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1. Introduction 

Recent advances in intravascular imaging have significantly improved the ability to detect 

high-risk, or vulnerable, plaque in vivo. Optical coherence tomography (OCT) is a new 

intravascular imaging method using a fiber-optic technology. The greatest advantage of 

OCT is its extraordinary high-resolution about 10-20 μm, which is approximately 10 times 

higher than that of intravascular ultrasound (IVUS). The high resolution afforded by this 

imaging modality is giving new insights into atherosclerotic plaque and the vascular 

responses after percutaneous coronary intervention (PCI). This report reviews the possibility 

of OCT for identification of vulnerable plaques in vivo.  

2. Vulnerable plaque and pathology 

The term “vulnerable plaque” is used to describe thrombosis prone plaques. Plaque rupture 
is the most frequent cause of coronary thrombosis, accounting for 60-65% for all coronary 
thrombi. The precursor lesion for plaque rupture is characterized by a thin fibrous cap 
heavily infiltrated macrophages and an underlying necrotic core. Virmani et al defined 
plaque vulnerability based on the actual thickness of the histological section from 
measurements made of plaque ruptures. The thin-cap fibroatheroma (TCFA) was defined as 
a lesion with a fibrous cap < 65 μm thick. A thickness of 65 μm was chosen as a criterion of 
instability because in rupture the mean cap thickness was 23 ± 19 μm; 95% of caps measured 
less than 65 μm within a limit of only two standard deviations. In addition to plaque 
rupture, plaque erosion can also result in coronary thrombosis. Erosion is usually found in 
the lesion with intimal thickening or thick-cap fibroatheroma. The thick fibrous cap in 
contrast to thin fibrous cap contains abundance of smooth muscle cells, proteoglycans and 
type III collagen but very few inflammatory cells.   

3. Current OCT technology 

OCT is an optical analogue of IVUS using near-infrared light. The wavelength used is 1,310 

nm, which minimizes absorption of the light waves by water, protein, lipids, and 

hemoglobin without tissue damage. Based on the principles of low-coherence 

interferometry, the OCT system produces images with an axial resolution of 10-20 μm and a 
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lateral resolution of 25-30 μm (Table 1). An optic probe, with dimensions similar to those of 

a coronary guide wire, delivers light to the tissue and collects the light reflected from the 

tissue. The image wire of current time-domain OCT system (M2/M3 TD-OCT imaging 

system, LightLab Imaging, Inc., Westford, Massachusetts) consists of a 0.006 inch (0.15 mm) 

fiber-optic core that rotates inside a sheath with a diameter of 0.016 inch (0.41 mm) (Figure 

1). Because the near-infrared light signals are attenuated by red blood cells, OCT needs a 

blood-free imaging zone. To remove blood from the coronary artery and deliver the image 

wire, an over-the-wire occlusion balloon catheter is used. The diameter of the catheter shaft 

is 4.4 Fr and the balloon, designed for low-pressure inflation, was thin-walled polyurethane 

with a diameter of 3.8 mm at 0.3 atmospheres (< 8.5 mm at 1.0 atmospheres) and a length of 

6.5 mm. Lactated Ringer’s flushing solution is injected through the central inner lumen, 

which is shared with the image wire, and exits from the distal tip. The OCT imaging 

procedure starts with advancing the tip of a 0.014 inch (0.36 mm) coronary guide wire into 

the distal coronary artery. The occlusion catheter is then advanced over the wire until the 

balloon is positioned proximal to the target lesion. After the guide wire and OCT image wire 

are exchanged, lactated Ringer’s solution is continuously flushed through the central lumen 

of the occlusion catheter by a power injector, and the balloon is inflated gradually by a 

custom inflation device until blood flow is fully occluded. Motorized pullback OCT imaging 

is performed at a rate of 1.0 mm/sec for a length of 30 mm. Images are acquired at 15 

frames/sec and are digitally archived. The images are saved in the OCT imaging system 

console. During the procedure, electrocardiographic and hemodynamic features should be 

carefully monitored. Yamaguchi et al evaluated the safety and feasibility of OCT in 76 

patients with coronary artery disease. Procedural success rates were 97%, and significant 

adverse cardiac events, including vessel dissection, acute myocardial infarction or fatal 

arrhythmia, were not observed. An inherent limitation of OCT is need for a blood-free 

imaging zone. The coronary occlusion for OCT image acquisition limits evaluation of left 

main or ostial coronary lesions. In addition, the time constraint imposed by blood flow 

interruption as well as slow frame rate of current OCT system prevents scanning of a 

significant length of a coronary artery during a single flush. 

Recently, a second-generation OCT technology, termed Fourier-domain OCT (C7 FD-OCT 
imaging system, LightLab Imaging, Inc., Westford, Massachusetts), has been developed 
that solves the current time-domain OCT problems by imaging at much higher frame 
rates (100 frame/sec), a faster pullback speed (20 mm/sec), and a wider scan diameter 
(8.3mm) without loss of image quality (Table 2). These advantages result from the 
elimination of mechanical scanning of the reference mirror and signal-to-noise advantages 
of Fourier-domain signal processing (Figure 2). Imaging catheter of Fourier-domain OCT 
(Dragonfly Imaging Catheter, LightLab Imaging, Inc., Westford, Massachusetts), which is 
designed for rapid-exchange delivery, has 2.5-2.8 Fr crossing profile and can be delivered 
over a 0.014-inch guidewire through a 6 Fr or larger guide catheter. Injecting angiographic 
contrast media, or a mixture of commercially available dextran 40 and lactated Ringer’s 
solution (low-molecular-weight Dextran L Injection, Otsuka Pharmaceutical Factory, 
Tokushima, Japan) through the guide catheter (4-6 ml/sec, 2-3 second) can achieve 
effective clearing of blood for Fourier-domain OCT imaging. The high frame rate and fast 
pullback speed of Fourier-domain OCT allows to image long coronary segments with 
minimal ischemia, eliminating the need for proximal vessel balloon occlusion during 
image acquisition.  
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 OCT IVUS Angioscopy Angiography 

Resolution (μm) 10-20 80-120 10-50 100-200 
Probe size (mm) 0.016 0.7 0.8 n/a 
Type of radiation Near-IR light Ultrasound Visible light X-ray 

Other 
Sub-surface 
tomogram 

Sub-surface 
tomogram 

Surface 
imaging only 

Images of 
blood flow 

Table 1. Comparison of the characteristics of coronary imaging methods. 

 

 

Fig. 1. LightLab OCT imaging system. (A) Time-domain OCT imaging wire. The time-
domain OCT system employs a 0.016-inch fiber-optic imaging wire. (B) Fourier-domain 
OCT imaging catheter. Imaging catheter of Fourier-domain OCT has 2.5-2.8 Fr crossing 
profile and can be delivered over a 0.014-inch guidewire. (C) Patient interface unit. (D) OCT 
system console.  
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 Time-domain OCT Fourier-domain OCT 

Axial resolution (μm) 10-20 10-20 
Lateral resolution (μm) 25-30 25-30 
Scan diameter (mm) 6.8 8.3 
Frame rate (f/sec) 15-20 100 
Number of lines (/frame) 200-240 450 
Maximum pullback speed (mm/sec) 2-3 20 
Coronary occlusion for imaging   Required Not required 

Table 2. Performance of Fourier-domain OCT system in comparison with time-domain OCT 
System. 

 

 

Fig. 2. Main components of time-domain OCT and Fourier-domain OCT. (A) In time-domain 
OCT, a broadband light source is divided by a beam splitter; part is sent to the tissue sample 
down the sample or measurement arm and the other down the reference arm to a moving 
mirror. The reflected signals are overlaid on a photo-detector. The intensity of interference is 
detected and used to create images. (B) In Fourier-domain OCT, the reference mirror does not 
move and the light source is a laser that sweeps its output rapidly over a broad band of 
wavelengths. Fourier transformation of the interference signals stored during a single sweep 
reconstructs the amplitude profile of the reflections, analogous to a single A-line in an 
ultrasound scan. Lasers with narrow line widths and wide sweep ranges enable the acquisition 
of Fourier-domain OCT images with high resolution over a wide range of depths.  

4. Plaque characterization 

Several histological examinations have demonstrated that OCT is highly sensitive and 
specific for plaque characterization. The high resolution of OCT allows us to identify 3-layer 
of coronary artery wall. In the OCT image, intima is observed as a signal rich layer nearest 
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the lumen, media is visualized as a signal poor middle layer, and adventitia is identified as a 
signal-rich outer layer of artery wall (Figure 3). OCT enables more accurate estimation of the 
intimal thickness in comparison with IVUS which can not distinguish the boundary of the 
intima and media. Kume et al compared the coronary intima – media thickness and the 
intimal thickness of 54 coronary arterial segments evaluated by histological examination 
with the results of OCT and IVUS. There was a better agreement in intima – media thickness 
between OCT and histological examination than between IVUS and histological 
examination (r=0.95, p<0.001, mean difference = –0.01 ± 0.07 mm for OCT; r=0.88, p<0.001, 
mean difference = –0.03 ± 0.10 mm for IVUS). Moreover, there was an excellent agreement in 
the intimal thickness between OCT and histological examination (r=0.98, p<0.001, mean 
difference = 0.01 ± 0.04 mm). 
Yabushita el al developed objective OCT image criteria for differentiating distinct 

components of atherosclerotic tissue. In their histology-controlled OCT study with 357 

autopsy segments from 90 cadavers, fibrous plaques were characterized by homogeneous 

signal-rich regions (Figure 4), fibrocalcific plaques by signal-poor regions with sharp 

borders (Figure 5), and lipid-rich plaques by signal-poor regions with diffuse borders 

(Figure 6). Validation test revealed good intra- and inter-observer reliability (κ = 0.83–0.84) 

as well as excellent sensitivity and specificity—71–79% and 97–98% for fibrous plaques, 95–

96% and 97% for fibrocalcific plaques, and 90–94% and 90–92% for lipid-rich plaques, 

respectively. These definitions have formed the basis of plaque composition interpretation 

(Table 3). Using these definitions, Kawasaki et al studied 128 coronary arterial sites from 42 

coronary arteries of 17 cadavers by using OCT, integrated backscatter IVUS and 

conventional IVUS, and reported that OCT has a best potential for tissue characterization of 

coronary plaques (Fibrous tissue: sensitivity—98% vs. 94% vs. 93%, specificity—94% vs. 84% 

vs. 61%; Calcification: sensitivity—100% vs. 100% vs. 100%, specificity—100% vs. 99% vs. 

99%; lipid pool: sensitivity—95% vs. 84% vs. 67%, specificity—98% vs. 97% vs. 95%). Kume 

et al also examined 166 sections from 108 coronary arterial segments of 40 consecutive 

human cadavers by using OCT and IVUS, and showed that OCT had a higher sensitivity for 

characterizing lipid-rich plaques than IVUS (85% vs. 59%, p=0.030). The intraobserver and 

interobserver agreement of OCT for characterizing plaque type was high (κ=0.92 and 

κ=0.86, respectively). These results suggest the possibility of OCT to identify vulnerable 

plaques which might contain lipid-rich necrotic core. 

 

 

Fig. 3. Normal coronary wall. OCT image of normal coronary artery showing good contrast 
of the layers of the vessel wall including intima, media and adventitia.  
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Fig. 4. Fibrous plaque. OCT image of a fibrous coronary plaque showing a homogeneous, 
signal-rich interior.  

 

 

Fig. 5. Fibrocalcific plaque. OCT image of a fibrocalcific coronary plaque showing a sharply 
delineated region with a signal-poor interior.  

 

 

Fig. 6. Lipid-rich plaque. OCT image of a lipid-rich plaque showing a signal-poor lipid pool 
with poorly delineated borders beneath a homogeneous band, corresponding to fibrous cap.  

www.intechopen.com



 
Identification of Vulnerable Plaques with Optical Coherence Tomography 

 

77 

Histology OCT findings 

Intima Signal-rich layer near lumen 
Media Signal-poor layer in middle of artery wall 
Adventitia Signal-rich outer layer of artery wall 
Fibrous tissue Signal-rich, homogenous area 
Calcium Well-demarcated, heterogeneous area 
Lipid Signal-poor, poorly demarcated, homogenous area 
Fibrous-cap Signal-rich layer overlying signal-poor area 

Table 3. OCT Characteristics of coronary microstructures 

5. Vulnerable plaque detection 

Since OCT has a near-histological grade resolution, many in-vitro and in vivo studies have 
been done to validate the capability of OCT to visualize vulnerable plaque features. 

5.1 Plaque rupture and erosion 
OCT can detect plaque rupture (Figure 7) and erosion (Figure 8) more precisely in 
comparison with conventional intravascular imaging techniques. Kubo et al used OCT, 
IVUS and angioscopy in patients with acute myocardial infarction (AMI) to assess the ability 
of each imaging method to detect the specific characteristics of vulnerable plaque. OCT was 
superior in detecting plaque rupture (73% vs. 40% vs. 43%, p=0.021), erosion (23% vs. 0% vs. 
3%, p=0.003) and thrombus (100% vs. 33% vs. 100%, p<0.001) as compared with IVUS and 
angioscopy. Intra- and inter-observer variability of OCT yielded acceptable concordance for 
these characteristics (κ=0.61–0.83).  
Using the capability of OCT for assessing plaque rupture and erosion in vivo, several 
studies have been performed to understand the mechanisms of acute coronary syndrome 
(ACS). Tanaka et al used OCT to investigate the relationship in patients with ACS between 
the morphology of a ruptured plaque and the patient’s activity at the onset of ACS. Their 
data revealed that the thickness of the broken fibrous cap in the exertion group was 
significantly higher than in the rest-onset group (rest onset: 50 µm [interquartile median 15 
µm]; exertion: 90 µm [interquartile median 65 µm], p<0.001), and some plaque rupture 
occurred in thick fibrous caps of > 65 µm depending on exertion levels. Mizukoshi et al used 
OCT to assess the relationship between clinical presentation and plaque morphologies in 
patients with unstable angina pectoris (UAP). In comparison with the Braunwald class I or II 
UAP patients, class III UAP patients had the highest frequency of plaque rupture (class I, 
43%; class II, 13%; class III, 71%; p<0.001) and the thinnest fibrous cap (class I, median = 140 
µm, quartile 1 to 3 = 90 to 160; class II, 150 µm, 120 to 160; class III, 60 µm, 40 to 105; 
p<0.001). In addition, class I UAP patients had the highest frequency of plaque erosion (class 
I, 32%; class II, 7%; class III, 8%; p=0.003) and the smallest minimum lumen area (class I, 
median 0.70 mm2, quartiles 1 to 3 = 0.42 to 1.00; class II, 1.80 mm2, 1.50 to 2.50; class III, 2.31 
mm2, 1.21 to 3.00; p<0.001). Recently, Ino et al used OCT to investigate the difference of 
culprit lesion morphologies between ST-segment elevation myocardial infraction (STEMI) 
and non–ST-segment elevation ACS (NSTEACS). The incidence of plaque rupture was 
significantly higher in STEMI compared with NSTEACS (70% vs. 47%, p=0.033). Although 
the lumen area at the site of plaque rupture was similar in the both groups, the area of 
ruptured cavity was significantly larger in STEMI compared with NSTEACS (2.52 ± 1.36 
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mm2 vs. 1.67 ± 1.37 mm2, p=0.034). Furthermore, the ruptured plaque of which aperture was 
open-wide against the direction of coronary flow was more often seen in STEMI compared 
with NSTEACS (46% vs. 17%, p=0.036). 
 

 

Fig. 7. Plaque rupture. Plaque rupture is defined as the presence of fibrous-cap discontinuity 
(arrows) and a cavity formation (*) in the plaque.  

 

 

Fig. 8. Plaque erosion. Erosion (arrowhead) is usually comprised of OCT evidence of 
thrombi (arrows), an irregular luminal surface, and no evidence of cap rupture evaluated in 
multiple adjacent frames. 

5.2 Thin-cap fibroatheroma 
OCT might be the best tool available to detect TCFAs in vivo (Figure 9). Kume et al 
examined the reliability of OCT for measuring the fibrous cap thickness. In the examination 
of 35 lipid-rich plaques from 38 human cadavers, there was a good correlation of the fibrous 
cap thickness between OCT and histological examination (r = 0.90; p<0.001). In the clinical 
setting, Sawada et al compared the feasibility for detecting TCFA between OCT and virtual 
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histology IVUS. Although the positive ratio of virtual histology IVUS for detecting TCFA 
was 45.9%, that of OCT was 77.8%. Jang et al analyzed OCT images among 57 patients who 
presented with stable angina pectoris (SAP), ACS, or AMI. The AMI group was more likely 
than the ACS group, who was more likely than the SAP group, to have a thinner cap, more 
lipid, and a higher percentage of TCFA (72% vs. 50% vs. 20%, respectively, p = 0.012). On 
top of its reliability as a tool to measure the fibrous-cap thickness in vivo, a recent OCT 
study conducted by Takarada et al demonstrated that the lipid-lowering therapy with statin 
for 9 months follow-up significantly increased the fibrous-cap thickness in patients with 
hypercholesterolemia (151 ± 110 to 280 ± 120 µm, p<0.01). As therapies to prevent or make 
regression of atherosclerosis are developed, OCT can help to assess the treatment efficacy. 
 

 

Fig. 9. Thin-cap fibroatheroma. A fibrous cap is identified as a signal-rich homogenous 
region overlying a lipid core, which is characterized by a signal-poor region in the OCT 
image. Thin-cap fibroatheroma is defined as a plaque with a fibrous cap measuring <65 μm.   

5.3 Thrombus 
The OCT characteristics of coronary thrombi were studied by Kume et al in 108 coronary 

arterial segments at postmortem examination. Red thrombus (Figure 10-A), which mainly 

consists of red-blood cell, is identified as high-backscattering protrusions inside the lumen 

of the artery with signal-free shadow, while white thrombus (Figure 10-B), which mainly 

consists of platelet and fibrin, is identified as signal-rich, low-backscattering protrusions in 

the OCT image. Using a measurement of the OCT signal attenuation within the thrombus, 

the authors demonstrated that a cut-off value of 250 µm in the 1/2 width of signal 

attenuation can differentiate white from red thrombi with a high sensitivity (90%) and 

specificity (88%). 

5.4 Plaque neovascularization  
Plaque neovascularization is a common feature of vulnerable plaque. Proliferation of micro-

vessels is considered to be related with intraplaque haemorrhage and plaque destabilization. 

The high resolution of OCT provides an opportunity to detect plaque neovascularization in 

vivo (Figure 11). Kitabata et al demonstrated increase of micro-vessels density in TCFAs by 
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using OCT. The presence of micro-vessels in the plaques was also associated with positive 

vessel remodeling and elevated hs-CRP levels. The OCT evaluation of micro-vessels density 

might be helpful to assess plaque vulnerability. 

 

 

Fig. 10. Intracoronary thrombi. (A) Red thrombus is defined as a protrusion inside the 
lumen of the artery with high signal attenuation in the OCT image. (B) White thrombus is 
defined as a protruding mass with low signal attenuation in the OCT image.   

 

 

Fig. 11. Micro-vessels in the coronary plaque. Vessels within the intima (arrows) appear as 
signal poor voids that are sharply delineated.   

5.5 Macrophages 
A unique aspect of OCT is its ability to visualize the macrophages (Figure 12). Tearney et al 
proposed the potential of OCT to assess macrophage distribution within fibrous caps. There 
was a high degree of positive correlation between OCT and histological measurements of 
fibrous cap macrophage density (r<0.84, P<0.001). A range of OCT signal standard deviation 
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thresholds (6.15% to 6.35%) yielded 100% sensitivity and specificity for identifying caps 
containing >10% CD68 staining. 
 

 

Fig. 12. Macrophage. Macrophages (arrows) are seen as signal-rich, distinct or confluent 
punctuate regions that exceed the intensity of background speckle noise.   

6. Multiple lesion instability 

In the diffuse nature of coronary atherosclerosis, plaque instability might be expected to 
develop in a multifocal pattern. Virmani et al showed that 70% of cases of sudden cardiac 
death had non-ruptured TCFAs. Most non-ruptured TCFAs and ruptured plaque are 
localized in the proximal 1/3 of the major coronary arteries. In a 3-vessel VH–IVUS study, 
Hong et al demonstrated that 72% of patients with AMI or UAP had multiple VH–IVUS-
derived TCFAs. Asakura et al performed 3-vessel angioscopic examination in AMI and 
showed that yellow plaques were equally prevalent in the infarct-related and non-infarct-
related coronary arteries. In the multifocal OCT study, Tanaka et al reported that 7% of 
patients with acute coronary syndrome had >2 OCT-derived TCFAs in the entire culprit 
coronary artery. Kubo et al evaluated non-culprit vessels by using OCT and demonstrated a 
greater frequency of multiple OCT-derived TCFAs in AMI patients than in SAP patients. 
Fujii et al performed a prospective OCT analysis of all 3 major coronary arteries to evaluate 
the incidence and predictors of TCFAs in patients with AMI and SAP. Multiple TCFAs were 
observed more frequently in AMI patients than in SAP patients (69% vs. 10%, p<0.001). In 
the entire cohort, multivariate analysis revealed that the only independent predictor of 
TCFA was AMI (OR=4.12, 95% CI=2.35-9.87, p=0.020,). These OCT results support the 
theory that acute coronary syndrome is a multifocal process (Figure 13). 

7. Drug-eluting stent in vulnerable lesion 

Drug-eluting stent has been reported to impair local vascular healing with delayed 
endothelization. The patients with ACS present a higher risk for thrombotic complication 
after stent implantation in comparison with SAP. Therefore, vascular response after drug-
eluting stent implantation in the vulnerable lesion is a great concern. Recently, Kubo et al 
used OCT to evaluate lesion morphologies after drug-eluting stent implantation in the  
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Fig. 13. Multiple lesion instability in patient with acute myocardial infarction. Coronary 
angiogram showed that the culprit lesion was located in the proximal site of left circumflex 
coronary artery (diameter stentosis = 99%; TIMI-II flow). Thin-cap fibroatheroma (ᬊ), 
plaque rupture (ᬋ, ᬌ) and intracoronary thrombi (ᬋ, ᬌ) were observed at the culprit 
lesion by OCT.  Although the plaques in left descending coronary artery (ᬐ, ᬑ) were not 
unstable, thin-cap fibroatheroma (①-ᬉ) and plaque rupture (ᬇ, ᬈ, ᬉ, ᬎ, ᬏ) was 
detected by OCT in the non-culprit lesions of right coronary artery and distal left circumflex 
coronary artery.   

unstable lesions. Inadequate stent apposition (67% vs. 32%, p=0.038) and tissue protrusion 

(79% vs. 42%, p=0.005) after PCI were observed more frequently in UAP patients compared 

with SAP patients. Plaque rupture was significantly increased after PCI in UAP patients 

(42% to 75%, p=0.018). The persistence of core cavity after plaque rupture at 9 months’ 

follow-up (Figure 14) was observed more frequently in UAP patients compared with SAP 

patients (28% vs. 4%, p=0.031). At 9 months’ follow-up, the incidence of inadequately 

apposed stent (33% vs. 4%, p=0.012) and partially uncovered stent by neointima (72% vs. 

37%, p=0.019) was significantly greater in UAP patients than that in SAP patients. Residual 

plaque rupture behind the stent and uncovered stent struts might be important risks for late 

stent thrombosis because the lipid content of exposed necrotic core and metal stent is highly 

thrombogenic (Figure 14). Although arterial healing with excessive neointimal growth leads 

to restenosis, neointima (or endothelium) that seals the underlying thrombogenic 

components may protect against late stent thrombosis. 

8. Atherosclerotic changes in neointimal tissue inside stent 

Atherosclerotic changes and consequent plaque vulnerability occur in the neointimal tissue 

inside the stent. Takano et al observed the neointimal characteristics of bare-metal stents in 

early phase (<6 months) and late phase (> 5 years) by using OCT. Lipid-rich neointima was 

often seen in the late phase compared with the early phase (67% vs. 0%, p<0.001). The 

appearance of intraintima neovascularization was more prevalent in the late phase than the 

early phase (62% vs. 0%, p<0.001). Kashiwagi et al used OCT to examine the stented 
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segments in cases with very late stent thrombosis, and reported neointimal plaque rupture. 

Atherosclerotic progression in neointimal tissue inside the stents might contribute to late 

clinical events after stent treatment (Figure 15). 

 

 

Fig. 14. Residual plaque rupture behind coronary stent. The OCT image at 9-month follow-
up after drug-eluting stent implantation shows persistence of core cavity and inadequately-
apposed stent struts without neointimal coverage.    

 

 

Fig. 15. A case with neointimal plaque rupture inside bare-metal stent. A 60-year-old man 
was given a diagnosis of stable angina and treated with a bare-metal stent (3.5 x 18 mm) 
deployed to the mid-portion of the left anterior descending artery 8 years ago. A follow-up 
coronary angiography at 6 months after the procedure presented no restenosis. Eight years 
after stent deployment, he suddenly suffered recurrence of angina and was admitted to the 
hospital. A coronary angiography showed severe in-stent restenosis of the previously 
stented segment of the LAD (arrow). Before any interventions, OCT was performed. OCT 
clearly revealed plaque rupture (arrowhead) and cavity formation (*) within well expanded 
stent struts (arrows).  
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9. Limitations 

OCT has a relatively shallow axial penetration depth of 2mm. The OCT signal does not 
reach the back wall of thick atherosclerotic lesions. The penetration depth of OCT depends 
on tissue characteristics. Lipid-rich plaque or coronary thrombus causes OCT signal 
attenuation, which interrupts to observe deep layers of coronary artery wall. OCT is not 
appropriate for the visualization of whole vessel and the evaluation of arterial remodeling.  

10. Current technology challenges 

Recently, Tearney et al reported that Fourier-domain OCT, called optical frequency-domain 
imaging by author’s group, enables imaging of the 3-dimensional microstructure of long 
segments of coronary arteries. In addition, Fourier-domain OCT facilitates the acquisition of 
spectroscopic and polarization, Doppler and other imaging modes for plaque 
characterization. When Fourier-domain OCT is fully exploited, it has the potential to 
dramatically change the way that physicians and researchers understand the coronary 
artery disease in order to better diagnose and treat disease. 

11. Conclusion 

The high resolution of OCT provides histology-grade definition of the microstructure of 
coronary plaque in vivo. OCT allows a greater understanding of the pathophysiology of 
vulnerable plaque. Whether OCT will have an established clinical role in vulnerable plaque 
detection must depend on the outcomes of future prospective natural history studies.  
Precise identification of thrombosis-prone vulnerable plaque could change our approach to 
the treatment of coronary atherosclerotic disease and contribute to prevention of ACS.  
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