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1. Introduction 

Bioactive lipids are lipids with cell signaling functions. In the last two decades, they have 
become increasingly important in many fields of biology. They are the main diffusible 
mediators of inflammatory responses in tissues and regulate the polarity of cellular 
membranes. They are also critical for cell fate decisions during stem cell differentiation by 
inducing apoptosis or sustaining cell survival and polarity. The bioactive lipids discussed 
here belong to the classes of phospho- and sphingolipids. Mainly three different types of 
lipids and their function in stem cell differentiation will be reviewed in detail: 
phophatidylinositols (PIPs), lysophospholipids and eicosanoids, and the sphingolipid 
ceramide and its derivative sphingosine-1-phosphate (S1P).  

2. Biological Function of bioactive lipids in stem cell differentiation 

2.1 Phosphatidylinositols  

The phosphatidylinositols PI(3,4)P2 and PI(3,4,5)P3 generated by class I 
phosphatidyinositol-3-kinase (PI3K) upon induction of tyrosine receptor kinases or G-
protein coupled receptors (GPCRs) are known to be the major activators of the Akt/PKB cell 
signaling pathway for cell survival and differentiation (Callihan et al., 2011; Frebel &Wiese, 
2006; Layden et al., 2010; Paling et al., 2004; Storm et al., 2007; Umehara et al., 2007). The 
phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase 
that catalyzes the hydrolysis of PIP3 to PIP2, which leads to inactivation of the Akt/PKB cell 
signaling pathway and loss of pluripotency in stem cells (Groszer et al., 2001; Korkaya et al., 
2009; Otaegi et al., 2006). PTEN is a tumor suppressor mutated in many types of cancer and 
it is critical for the controlled growth of embryonic tissue and ES cells.   
PTEN converts PIP3 into PIP2 (Fig. 1). Since PIP3 activates the Akt/PKB cell signaling 
pathway, thus PTEN catalyzing PIP3 hydrolysis is a negative regulator of Akt/PKB. 
Consistent with this function, deletion of PTEN activates Akt/PKB-dependent cell signaling 
pathways (Groszer et al., 2001). PTEN mutations are often found in human cancers such as 
glioblastoma, prostate cancer, and breast cancer. Loss of function of this tumor suppressor 
gene results in the up-regulation of the Akt/PKB-to-ǃ-catenin pathway (Fig. 2A) (Korkaya et 
al., 2009). Akt/PKB phosphorylates and therefore, inactivates glycogen synthase-3ǃ (GSK-
3ǃ), a protein kinase in the Wnt signaling pathway that phosphorylates ǃ-catenin (Doble 
&Woodgett, 2003; Ikeda et al., 2000; van Noort et al., 2002). The oncogene ǃ-catenin is an 
important adhesion protein and transcription factor for genes involved in proliferation. 
When phosphorylated by GSK-3ǃ, ǃ-catenin (in a protein complex with adenomatous 
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polyposis coli or APC) is proteolytically degraded and thus, adhesion lost and proliferation 
reduced. Consistent with this function, deletion of ǃ-catenin results in loss of pluripotency 
and early embryonic death of the respective knockout mouse (Haegel et al., 1995). Likewise, 
deletion of PTEN results in increased ǃ-catenin levels and increased pluripotency or 
malignancy (Groszer et al., 2001). Therefore, the PTEN vs. PI3K-to-Akt/PKB antagonism is 
interesting in two biological contexts with respect to stem cell differentiation: maintenance 
of pluripotent stem cells and tumorigenesis of cancer stem cells. In the first context, 
inhibition of PTEN, activation of PI3K and Akt/PKB, or inhibition of GSK-3ǃ will be useful 
to maintain pluripotent ES cells. In the second context, activation of PTEN, inhibition of 
PI3K and Akt/PKB, or activation of GSK-3ǃ may be a useful strategy to eliminate cancer 
stem cells.  
In the cultivation process of ES cells, elevated expression of the transcription factors Oct-4 

and Nanog is essential for maintenance of pluripotency (Bhattacharya et al., 2003; Sato et al., 

2004). It has been shown that two cell signaling pathways are critical for this regulation: the 

janus kinase/signal transducer and activator of transcription 3 (Jak/Stat3) and the Akt/PKB 

signaling pathways (Fig. 2A) (Kelly et al., 2011; Paling et al., 2004). In the cultivation of 

mouse ES cells, the most important growth factor activating Stat3 and Akt/PKB is LIF 

(leukemia inhibitory factor), an interleukin 6 class cytokine binding to LIF receptor ǂ 

(LIFRǂ) (Cartwright et al., 2005; Niwa et al., 1998; Okita &Yamanaka, 2006; Schuringa et al., 

2002; Takao et al., 2007). In vitro, LIF is added to the medium when cultivating 

undifferentiated mouse ES cells on feeder fibroblasts and in feeder-free culture. In vivo, LIF 

is generated by the trophoectoderm from where it penetrates the inner cell mass, the source 

of pluripotent ES cells in the pre-implantation embryo. In human ES cells, the role of LIF as 

“guardian” of pluripotency is taken over by fibroblast growth factor (FGF) (Lanner 

&Rossant, 2010; Li et al., 2007) (Fig. 2A).  Binding of FGF-2 to the FGF receptor 2 (FGFR2) 

activates similar cell signaling pathways in human ES cells as stimulated by LIF in mouse ES 

cells: Jak/Stat3, mitogen-activated protein kinase (MAPK), and Akt/PKB (Lanner &Rossant, 

2010; Li et al., 2007). However, FGFR-dependent signaling is very diverse and it depends on 

individual receptor protein complexes which specific response is elicited by FGF. For 

example, in mouse ES cells, FGF-2 is used to maintain the multipotent neuroprogenitor 

stage and to prevent further neuronal differentiation. In human ES cells, supplementation of 

the serum-free cell culture medium with FGF-2 is critical to prevent apoptosis and to 

maintain pluripotency.  

The role of lipids as the key factors in the PI3K-to-Akt/PKB-to-ǃ-catenin cell signaling 

pathway is obvious since phosphatidylinositols (PIPs) are lipids by provenance. 

Unfortunately, PIPs are not applicable as exogenous factors that can be simply added to 

stem cell media since these lipids are part of an intracellular cell signaling cascade not easily 

accessible to the outside of the cell. However, there are other lipid-regulated pathways that 

are dependent on the activation of cell surface receptors, which is of tremendous advantage 

if one attempts to use lipids as exogenously added growth or differentiation factors (see 

section 2.2). The two receptors involved in maintenance of pluripotency, LIFRǂ and FGFR2 

are both tyrosine receptor kinases which are not directly activated by lipids, although 

indirect regulation by so-called “lipid rafts” has been discussed (see section 2.4) (Lee et al., 

2010b; Yanagisawa et al., 2004b, 2005).  

In addition to using natural lipids as ligands, stem cell differentiation can also be modulated 
by pharmacologic reagents that are either lipid analogs, inhibitors of enzymes in lipid 
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Fig. 1. Metabolism of phosphatidylinositols in the PI3K-to-Akt/PKB cells signaling pathway 
for ES cell pluripotency. PI3K, phosphatidylinositol 3-kinase; PTEN, phosphatase and tensin 
homolog deleted on chromosome 10 

metabolism, or drugs targeting downstream effectors of lipid-regulated cell signaling 
pathways. Two drugs that are inhibitors of protein kinases in the LIFRǂ and FGFR2 
pathways have been tested on their effect on pluripotency: LY294002 and indirubin-3-
monoxime, two inhibitors specific for PI3K and GSK-3ǃ, respectively (Chen et al., 2006; 
Chen et al., 2000; Ding &Schultz, 2004; Ding et al., 2003; Lyssiotis et al., 2011; Otaegi et al., 
2006; Paling et al., 2004; Sato et al., 2004). The PI3K inhibitor LY294002 has been shown to 
reduce the capacity of mouse and human ES cells to self-renew and to undergo subsequent 
steps of lineage specification and differentiation (Paling et al., 2004). These effects are likely 
to involve differentiation stage-specific (contextual) other cell signaling pathways 
downstream (or parallel) to the PI3K-to-Akt/PKB signaling axis. While it may not be 
desired to interfere with ES cell pluripotency, LY294002 and other PI3K and Akt/PKB 
inhibitors are currently tested for cancer treatment, in particular for targeting cancer stem 
cells (Bleau et al., 2009; Plo et al., 1999). If one desires to sustain self-renewal of ES cells, 
GSK-3ǃ inhibitors such as indirubin-3-monoxime or BIO are attractive candidates. BIO has 
been successfully used to maintain pluripotency in human ES cells (Sato et al., 2004). 
Additional effectors targeting GSK-3ǃ are synthetic agonists of the Wnt receptor Frizzled, 
however, their use in stem cell differentiation is not yet sufficiently investigated (Lyssiotis et 
al., 2011).  
Interestingly, inhibitors of the mitogen activated protein kinase (MAPK) pathway such as 
the MAPK kinase (MEK) inhibitor PD98059 have been used with mouse ES cells to promote 
self-renewal or pluripotency (Buehr &Smith, 2003; Li et al., 2007). This appears paradoxical 
since LIFRǂ as well as FGFR2 are known to activate MAPK, which suggests that activation 
of MAPK is involved in pluripotency. However, only transient MAPK activation to promote 
G1 re-entry is useful for self-renewal while prolonged activation will promote 
differentiation (Fig. 2B). Therefore, a combination of LIF with the MAPK-kinase (MEK) 
inhibitor PD95059 activating PI3K-to-Akt/PKB while inhibiting MAPK signaling has been 
successfully used to promote pluripotency in mouse ES cells, but also to enhance the 
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A B 

Fig. 2. Cell signaling pathways for ES cell pluripotency. Elliptic circles label enzymes that 
promote pluripotency, while diamonds label enzymes that reduce pluripotency and 
promote differentiation. MAPK shows both, pro-pluripotency or pro-differentiation activity 
in human or mouse ES cells, respectively.   

generation of induced pluripotent stem (iPS) cells (Li et al., 2007; Lyssiotis et al., 2011). The 
situation in human ES cells, however, is different. In contrast to mouse ES cells, inhibition of 
the MAPK cell signaling pathway reduces the potential of undifferentiated human ES cells 
to self-renew, indicating that FGFR2-mediated activation of Ras/Raf-to-MEK-to MAPK is 
critical for human ES cell pluripotency (Ding et al., 2010). A similar role has been found for 
Bmp4, which promotes pluripotency in mouse and differentiation in human ES cells 
(Bouhon et al., 2005; Zeng et al., 2004; Zhang et al., 2010). It is quite possible that this 
difference depends on which other pathways for pluripotency are co-activated such as 
Jak/Stat3 in mouse or Activin in human ES cells. Bioactive lipids are important in that they 
co-regulate several cell signaling pathways critical for pluripotency and differentiation of ES 
cells, in particular MAPK and PI3K downstream of ClassA/Rhodopsin-like GPCRs, which 
will be discussed in the next section. 

2.2 Lysophospholipids and eicosanoids 

Lysophospholipids (LPLs) are lipids generated by hydrolytic cleavage of fatty acid from 
glycerophospholipids, which is catalyzed by phospholipases. Distinct phospholipases cleave 
off either one of the two (PLA1 and PLA2) or both (PLB) fatty acid residues, or they cleave 
off the phosphate-containing head group (PLC) or the alcohol (PLD) (Gardell et al., 2006; 
Hla et al., 2001; Hla et al., 2000; Lin et al., 2010; Meyer zu Heringdorf &Jakobs, 2007; 
Okudaira et al., 2010; Radeff-Huang et al., 2004; Tigyi &Parrill, 2003; Ye et al., 2002). PLA2 
generates arachidonic acid, the precursor for the generation of eicosanoids, a group of 
inflammatory mediators including prostaglandins and leukotrienes (Funk, 2001; Jenkins et 

www.intechopen.com



 
Bioactive Lipids in Stem Cell Differentiation 37 

al., 2009; Khanapure et al., 2007; Lambeau &Gelb, 2008; Szefel et al., 2011; Wymann 
&Schneiter, 2008). Similar to the PLD reaction, lysophospholipase D or autotaxin generates 
lysophosphatidic acid (LPA) from lysophosphatidylcholine (Nakanaga et al., 2010; Okudaira 
et al., 2010; Samadi et al., 2011). LPA receptors are critical in cell proliferation and 
tumorigenesis and have recently been shown to promote proliferation of human neural 
precursor cells (Callihan et al., 2011; Hurst et al., 2008; Lin et al., 2010; Pebay et al., 2007; 
Pebay et al., 2005; Pitson &Pebay, 2009).   
Arachidonic acid, generated by PLA2 from phospholipids such as phosphatidylcholine (Fig. 
3A) is converted to a variety of pro-inflammotory eicosanoids among which prostaglandins, 
thromboxanes, and leukotrienes are the most important signaling lipids (Fig. 3B). The effect 
of eicosanoids on ES cells is not well understood and research is mostly limited to results 
with mouse ES cells. Interestingly, lysophospholipids such as LPA and eicosanoids such as 
prostaglandin E2 (PGE2) appear to activate similar downstream cell signaling pathways, 
mainly the PI3K-to-Akt/PKB, MAPK, and Wnt/GSK-3ǃ pathways (Callihan et al., 2011; 
Goessling et al., 2009; Logan et al., 2007; North et al., 2007; Pebay et al., 2007; Pitson &Pebay, 
2009; Yun et al., 2009). In contrast to LIFRǂ or FGFR2, however, stimulation of Akt/PKB by 
PGE2 has not been reported to sustain pluripotency, but is rather anti-apoptotic/cell 
protective and promotes stem cell proliferation. This may not be surprising since generation 
and conversion of arachidonic acid is often a response to hypoxic insults, which can damage 
mitochondria and induce apoptosis. Notably, inhibition of eicosanoid biosynthesis reduces 
the potential of mouse and human ES cells to self-renew, indicating a role of eicosanoids in 
stem cell maintenance or pluripotency (Yanes et al., 2010). Thromboxane has not been 
described to play a role in stem cell differentiation, maybe because its main function is 
rather confined to platelet aggregation. In contrast, prostacyclin, a similar eicosanoid in 
platelet aggregation has been shown to promote cardiogenic differentiation from human ES  
 
 

 
A B 

Fig. 3. Biosynthesis pathways in lysoposphatidic acid (LPA) and eicosanoid metabolism 
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cells (Chillar et al., 2010; Xu et al., 2008). In addition to prostacyclin, leukotriene of the LTD4 
type has been used in several studies to promote proliferation and cardiovascular 
differentiation of mouse ES cells (Finkensieper et al., 2010; Funk, 2001; Kim et al., 2010). 
The effect of prostaglandins and other eicosanoids on ES cells is worth discussing in an 
important aspect of human health care. Inhibitors of cyclooxygenase 2 (Cox-2), the enzyme 
critical for PGE2 production, are taken by nearly everyone to ease up head ache, back pain, 
and inflammation. The Cox-2 inhibitor aspirin is one of the most successfully administered 
drugs world-wide. A recent study on the negative effect of non-steroidal anti-inflammatory 
drugs (NSAIDs) such as aspirin on the differentiation of human ES cells suggests that one 
has to be careful with the use of NSAIDs when human ES cells are to be transplanted for 
heart tissue repair (Chillar et al., 2010). These observations suggest that eicosanoids are 
important in cardiogenic/cardiovascular differentiation of ES cells.  
The eicosanoid as well as lysophospholipid receptors belong to the family of Class A 
Rhodopsin-like GPCRs (Callihan et al., 2011; Hla et al., 2001; Kostenis, 2004; Lin et al., 2010; 
Pitson &Pebay, 2009; Radeff-Huang et al., 2004). They mediate the activation of downstream 
cell signaling pathways through different types of GTPases, mainly Gi, Gq, and G12/13,   
 

 

Fig. 4. GPCR-dependent cell signaling pathways with similar function for ES cell 
pluripotency and differentiation. DAG, diacylglycerol; PLC, phospholipase C; EP, 
eicosanoid receptor. 
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acting upon PI3K-to-Akt/PKB (Gi), Ras-to-ERK (Gi, Gq) Rho (G12/13), and PLC-to-PKC 
(Gq) cell signaling pathways for pluripotency and cell survival (Akt/PKB), proliferation 
(Rho and PKC), and differentiation/specification (MAPK) pathways (Fig. 4). Hence, 
combinations of particular cell signaling lipids with cytokines or growth factors such as LIF 
or FGF-2 activating similar effectors have been found to be useful in directing stem cell fate 
toward pluripotency, proliferation, or differentiation, respectively (Hurst et al., 2008; 
Kilkenny et al., 2003; Layden et al., 2010; Pebay et al., 2007; Radeff-Huang et al., 2004). There 
are five GPCRs for each LPA and sphingosine-1-phosphate (S1P) expressed in mouse and 
human ES cells.  

2.3 Ceramide and sphingosine-1-phosphate  

Sphingolipids are acyl (fatty acid) derivatives of the amino alcohol sphingosine. They 
encompass sphingosine, ceramide, and ceramide derivatives such as sphingomyelin, 
ceramide-1-phosphate, S1P, and glycosphingolipids (Fig. 5A for structures) (Bartke 
&Hannun, 2009; Chalfant &Spiegel, 2005; Chen et al., 2010; Futerman &Hannun, 2004; 
Hannun et al., 2001; Hannun &Obeid, 2002, 2008; Lebman &Spiegel, 2008; Merrill et al., 
1997; Spiegel &Milstien, 2003; Strub et al., 2010; Takabe et al., 2008). Important biological 
functions of sphingolipids are cell signaling for inflammation, apoptosis, cell cycle 
regulation, and autophagy (Bartke &Hannun, 2009; Basu &Kolesnick, 1998; Bieberich, 2004, 
2008a; Futerman &Hannun, 2004; Gulbins &Kolesnick, 2003; Haimovitz-Friedman et al., 
1997; Hannun &Obeid, 2008; Morales et al., 2007). Most recently, particular sphingolipids 
have also been implicated in ES cell differentiation and cell polarity (Bieberich, 2004, 2008a, 
b, 2010; Bieberich et al., 2003; Bieberich et al., 2001; Bieberich et al., 2004; Gardell et al., 2006; 
Goldman et al., 1984; Harada et al., 2004; Hurst et al., 2008; Jung et al., 2009; Pebay et al., 
2007; Pebay et al., 2005; Pitson &Pebay, 2009; Salli et al., 2009; Walter et al., 2007; Wang et al., 
2008a; Wong et al., 2007; Yanagisawa et al., 2004a). Ceramide has been shown to induce 
apoptosis specifically in residual pluripotent stem (rPS) cells that cause teratomas (stem cell-
derived tumors) after stem cell transplantation. S1P has been found to promote 
oligodendrocyte differentiation (see section 3.2. for discussion).  
Ceramide is the precursor of all bioactive sphingolipids. It is synthesized in three different 
metabolic pathways.  Figure 5B shows that sphingolipid metabolism is integrated into 
phospholipid (i.e., PC), one carbon unit (i.e., choline), fatty acid (i.e., palmitoyl CoA for de 
novo biosynthesis and other fatty acids in the salvage pathway), and amino acid (i.e., serine 
in de novo biosynthesis) metabolism (Bartke &Hannun, 2009; Bieberich, 2004, 2008a; Chen et 
al., 2010; Futerman &Hannun, 2004; Futerman &Riezman, 2005; Gault et al., 2010; Hannun et 
al., 2001; Luberto &Hannun, 1999). In cell cultures, plenty of these precursors are provided 
in the medium, which may not necessarily reproduce the metabolic situation of stem cells or 
other cell types in vivo.  Recently, our group has found that neural crest-derived stem or 
progenitor cells are sensitive to alcohol due to ethanol-induced elevation of ceramide and 
induction of apoptosis (Wang &Bieberich, 2010). Apoptosis can be prevented by 
supplementing the medium with CDP-choline, This effect can be explained by providing 
excess of substrate required to drive conversion of ceramide to SM using the interconnection 
of the Kennedy pathway for phospholipid biosynthesis and the SM cycle (Fig. 5B). Choline 
can also be replenished from the one carbon unit metabolism, which establishes the 
interconnection of sphingolipid metabolism with this metabolic pathway.  
The fatty acid metabolism interconnects with sphingolipid biosynthesis twice, in the de 
novo and salvage pathways. The de novo pathway uses palmitoyl CoA and serine for a 
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condensation reaction that is the first step in ceramide biosynthesis. Since serine is used as 
the second substrate, de novo biosynthesis ties into the amino acid metabolism as well. The 
salvage pathway uses a variety of activated fatty acids for re-attachment to sphingosine (Fig. 
5B). While supply with precursors for lipid metabolism may not be critical in vitro, 
specialized tissues or cells such as astrocytes providing nutrients and metabolic precursors 
to neurons or neural stem cells in vivo maybe more sensitive toward lipid imbalances as 
observed in fetal alcohol syndrome and Alzheimer’s disease (Adibhatla &Hatcher, 2008; 
Cutler et al., 2004; De Vito et al., 2000; Hirabayashi &Furuya, 2008; Jana et al., 2009; Jana 
&Pahan, 2010; Muscoli et al., 2010; Riboni et al., 2002; Satoi et al., 2005; Wang et al., 2008b). 
In particular, neural stem cells are confined to distinct morphological cell complexes which 
tightly control the interaction with other cells and therefore, comprise “metabolic niches” 
that may control supply with metabolic precursors and lipid cell signaling factors.  
 
 

  
A B 

Fig. 5. Structures of ceramide precursors and derivatives with cell signaling function and 
interconnection of ceramide metabolism with other lipid and amino acid metabolism. N-
oleoyl serinol (S18) or FTY720 are analogues of ceramide or S1P, respectively. Box shows 
common structural motif.  

Regulation of sphingolipid metabolism by its interconnection with other lipid metabolic 

pathways has a direct impact on lipid-dependent cell signaling. Ceramide is the precursor of 

S1P, which is a ligand for five distinct S1P receptors (S1P1-5) on the cell surface and also 

binding partner/co-factor for at least three intracellular proteins, histone deacetylase 1 and 2 
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(HDAC 1 and 2) in the nucleus, the E3 ubiquitin ligase TRAF2, and prohibitin in the 

mitochondria (Alvarez et al., 2010; Callihan et al., 2011; Hait et al., 2009; Hait et al., 2006; 

Hurst et al., 2008; Pitson &Pebay, 2009; Radeff-Huang et al., 2004; Sanchez &Hla, 2004; 

Spiegel &Kolesnick, 2002; Strub et al., 2011) . The effect of intracellular S1P on stem cell 

differentiation is not known. However, there is solid experimental evidence that S1P has 

profound effects on ES cells and ES cell-derived neural progenitors via S1P receptors, which 

will be discussed in section 3.2.  

2.4 Terpenoids, sterols, glycosphingolipids, and lipid rafts 

The previous sections discussed bioactive lipids that are known to act through lipid 
receptors or binding proteins. There are many more lipids that regulate cell signaling 
pathways through a mechanism known as “lipid rafts” or “lipid microdomains” (Bieberich, 
2008a; Lee et al., 2010b; Lingwood &Simons, 2010; Miljan &Bremer, 2002; Ohanian 
&Ohanian, 2001; Yanagisawa et al., 2005). Lipid rafts are areas in the cell membrane (or 
intracellular membranes) that emerge from the self-assembly of lipids in an ordered 
structure. They are believed to show high affinity to specific cell signaling proteins such as 
growth factor or cytokine receptors, which leads to clustering and activation of these 
receptors. Therefore, bioactive lipids can affect stem cell differentiation in two different 
ways: direct interaction with lipid receptors such as GPCRs and lipid raft-dependent 
activation of growth factor or cytokine receptors such as LIFRǂ or FGFR2 (Bieberich, 2008a; 
Bryant et al., 2009; Gutierrez &Brandan, 2010; Lee et al., 2010b; Yanagisawa et al., 2005). 
Lipids that form rafts are sphingomyelin, cholesterol, and glycosphingolipids. In addition, 
signal transduction proteins such as Ras can be modified with fatty acids (palmitoylation) or 
terpenoids (farnesylation, geranylation) and glycophosphatidylinositol (GPI anchor), which 
tremendously increases membrane binding and raft association (Levental et al., 2010; 
Lingwood &Simons, 2010; Resh, 2004; Roy et al., 2005). It has been shown that particular 
glycosphingolipids termed gangliosides can regulate ES cell differentiation by the activation 
of FGFR2 and other receptors in lipid rafts (Bieberich, 2004; Yanagisawa et al., 2005). An 
example for this mechanism is the corrective activity of the ganglioside GM1 on the effect of 
the fungus toxin fumonisin B1, which causes neural tube defects by inhibiting sphingolipid 
biosynthesis (Gelineau-van Waes et al., 2005; Marasas et al., 2004). It has also been 
demonstrated that the activity of sonic hedgehog, a morphogen critical for germ layer 
formation is functionally dependent on palmitoylation and modification with cholesterol 
(Gofflot et al., 2003; Guy, 2000; Incardona &Roelink, 2000; Karpen et al., 2001; Kelley et al., 
1996; Lewis et al., 2001; Li et al., 2006). Inhibition of cholesterol biosynthesis with statins 
leads to aberrant embryo development. Although these are impressive examples of the 
effect of lipid modification and lipid raft formation on stem cell differentiation and embryo 
development, it is presently not known how to specifically utilize this mechanism in 
controlling the differentiation of ES cells. It is also not clear, which differentiation potential 
cholesterol has besides being critical for lipid raft formation. There is a plethora of steroid 
hormones such as estrogen or progesterone that are bioactive lipids activating nuclear 
receptors critical for embryo development. Progesterone is a particularly curious case since 
it is added to most of the supplements (e.g., N2, B27) found in defined media used for the in 
vitro maintenance and differentiation of ES cells. The use of this and other bioactive and 
synthetic lipids for the in vitro differentiation of ES cells will be discussed in the following 
section. 
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3. Bioactive lipids and their use for in vitro differentiation of embryonic stem 
cells 

3.1 Induction of apoptosis in teratoma-forming stem cells by ceramide analogs 

The reliability and safety of current stem cell differentiation protocols is still a matter of 
controversy. Many studies have shown that even when using similar protocols for the in 
vitro differentiation of ES cells, transplantation can lead to the formation of teratomas 
(Baker, 2009; Bieberich, 2008b; Blum &Benvenisty, 2008; Fong et al., 2010; Fujikawa et al., 
2005; Lee et al., 2009; Vogel, 2005; Wang et al., 2010). Teratomas are stem cell-derived 
tumors that are fatal if they grow in the brain or heart. Teratomas may arise from any type 
of pluripotent cells, including induced pluripotent stem (iPS) cells. Therefore, they are a 
major safety concern, in particular when using larger numbers of ES or iPS cell-derived 
cells. Our studies have shown that teratomas arise from a particular type of residual 
pluripotent stem (rPS) cells that maintain the expression of the pluripotency transcription 
factor Oct-4 and fail to differentiate or undergo apoptosis (Bieberich, 2008a, b, 2010; 
Bieberich et al., 2003; Bieberich et al., 2004). However, we have also found that they co-
express prostate apoptosis response 4 (PAR-4), a protein that sensitizes cells toward 
ceramide-induced apoptosis. Using a water-soluble ceramide analog termed N-oleoyl 
serinol or S18, which was for the first time synthesized in our laboratory, we were able to 
rid stem cells grafts of teratoma-forming rPS cells (Bieberich et al., 2002; Bieberich et al., 
2000). We have shown that S18 promotes binding of atypical PKC (aPKC) to PAR-4, which 
inhibits the aPKC-activated NF-κB cell survival pathway and induces apoptosis in rPS 
cells (Bieberich, 2008a; Krishnamurthy et al., 2007; Wang et al., 2009; Wang et al., 2005). 
These cells are eliminated because they are sensitive to S18. Neural progenitor cells will 
survive and undergo further differentiation because they show no or only low level 
expression of PAR-4.  

3.2 Induction of oligodendrocyte differentiation by S1P and S1P analogs 

It has been shown that S1P and the S1P prodrug analog FTY720 promote cell survival and 
differentiation of primary cultures of oligodendroglial precursor cells (OPCs) (Bieberich, 
2010; Coelho et al., 2010; Jung et al., 2007; Miron et al., 2008a; Saini et al., 2005). We have 
found that teratoma-forming rPS cells do not express the S1P receptor S1P1, which makes 
them vulnerable to ceramide or S18-induced apoptosis (Bieberich, 2008b, 2010; Bieberich 
et al., 2004). In contrast, ES cell-derived neural progenitor cells express S1P1. Our studies 
have shown that in the presence of S18 and FTY720, neural progenitor cells will survive 
and undergo oligodendroglial differentiation because they are insensitive to S18 (PAR-4 is 
not expressed). At the same time, OPC differentiation is promoted by FTY720 or S1P 
(S1P1 is expressed). Implantation of S18 and FTY720-treated neural progenitors does not 
result in teratoma formation and leads to integration of the grafted cells into highly 
myelinated areas of the brain such as the corpus callosum (Bieberich, 2010). Therefore, a 
combined treatment with ceramide analogs and S1P analogs or S1P receptor agonists is a 
promising strategy to control ES cell differentiation toward OPCs that are useful for 
treatment of de- or dysmelination diseases such as multiple sclerosis. Interestingly, the 
addition of S1P analogs to the ceramide analog S18 resulted in a shift of predominantly 
neuronal differentiation (as promoted by S18 alone) of ES cells toward oligodendroglial 
lineage, which is an impressive example for the impact of bioactive lipids on stem cell 
differentiation. 
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3.3 Synthetic lipids as small molecular effectors for ES cell differentiation 

The use of defined media supplemented with small molecule effectors that control the in 
vitro differentiation of stem cells is a promising strategy to generate transplantable 
progenitor cells that have not been in contact with animal-derived products such as serum. 
Currently, there are more than twenty compounds available that specifically induce 
differentiation of ES cells toward progenitors of bone, heart, muscle, or brain tissue. 
Although most of these compounds are not considered bioactive lipids because they are 
synthetic drugs not found in biological organisms, almost all of them are lipids with respect 
to their chemical structure. One of the first synthetic lipids used a small molecule effector for 
ES cell differentiation is a bioactive lipid with critical function in brain development: retinoic 
acid (Dinsmore et al., 1996; Guan et al., 2001; Hu et al., 2009; Jiang et al., 2010; Lee et al., 
2010a; Liour et al., 2006; Mayer-Proschel et al., 1997; Mummery et al., 1990; Murashov et al., 
2005; Osakada &Takahashi, 2011; Plachta et al., 2004). Mouse and human ES cells respond to 
a brief exposure to retinoic acid by accelerating differentiation into motoneurons, 
interneurons, and even oligendendrocytes when combined with specific growth factors such 
as FGF-2 or platelet-derived growth factor (PDGF). Another bioactive lipid used for in vitro 
differentiation of mouse and human ES cells, in particular toward oligodendroglial lineage 
is thyroid hormone (T3) (Glaser et al., 2007; Kang et al., 2007).  
In addition to these naturally occurring lipids, synthetic lipids have been isolated from 
chemical libraries using various bioassays for ES cell differentiation. Indirubin-3-oxime type 
compounds for maintenance of pluripotency have already been discussed in section 1. A 
more detailed discussion of these small molecule effectors can be found in the following 
articles (Ding et al., 2003; Lyssiotis et al., 2011; Zhu et al., 2010).  The advantage of these 
compounds emerges from their lipid-like structure, which allows for penetration of the 
blood brain barrier. Provided that toxicity issues do not prevent the use of these compounds 
in vivo, bioactive and synthetic lipids are likely to develop into powerful pharmacologic 
drugs that can be used for in vitro differentiation of ES or iPS cells and then after 
transplantation, for further treatment of the patient to enhance the in vivo differentiation of 
the grafted cells. One of the first drugs with this dual potential of in vitro and in vivo use is 
FTY720 (Bieberich, 2010; Coelho et al., 2007; Lee et al., 2010a; Miron et al., 2008a; Miron et al., 
2008b; Napoli, 2000). It is quite expectable that many of these “dual use” drugs will play an 
important role in the clinical application of ES and iPS cells.   

4. Conclusions and perspectives 

The goal of this chapter was to review current knowledge on bioactive lipids in embryonic 
stem cell differentiation. One of the important results of this analysis is the insight into the 
interconnection between lipid metabolism and signaling function. Unlike most proteins, 
lipids can be converted into derivatives that either complement or antagonize each other’s 
cell signaling function. For example, conversion of PC to LPA and eisosanoids has similar 
effects on enhancing pluripotency. On the other hand, conversion of ceramide to S1P can 
have opposite functions, in particular with respect to apoptosis and survival of pluripotent 
stem cells. Another important insight is that most bioactive lipids cooperate with cytokine 
and growth factor receptors providing the possibility to combine these factors with the 
respective lipids in defined media for controlled stem cell differentiation. For example, FGF-
2 can be combined with the ceramide analog S18 to promote neuronal differentiation, or 
with S18 and FTY720 to enhance specification to oligodendroglial lineage. This provides the 
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opportunity to generate bioactive lipids or lipid analogs that can be applied for in vitro 
differentiation of stem cells and then for further treatment of the patient who has received 
the stem cell graft. These “dual use” bioactive lipids will be of tremendous value for the 
therapeutic application of stem cells.   
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