ࢿ − ࢑࡭ ∙ ሶࢂ ୩ = డఝడࢿሶ೛ : ࢖ሶࢿ + డఝడࢂሶ ౡ ∙ ሶࢂ ୩ ൒ ߮ ൒ Ͳ (24) 

In general, it is more convenient to work with ߮∗ሺ࣌,  ௞ሻ, the Legendre transform of ߮, also࡭

convex and positive definite with respect to its arguments, zero at origin, with: 

ሶ௣ࢿ  = డఝ∗డ࣌ 			 ; ሶࢂ	 ୩ = − డఝ∗డ࡭ೖ (25) 

So that: 

  Φ୑ = :࣌ ሶ௣ࢿ − ௞࡭ ∙ ሶࢂ ୩ = :࣌ డఝ∗డ࣌ + ௞࡭ ∙ డఝ∗డ࡭ೖ ൒ ߮∗ ൒ Ͳ (26) 

Theoretically, once the free energy and the dissipation function are specified, the stress-

strain relation is fully defined. This is therefore one possible way to construct a constitutive 

model. However the above reasoning does not work for plasticity. 

11. Hardening plasticity for “standard” materials 

In plasticity, the dissipation potential is not differentiable. Classically, the usual way to 

satisfy the dissipation inequality is to define a yield function: 

ܨ  = ,࣌ሺܨ  ሻ (27)࢑࡭

(1) convex with respect to its arguments 
(2) the “elastic domain” ܨሺ࣌, ௞ሻ࡭ ൑ Ͳ  contains the origin, and that: 

ሶ௣ࢿ  = ሶߣ డிడ࣌ 			 ; ሶࢂ			 ୩ = ሶߣ− డிడ࢑࡭ 				 ; ሶߣ				 ൒ Ͳ (28) 

where ߣ is the classic plastic multiplier, which obeys the conditions that: 

ሶߣ   = Ͳ		if	ܨ < Ͳ	ݎ݋	ܨሶ < Ͳ					; ሶߣ					 ൒ Ͳ		if		ܨ = Ͳ		and		ܨሶ = Ͳ (29) 

 

The first condition says if either the stress point is strictly inside the yield surface or if it is 

currently on the yield surface but moves inwards, the plastic multiplier, hence the plastic 

strain rate is null. The second condition expresses the condition of plastic loading when the 

current stress point is on the yield surface and it moves outwards. In this latter case, we 

have: 

  Φ୑ ሶߣ	= ቀ࣌: డிడ࣌ + ࢑࡭ ∙ డிడ࢑࡭ቁ 	൒ Ͳ (30) 

 

The non-negativity of the term between the parenthesis, namely: 
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 ቄ ቅ࢑࡭࣌ ∙ ቐ డிడ࣌డிడ࢑࡭ቑ ൒ Ͳ (31) 

stems from geometric arguments (figure 3). This, together with ߣሶ ൒ Ͳ, allows to ensure the 
non-negativity of Φ୑.  
 

 

Fig. 3. The convex elastic domain contains the origin. Hence the position vector of a point on 
the boundary ሼ࣌, ,ܨ௞ሽ and the normal vector at the same point ሼࣔఙ࡭  ሽ give a positiveܨೖ࡭ࣔ

scalar product. 

To construct an elastoplastic model, we need to define a hardening rule: 

࢑࡭  =  ሻ (32)࢑ࢂሺ࢑࡭

The plastic multiplier ߣሶ can then be determined by the classic consistency condition: 

ሶܨ  = డிడ࣌ ∙ ሶ࣌ + డிడ࢑࡭ ∙ ሶ࡭ ୩ = Ͳ	 (33) 

For stress-controlled evolutions, this yields, after a little substitution: 

ሶߣ  = ങಷങ࣌∙࣌ሶு 					 ; ܪ					 = డிడ࢑࡭ ∙ డ࢑࡭డ࢑ࢂ ∙ డிడܪ (34) ࢑࡭ is known as the hardening or plastic modulus. To relate the stress increment directly to 

the strain increment via the tangent stiffness tensor, we substitute: 

ሶ࣌  = ࢋࡰ ∙ ሺࢿሶ − ;						ሶ௣ሻࢿ ሶ௣ࢿ					 = ሶߣ డிడ(35)  ࣌ 

in the above to get: 

ሶߣ  = ങಷങࢿ∙ࢋࡰ∙࣌ሶுାങಷങࢋࡰ∙࣌∙ങಷങ(36) ࣌ 

Restarting with ࣌ሶ = ࢋࡰ ∙ ሺࢿሶ − ሻ࢖ሶࢿ = ࢋࡰ ∙ ቀࢿሶ − ሶߣ డிడ࣌ቁ  and after some manipulation leads to: 

ሶߪ   = ࢖ࢋࡰ ∙ ሶࢿ 					; ࢖ࢋࡰ					 = ቆࢋࡰ − ࣌ങಷങ∙ࢋࡰ∙࣌ுାങಷങࢋࡰ∙࣌ങಷങ⊗࣌ങಷങ∙ࢋࡰ ቇ (37) 

Note that the associative flow rule ࢿሶ௣ = ሶߣ డிడ࣌  renders the tangent matrix ࡰ௘௣ symmetric. This 

relation is also essential in the model construction to ensure the non-negativity of the 
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dissipation. If we replace ࢿሶ௣ = ሶߣ డிడ࣌  by  ࢿሶ௣ = ሶߣ డ௚డ࣌  with ݃ ≠  the ,(non-associative flow rule) ܨ

CD inequality will no longer be automatically verified. This means that thermodynamic 
principles may then be violated in some evolutions. Note that in order to describe isotropic 
and kinematic hardening, the thermodynamic flux ࢂ௞ is often decomposed into a tensor ࢻ 
and a scalar ݎ, associated with thermodynamic forces ࢄ and ܴ. We would then have to 
write: 

ܨ  = ,ࢄ,࣌ሺܨ ܴሻ				; ࢖ሶࢿ					 = ሶߣ డிడ࣌ 					 ; ሶࢻ					 = ሶߣ− డிడࢄ 					 ; ሶݎ					 = ሶߣ− డிడோ (38) 

A common example is to identify ݎ with the cumulated plastic deviatoric strain ߛ௣, defined 
as: 

ݎ  = ௣ߛ = ׬ ൬ଶଷ :ሶ௣ሺ߬ሻࢋ ሶ௣ሺ߬ሻ൰ଵ/ଶࢋ ݀߬௧଴  (39) 

where  ࢋሶ ௣ = devሺࢿሶ௣ሻ. 
12. Viscoplasticity  

We start with: 

ࢿ  = ࢋࢿ +  (40) ࢖࢜ࢿ

then go through the same procedure as for plasticity: 

 Φ = :࣌ ሶࢿ − ൫ߩ ሶ߰ + ݏ ሶܶ ൯ − ்்ࢊࢇ࢘ࢍ∙ࢗ ൒ Ͳ (41) 

and: 

 ߰ = ߰ሺࢋࢿ, ܶ,  ሻ (42)࢑ࢂ

 

We end up with the same dissipation inequality: 

 Φ = ቀ࣌ − ߩ డటడࢿቁ : ሶࢿ ࢋ 	+ :࣌ ࢖࢜ሶࢿ − ߩ ቀݏ + డటడ் 	ቁ ሶܶ − ߩ డటడ࢑ࢂ ∙ ሶࢂ ୩ − ்்ࢊࢇ࢘ࢍ∙ࢗ ൒ Ͳ (43) 

the same state equations: 

࣌  = ߩ డటడࢿ 			 ; ݏ			 = − డటడ்  (44) 

the same intrinsic dissipation (we discard the thermal part here): 

 Φ୑ = :࣌ ࢖࢜ሶࢿ − ࢑࡭ ∙ ሶࢂ ୩ ൒ Ͳ (45) 

 

the same definition for the thermodynamic force  ࡭௞ conjugate to the thermodynamic flux  ࢂ௞: 

࢑࡭  = ߩ డటడ(46) ࢑ࢂ 

However, a fundamental difference with plasticity intervenes here. In viscoplasticity, a 
continuously differentiable dissipation potential, definite positive, convex and contains the 
origin, can be defined: 
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 ߮∗ = ߮∗ሺ࣌, ;		ሻ࢑࡭ ࢖࢜ሶࢿ			 = డఝ∗డ࣌ 			 ; ሶࢂ		 ୩ = − డఝ∗డ(47) ࢑࡭ 

so that the non-negativity condition can be a priori satisfied: 

 Φ୑ = :࣌ ࢖࢜ሶࢿ − ࢑࡭ ∙ ሶࢂ ୩ = :࣌	 డఝ∗డ࣌ + ࢑࡭ ∙ డఝ∗డ࢑࡭ ൒ ߮∗ ൒ Ͳ (48) 

As for plasticity, in order to describe isotropic and kinematic hardening, the internal 
variable ࢂ௞ is often decomposed into a tensor ࢻ and a scalar ݎ, associated with 
thermodynamic forces ࢄ and ܴ: 

 ߰ = ߰ሺࢋࢿ, ܶ, ,ࢻ ;		ሻݎ ࢄ			 = డటడࢻ 			 ; 			ܴ = డటడ௥  (49) 

The mechanical dissipation inequality then becomes: 

 Φ୑ = :࣌ ࢖࢜ሶࢿ − ࢄ ∙ ሶࢻ − ሶݎܴ ൒ Ͳ (50) 

with the corresponding dissipation potential : 

 ߮∗ = ߮∗ሺ࣌, ,ࢄ ܴ	ሻ		; ࢖࢜ሶࢿ	 = డఝ∗డ࣌ 			 ; ሶࢻ			 = − డఝ∗డࢄ 		 ; ሶݎ			 = − డఝ∗డோ  (51) 

We and up with: 

 Φ୑ = :࣌ ࢖࢜ሶࢿ − ࢄ ∙ ሶࢻ − ሶݎܴ = :࣌	 డఝ∗డ࣌ + ࢄ ∙ డఝ∗డࢄ + ܴ డఝ∗డோ ൒ Ͳ (52) 

For example, Lemaitre's model with isotropic hardening is based on the following 
dissipation potential: 

 ߮∗ሺ࣌, ܴ	ሻ = ௄ேାଵ 		ቀఙ೐೜ିோ௄ ቁࡺା૚ ଵ఍ (53) 

Where ߞ is considered as a parameter independent of the stress tensor, with: 

௘௤ߪ  = ටଷଶ :࢙ ;			࢙ ࢙			 = devሺ࣌ሻ = ࣌	 − ଵଷ  (54) ࡵሻ࣌ሺݎݐ

A differentiation gives: 

࢖࢜ሶࢿ  = డఝ∗డ࣌ = ቀఙ೐೜ିோ௄ ቁࡺ ଵ఍ ൬ଷଶ  ఙ೐೜൰ (55)࢙

 

and: 

ሶݎ  = − డఝ∗డோ = ቀఙ೐೜ିோ௄ ቁே ଵ఍ (56) 

 

where we have used the identity 
డఙ೐೜డ࣌ = ଷଶ  ఙ೐೜. Note that the viscoplastic strain rate is purely࢙

deviatoric, in other words ݎݐሺࢿሶ ௩௣ሻ = Ͳ. Using the classic definition of the equivalent 
deviatoric viscoplastic strain rate: 

ሶ௩௣ߛ  = ටଶଷ :ሶ௩௣ࢿ ሶࢿ ௩௣	 (57) 
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It can easily be verified that: 

ሶ௩௣ߛ  = ሶݎ = ቀఙ೐೜ିோ௄ ቁே ଵ఍ (58) ߞ is an intermediate variable to ensure the consistency of the relations. A particular choice of ߞ	can be ߞ =  ே/ெwhich is consistent with the text of Lemaitre & Chabouche (1990). In viewݎ
of the above identity on ߛሶ௩௣ and ݎሶ , we can also write: 

࢖࢜ሶࢿ  = ሶ௩௣ߛ ൬ଷଶ ఙ೐೜൰࢙ = ሶݎ ൬ଷଶ  ఙ೐೜൰ (59)࢙

To define completely the model, we still need a (hardening) relation between ܴ et ݎ. This can 
either be defined explicitly ܴ = ܴሺݎሻ or by specifying a specific Helmholtz free energy  ߰ 

and then uses ܴ = డటడ௥ . 

13. Case of biphasic porous media  

13.1 Fundamental hypotheses and definitions  

In a macroscopic description, a biphasic medium is considered as the superposition of 2 
continua. At a given time ݐ and at a given position 2 ,࢞ particles, one representing the solid 
and the other, the fluid, occupy simultaneously the same spatial region ݀ȳ୲ around the 
geometric point ࢞. In order to access separately the mass of each phase, we define the 
Eulerian porosity ݊ (resp. the Lagrangian porosity ߶) so that ݊	݀ȳ୲ (resp. ߶	݀ȳ଴) represents 
the current volume of fluid inside ݀ȳ୲. We have to deal with the macroscopic strain and 
porosity variations of the solid skeleton. Following Coussy (2004), we split the strain and 
porosity variation into a elastic and a plastic part: 

ࢿ  = ࢋࢿ + ;		࢖ࢿ 	߶ሶ = ߶ሶ௘ + ߶ሶ௣			; 			Δ߶ = ߶ − ߶଴ = ߶௘ + ߶௣ (60) 

We denote by ߳ and ߳௦ the volumetric component of the skeleton strain and that of the solid 
matrix (i.e. ߳ =  :ሻ, etc.), which admit the same decompositionࢿሺݎݐ

 ߳ = ߳௘ + ߳௣		; 	߳௦ = ߳௦௘ + ߳௦௣ (61) 

The global volume change comes from those of the solid matrix and of the porous space. It 
can be proved that: 

 ߳ = ሺͳ − ߶଴ሻ߳௦ + ߶ − ߶଴				; 	߳௘ = ሺͳ − ߶଴ሻ߳௦௘ + ߶௘ 			; 			߳௣ = ሺͳ − ߶଴ሻ߳௦௣ + ߶௣ (62) 

Extending equation (5) to include the contributions of the fluid, we write: 

 
ௗೞௗ௧ ׬ ሺͳ − ݊ሻߩ௦ݏ௦	݀ȳ୲ஐ౪ + ௗ೑ௗ௧ ׬ ݀ȳ୲ஐ౪	௙ݏ௙ߩ݊ ൒ ׬ ௥೜் 	݀ȳ୲ஐ౪ − ׬ ்࢔∙ࢗ 	݀Sபஐ౪  (63) 

where 
ௗೞௗ௧ ሺ∙ሻ, ௗ೑ௗ௧ ሺ∙ሻ	 express the kinematics of the solid skeleton and fluid phases respectively 

while ߩ௦, ௦ݏ , ,௙ߩ  .௙ denote the respective density and entropy of the solid and fluid phasesݏ

The Clausius-Duhem inequality corresponding to deformable porous thus admits the 

following: 

 Φ = Φெ +Φி +Φ் ൒ Ͳ  
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where Φெ, Φ் are as before the ïntrinsic mechanical and thermal dissipations while Φி is the 
fluid dissipation. Going through the same procedure as in the case of monophasic media, 
but considering the contributions of both the solid and fluid phases, each with an 
independent kinematic field, the Clausius-Duhem inequality can be derived: 

 Φ୑ = :࣌ ሶࢿ + ሶ߶݌ − Ȳሶ ୱ ൒ Ͳ (64) 

 Φி = ቀ−݌ࢊࢇ࢘ࢍ + ࢌ௙൫ߩ − ௙൯ቁࢽ ∙ ࣰ ൒ Ͳ	 (65)  

where ߩ௙൫ࢌ − ࣰ ;௙൯ represents the body and inertia forces of the fluidࢽ = ݊൫ࢂ௙ −  ௦൯ is theࢂ

filtration vector and	൫ࢂ௙ −  .௦൯ is the velocity of the fluid phase relative to the solid phaseࢂ

Introduce the Gibb's free energy ܩ௦ = Ȳ௦ − ߶ሺ݌ − ߶଴ሻ 	= Ȳ௦ − ሺ߶௘݌ + ߶௣ሻ leads to: 

 Φ୑ = :࣌ ሶࢿ − ሺ߶௘ + ߶௣ሻ݌ሶ − Gሶ ୱ ൒ Ͳ (66) 

Restricting to the case of reversible behaviour where the plastic components and the 

intrinsic dissipation Φ୑ vanish, so that the above inequality becomes an equality, we deduce 

that ܩ௦ = ௘ߝ௦ሺܩ ,  :ሻ, and get the state equations݌

࣌  = డீೞడࢋࢿ 			 ; 			߶௘ = − డீೞడ௣  (67) 

Differentiating the above leads to the following constitutive equations: 

௜௝ߪ݀  = ௠௡௘ߝ௜௝௠௡݀ܥ − ܾ௜௝݀݌			; 			݀߶௘ = ܾ௜௝݀ߝ௜௝௘ + ଵே  (68) ݌݀

with: 

௜௝௠௡ܥ  = డమீೞడఌ೔ೕ೐ డఌ೘೙೐ 			 ; 			ܾ௜௝ = − డమீೞడఌ೔ೕ೐ డ௣ 			 ; 			 ଵே = − డమீೞడ௣మ  (69) 

For isotropic behaviour, we have: 

௜௝ߪ݀  = ቀܭ − ଶଷܩቁ݀ߝ௞௞௘ ௜௝ߜ + ௜௝௘ߝ݀ܩʹ − ௜௝ߜ	݌݀	ܾ 			; 			݀߶௘ = ܾ	݀߳௘ + ଵே  (70) ݌݀

The first of the above equations can be rewritten to introduce an elastic effective stress ߪ௜௝ᇱ  

which determines entirely the strain increments under elastic behaviour: 

௜௝ᇱߪ݀  	= ቀܭ − ଶଷܩቁ݀ߝ௞௞௘ ௜௝ߜ + ௜௝௘ߝ݀ܩʹ 			; ௜௝ᇱߪ			 = ௜௝ߪ +  ௜௝ (71)ߜ	݌	ܾ

Recalling the following relation resulting from fluid mass conservation and the definition of 
fluid bulk modulus ܭ௙: 

 d߶ = ௗ௠೑ఘ೑ − ߶ ௗ௣௄೑ (72) 

Recalling the definition of fluid volume content (neglecting 2nd order terms) ݀ݒ௙ = ௗ௠೑ఘ೑  and 

combining with the 2nd state equation, we obtain: 

௙ݒ݀  = ݀߶௣ + ܾ	݀߳௘ + ଵெ ;			݌݀ 			 ଵெ = ଵே + థ௄೑ (73) 
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To introduce a simple non linear skeleton behaviour, we restart with Φ୑ = :࣌ ሶࢿ + ሶ߶݌ − Ȳሶ ୱ ൒Ͳ, and postulates that: 

,ࢋࢿ௦ሺߖ  ߶௘ , ሻ࢑ࢂ = ௦ܹሺࢋࢿ, ߶௘ሻ + ܷሺ࢑ࢂሻ (74) 

Where ܷሺࢂ௞ሻ represents the trapped energy due to hardening, depending only on the 
internal state parameters ࢂ௞. Substituting this into the Clausius-Duhem inequality and 
simplifying leads to: 

 Φ୑ = :࣌ ࢖ሶࢿ + ሶ௣߶݌ 	+ ࢑࡭ ∙ ሶࢂ ࢑ ൒ Ͳ (75) 

with: 

࣌  = డஏೞడࢋࢿ =	 డ୛ೞడࢋࢿ 		 ; ݌			 = డஏೞడథ೐ = డ୛ೞడథ೐ 		 ; ࢑࡭				 = − డஏೞడ࢑ࢂ = − డ௎డ(76) ࢑ࢂ 

The above inequality can also be rewritten as: 

Φ୑ߜ  = ௣ܹߜ − ܷ݀ ൒ Ͳ			; ௣ܹߜ			 = :࣌ ࢖ࢿ݀ + ;			௣߶݀݌ 			ܷ݀ = డ௎డ࢑ࢂ  (77) ࢑ࢂ݀

Hence ܷ݀ represents that part of the plastic work which is not dissipated into heat. 
Returning to (65), it is observed that the non-negativity of the dissipation Φி leads to 
Darcy’s law as the constitutive equation of flow, which is defined for the isotropic case as: 

   n൫ࢂ௙ − ൯࢙ࢂ = λ୦ ቀ−݃࢖݀ܽݎ + ࢌ௙൫ߩ −  ௙൯ቁ  (78)ࢽ

where ߣ௛ is the hydraulic conductivity or coefficient of permeability of the medium. It is 
interesting to note that the thermodynamic approach confirms Darcy’s law governs fluid 
flow relative to the solid matrix, and not with respect to a stationary observer. 

13.2 Poroplastic behaviour  

As for monophasic media, the dissipation potential is not differentiable in plasticity. To 

satisfy the non-negativity of the intrinsic dissipation, we postulate an elastic domain defined 

by a convex function ݂: 

,࣌ሺܨ  ,݌ ሻ࢑࡭ ൑ Ͳ (79) 

The domain contains the origin, in other words: 

ሺͲ,Ͳ,Ͳሻܨ  < Ͳ (80) 

Introducing the classic standard material behavioural law: 

࢖ࢿ݀  = ߣ݀ డிడ࣌ 			 ; 			݀߶௣ = ߣ݀ డிడ௣ 			 ; ࢑ࢂ݀			 = ߣ݀ డிడ࢑࡭ 			 ; ߣ݀			 ൒ Ͳ			; ܨ		 ൑ Ͳ (81) 

we have: 

 Φ୑ = ߣ݀ ቂ࣌: డிడ࣌ + ݌ డிడ௣ + ௞࡭ డிడ࡭ೖቃ ൒ Ͳ (82) 

The quantity between square brackets represents the scalar product between the position 

vector ሺ࣌, ,݌ ࣌௞ሻ and the outward normal vector ቀడிడ࡭ , డிడ௣ , డிడ࡭ೖቁ which is perpendicular to the 
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boundary of the elastic domain ݂ = Ͳ. Its positivity comes from the geometric convexity of 
the domain ܨ ൑ Ͳ and the fact that the domain contains the origin. In the above formulation, 
the yield criterion is supposed to depend both on the total stress and the fluid pressure. This 
can be simplified if the plastic porosity change is related to the plastic volumetric strain: 

 ߶ሶ௣ = ܾᇱ߳ሶ௣ = ܾᇱࢿሶ࢖: I (83) 

so that: 

 Φ୑ = :′′࣌ ࢖ሶࢿ −Ȳሶ ୱ ൒ Ͳ			; ′′࣌			 = ࣌ + ܾᇱ݌	I (84) 

Mechanical stress and fluid pressure then intervene in the yield function only via a plastic 
effective stress ࣌′′:  

,′′࣌ሺܨ  ሻ࢑࡭ ൑ Ͳ (85) 

with: 

࢖ࢿ݀  = ߣ݀ డிడ࣌ᇲᇲ 			 ; ࢑ࢂ݀			 = ߣ݀ డிడ࢑࡭ 			 ; ߣ݀			 ൒ Ͳ			; ܨ		 ൑ Ͳ (86) 

However, there are two effective stresses ࣌′ and ࣌′′, which is confusing. The situation will be 

optimum if we can assume either ܾᇱ = ܾ, hence ࣌ᇱ =  ᇱᇱ, or matrix incompressibility which࣌

implies ܾᇱ = ܾ = ͳ and that ࣌ᇱ = ᇱᇱ࣌ = ࣌	 +  The last case is of particular importance and .۷݌

corresponds to the majority of cases in soils.The above flow rule is known as associative 

since the strain rate is normal to the yield surface, with the advantage that the non-

negativity of the dissipation is always satisfied. Geomaterials exhibit complex volumetric 

behaviours and sometimes call for non associative flow rules: 

࢖ࢿ݀  = ߣ݀ డ௚డ࣌ᇱᇱ 			 ; ௞ࢂ݀			 = ߣ݀ డ௚డ࢑࡭ 			 ; ߣ݀			 ൒ Ͳ			; ܨ		 ൑ Ͳ (87) 

However, the non-negativity of the dissipation is not always satisfied in this last case. 

13.3 Poroviscoplastic behaviour  

Recall that we have to satisfy: 

 Φ୑ = :࣌ ࢖ሶࢿ + ሶ௣߶݌ 	+ ࢑࡭ ∙ ሶࢂ ࢑ ൒ Ͳ (88) 

The dissipation potential is in this case differentiable so that we can write: 

 ߮∗ = ߮∗ሺ࣌, ,݌ ௞࡭ 	ሻ			; ࢖ሶࢿ		 = డఝ∗డ࣌ 	 ; 			߶ሶ௣ = డఝ∗డ௣ 			 ; ሶࢂ			 ௞ = డఝ∗డ࡭ೖ	 (89) 

Hence: 

 Φ୑ = :࣌ డఝ∗డ࣌ + ݌ డఝ∗డ௣ + ௞࡭ ∙ డఝ∗డ࢑࡭ ൒ Ͳ (90) 

Similar to the case of plasticity, we can simplify by supposing  ߶ሶ௣ = ܾ߳ሶ௣ = :ሶ௣ࢿܾ ۷ and ࣌′ = ࣌ +  :We then require the dissipative potential to satisfy .۷	݌ܾ

 ߮∗ = ߮∗ሺ࣌′, ;				ሻ	௞࡭ ࢖ሶࢿ			 = డఝ∗డ࣌ᇱ 				 ; ሶࢂ				 ࢑ = డఝ∗డ࢑࡭	(91)  
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For example, if we take: 

 ߮∗ =	 ଵଶఎ ,′࣌ሺܨۃ   (92)	ଶۄ௞ሻ࡭

We get: 

࢖ሶࢿ  = డఝ∗డ࣌ᇱ =	 ଵఎ ۄܨۃ డிడ࣌ᇱ 			 ; ሶࢂ				 ࢑ = డఝ∗డ࢑࡭ = ଵఎ ۄܨۃ డிడ(93) ࢑࡭ 

14. Applications 

14.1 Example 1 – Hardening plasticity – EPS geofoam 

In the following example we illustrate the first type of use of the second thermodynamic 
principle discussed in Section 6, namely, by verifying a constitutive model of EPS geofoam a 
posteriori for thermodynamic consistency. This model was developed by the authors (Wong 
and Leo, 2006) based on experimental results from a series of standard “drained” triaxial 
tests. It initially adopted the Mohr-Coulomb yield function used widely in soil mechanics 
but upon further testing with a true triaxial apparatus (Leo et al., 2008), a Drucker-Prager 
type yield function was subsequently preferred. This is written as: 

,࣌ሺܨ  ܽሻ = ඥ͵ࡶଶ − ଵܫܾ − ܽ = Ͳ  (94) 

i.e. 

ܨ݀  = ࣌ࣔࡲࣔ ∙ ࣌ + ࢇࣔࡲࣔ ∙ ݀ܽ = Ͳ  (95) 

where ࡵଵ = ଶࡶ ,ሻ is the first stress invariant࣌ሺݎݐ = ଵଶ :࢙  is the second stress invariant and b is ࢙

a material constant. Here ܽሺݎሻ = ܽ଴ +  is the hardening law accounting for the isotropic ݎߚ
hardening effects; ܽ଴,  is an internal variable chosen as the ݎ are material constants and ߚ
equivalent deviatoric plastic strain defined by: 

ݎ  = ׬ ට૚૛ࢋሶ :࢖ ૙࢚࢖ሶࢋ ݀߬  (96) 

Referring to the discussion in Section 11, we observe that equation (94) is a particular form 

of (27), ܽሺݎሻ of ࡭௞ሺࢂ௞ሻ, and (96) is the equivalent of (39). Geometrically, the surface of 

equation (94) corresponds to a conical surface, with the symmetry axis coinciding with the 

hydrostatic axis. The apex angle is governed entirely by the constant b, whereas a, together 

with b, determines the distance separating the cone tip from the origin. According to the 

laws of thermodynamics, an associative flow rule should have been adopted for the plastic 

strain (i.e. ࢿሶ௣ = ሶߣ డிడ࣌ in equation (28)) for this constitutive model, but we chose a non-

associative flow rule instead where, 

࢖ሶࢿ  = ሶߣ డீడܩ ; ࣌ሺ࣌ሻ = ඥ͵ࡶଶ −  ଵ  (97)ܫࢉ

c is a rheological parameter which depends on the initial stress. This is because experimental 
measurements suggest that the plastic volumetric strain is better represented by the plastic 
potential given in (97) rather than the yield function of (94). As discussed earlier, this means 
that the thermodynamics principle in terms of the non-negativity of the dissipation may 
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possibly be violated in some evolutions since the normality rule (plastic strain increment 
being normal to the yield function) is not being followed. The associative flow rule, 
however, has been a problem with some geomaterials such as soils and rocks in that it tends 
to erroneously predict plastic volumetric strain. This is one instance where the insight 
provided by thermodynamics into post yielding volumetric behavior is seemingly at odds 
with experimental evidence. In these cases it is widely accepted that the plastic volumetric 
behavior would be better captured using a non-associative flow rule. These cases also 
demonstrate that while thermodynamics insights provide useful guidance to help engineers 
focus on important aspects of the constitutive relationships in continuum mechanics, it is 
necessary that these insights should ultimately be supported by experimental evidence.  

14.2 Example 2 – Poroelasticity: closure of a spherical cavity  

This example dealing with the closure of a deeply embedded cavity in poroelastic medium 

was previously studied by the authors (Wong et al. 2008). Here we illustrate the second type 

of use of the second thermodynamic principle discussed in Section 6, where the 

thermodynamics concepts from Section 13.1 are applied to formulate the constitutive 

relationships that lead, importantly, to the analytical solutions for the closure of a spherical 

cavity. The closure constitutes part of a life cycle of an underground mining cavity idealised 

by four stages. Initially, the ground is in a state of hydro-mechanical equilibrium. The cavity 

is then excavated and an internal support is provided to maintain its stability. Various 

techniques of support exist. For example, it can be evenly spaced steel bolts or a layer of 

shotcrete or a combination of them. For modelling purposes, this support can be assimilated 

to a layer of elastic material lining the cavity walls. At the end of its service life, the cavity is 

backfilled with a poro-elastic material before being abandoned. We were interested in the 

long term evolution of the hydro-mechanical fields in the surrounding medium and in the 

backfill after the its abandonment, when the support starts to deteriorate. This problem 

deals with a special case of the reversible behaviour where the intrinsic dissipation vanishes, 

namely Φெ = Ͳ (as opposed to the more general case of irreversible behaviour for materials 

with plasticity and/or viscosity), leading to the state equation (67) and the constitutive 

equations (70) for isotropic poroelastic material. Limiting ourselves to small strains, we 

define: 

௜௝ߪ݀  = ௜௝ߪ − ௜௝଴ߪ 	   ;    ݀ε௜௝ୣ = ௜௝௘ߝ − ௜௝଴ߝ ݌݀   ;    = ݌ −  ଴   (98)݌

where ߪ௜௝଴ , ௜௝଴ߝ ,  ଴ denotes the initial stress, strain, pore pressure respectively. We make݌

further assumptions that the solid grains of the medium are incompressible, and it thus 

holds that the skeletal volumetric change ݀߳௘ = ௞௞௘ߝ݀  must be the same as the change in the 

porosity ݀߶௘, that is: 

 ݀߳௘ = ݀߶௘ (99) 

By comparing (99) to the second equation of (70), it is evident that the values of Biot 

coefficients must be: b = 1 and ͳ ܰ⁄ = Ͳ. Taking initial strain ߝ௜௝଴ = Ͳ, equation (70) thus 

yields the following constitutive relationships for a linear isotropic poroelastic material: 

௜௝ߪ  − σ୧୨଴ = ቀܭ − ଶଷܩቁ ϵୣ	ߜ௜௝ + ௜௝௘ߝܩʹ − ሺ݌ − ௜௝ߜ		଴ሻ݌ 			; 			߶ − ߶଴ =	߳௘    (100) 

www.intechopen.com



 
Thermodynamics – Systems in Equilibrium and Non-Equilibrium 86

 Since we are clearly dealing with a poroelastic medium, the superscript ‘e ‘ denoting elastic 
strain shall be omitted in Example 2 without ambiguity, for the sake of brevity. For the fluid 
phase of the porous material, the constitutive equation follows from the thermodynamically 
consistent Darcy’s law, equation (78). Here, after neglecting inertia effects but not body 

forces due to gravity g, the fluid mass flux, ࢝௙ = ௙ࢂ௙݊൫ߩ −  ௦൯ is related to theࢂ

thermodynamic forces as: ࢝௙ ⁄௙ߩ = ݌ࢊࢇ࢘ࢍ−௛൫ߣ +  ൯. At t = 0, the fluid is assumed to beࢍ௙ߩ

in hydraulic equilibrium, implying that: Ͳ = ଴݌ࢊࢇ࢘ࢍ−௛൫ߣ +  ൯. The difference betweenࢍ௙ߩ

these two equations yields: 

ࢌ࢝   ⁄௙ߩ = ݌ሺࢊࢇ࢘ࢍ௛ߣ− −  ଴ሻ  (101)݌

As shown above, insights from thermodynamics principles have lead to constitutive 
equations (100) and (101). These equations thus allow us to develop a set of governing 
equations which is applicable to the cavity closure problem. These equations are then solved 
with respect to the initial and boundary conditions for a spherical cavity to obtain a set of 
analytic solutions, of which a detailed discussion is given in Wong et al. (2008).  

14.3 Example 3 – Poroviscoelasticity: closure of long cylindrical tunnel 

Example 3 illustrates the use of thermodynamics principles in formulating constitutive 

equations for a poro-viscoelastic medium. The ultimate purpose here is also to develop 

solutions for a long horizontally aligned tunnel with a circular cross-section embedded in a 

poro-viscoelastic massif. The setting of the problem is similar to Example 2 discussed above 

except that the spherical cavity is replaced by a long lined tunnel (Dufour et al. 2009). We 

start by restricting to small strain problems where the strain tensor of a viscoelastic material 

can be decomposed into an elastic part (denoted by superscript  ‘e ’) and a viscoelastic part 

(superscript ‘ ’): 

௜௝ߝ  = ௜௝௘ߝ + ௜௝ఔߝ      (102) 

The strain and stress tensors are separated into isotropic and deviatoric parts as follow: 

௜௝ߝ  = ଵଷ ௜௝ߜ߳ + ݁௜௝          ;            ߪ௜௝ = ௜௝ߜߪ +  ௜௝    (103)ݏ

where ߳, ݁௜௝ are the mean and deviatoric strains defined previously; ߪ = ௜௝ߪ ͵⁄  is the mean 

stress and ݏ௜௝ = ௜௝ߪ − ௜௝ߜߪ
 
is the deviatoric stress tensor. It is noted that the decomposition 

into elastic and viscoelastic parts in (102) apply separately to ߳, ݁௜௝ and the porosity as well 

such that: 

 ߳ = ߳௘ + ߳ఔ       ;            ݁௜௝ = ݁௜௝௘ + ݁௜௝ ;       ߶ − ߶଴ = ߶௘ + ߶ఔ      (104) 

Correspondence between volumetric strain and porosity change holds for each of the elastic 
and viscoelastic components: 

 ߳ = ߶ − ߶଴          ;        ߳௘ = ߶௘           ;      ߳ఔ = ߶ఔ             (105) 

14.3.1 Poroviscoelastic constitutive equations  

Following (74), we postulate the existence of trapped energy due to viscosity that depends 
on viscous strains only and write the free energy of the skeleton as: 
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൫߳௘࢙ߖ  , ݁௜௝௘ , ߶ୣ, ϵ஝, ݁௜௝ఔ ൯ = ௦ܹ൫߳௘ , ݁௜௝௘ , ߶ୣ൯ + ܷ൫ϵ஝, ݁௜௝ఔ ൯   (106) 

where the following relationships are considered for the functions ௦ܹ, ܷ: 

 ௦ܹ൫߳௘ , ݁௜௝௘ , ߶ୣ൯ = ଵଶܭ଴߳௘ଶ + ଴݁௜௝௘ߤ ଶ + ଵଶ ଴ܰሺ߳௘ − ߶௘ሻଶ     (107) 

 ܷ൫ϵ஝, ݁௜௝ఔ ൯ = ଵଶ ఔଶ߳ߦ + ߯݁௜௝ఔ ଶ       (108) 

Specialising to a linear isotropic porous material, after substituting (107) into (76) and taking 
into consideration the decomposition into the mean and deviatoric parts, and the initial 
stresses we get: 

 ሺߪ − ଴ሻߪ + ሺ݌ − ଴ሻ݌ = ଴ሺ߳ܭ − ߳ఔሻ   (109) 

௜௝ݏ  − ௜௝଴ݏ = ଴൫݁௜௝ߤʹ − ݁௜௝ఔ ൯   (110) 

݌  − ଴݌ = − ଴ܰሺ߳௘ − ߶௘ሻ     (111) 

K0, 0, N0 are the initial or “short term” analogues of K, , N respectively. Further 
substitution of (106) – (111) into (64) yields: 

 ሼሺߪ − ଴ሻߪ + ሺ݌ − ଴ሻ݌ − ఔሽ߳ሶఔ߳ߦ + ൛൫ݏ௜௝ − ௜௝଴ݏ ൯ − ʹ߯݁௜௝ఔ ൟ ሶ݁௜௝ఔ ൒ Ͳ     (112) 

In the next step, a convex dissipative potential ࣞ൫߳ሶఔ, ሶ݁௜௝ఔ ൯ is introduced so that based on 

(112): 

 
డࣞడఢሶ ഌ = ሺߪ − ଴ሻߪ + ሺ݌ − ଴ሻ݌ −          ;       ఔ߳ߦ

డࣞడ௘ሶ೔ೕഌ = ൫ݏ௜௝ − ௜௝଴ݏ ൯ − ʹ߯݁௜௝ఔ   (113) 

which leads to: 

 ࣞ൫߳ሶఔ , ሶ݁௜௝ఔ ൯ = ଵଶ ሶఔଶ߳ߞ + ߟ ሶ݁௜௝ఔ ଶ       (114) 

where positivity of  ߞ ൒ Ͳ; ߟ	 ൒ Ͳ ensures the convexity of ࣞ൫߳ሶఔ, ሶ݁௜௝ఔ ൯. From the above 

developments, the constitutive equations relating stresses to strains for an isotropic poro-

viscoelastic material may thus be defined by equations (109)-(111) as well as by the 

following equations.  

 ሺߪ − ଴ሻߪ + ሺ݌ − ଴ሻ݌ = ఔ߳ߦ + ߞ ሶ߳ ఔ      (115) 

௜௝ݏ  − ௜௝଴ݏ = ʹ߯݁௜௝ఔ + ߟʹ ሶ݁௜௝ఔ      (116) 

where ߦ, ,ߞ ߯,  are rheological constants. Note that these equations have been formulated	ߟ
based on the thermodynamics approach while adopting the convex dissipative potential, ࣞ൫߳ሶఔ, ሶ݁௜௝ఔ ൯, in equation (114). Before proceeding further, we will now introduce the Laplace 

transform, defined for a typical function ݂ሺݎ,  :ሻ as followsݐ

 ݂ሺݎ, ሻݏ = ,ݎሼ݂ሺܮ ሻሽݐ = ׬ ݂ሺݎ, ሻ݁ି௦௧ஶ଴ݐ ,ݎሺ݂;ݐ݀ ሻݏ = ,ݎଵ൛݂ሺିܮ ሻൟݐ = ଵଶగ௜ ׬ ݂ሺݎ, ሻ݁௦௧୻ା௜ஶ୻ି௜ஶݐ  (117) ݏ݀

where s is the Laplace transform parameter and i2 = -1. In the notations adopted here, the 
bar over the symbol denotes the transformed function represented by the symbol. The value 
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Γ is chosen such that all poles in the s-plane lie to the left of the vertical line Re(s) = Γ. Taking 
the Laplace transform of (109), (110), (113) and (116) and solving for the viscous volumetric 
and deviatoric strains give, 

 ߳ఔതതത = ௄బ௄బାకା఍௦ ߳ ̅      ;         ݁̅௜௝ఔ = ఓబఓబାఞାఎ௦ ݁̅௜௝   (118) 

The constitutive equations (115), (116), (118) are then used to developed governing 
equations for the closure of a long cylindrical tunnel in poroviscoelastic massif. Laplace 
transform solutions have been developed and discussed in detail in Dufour et al. (2009) to 
which interested readers may refer.  
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