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But however far we may proceed in analysing the genotypes into separable genes or factors, it must 
always be borne in mind, that the characters of the organism their phenotypical features are the 

reaction of the genotype in toto. The Mendelian units as such, taken per se are powerless. 
Wilhelm Johannsen, 1923 

 

1. Introduction 

Cardiomyopathies are chronic diseases of heart muscle, in which the muscle is abnormally 

enlarged, thickened, and/or stiffened (1). According to American Heart Association, 

“Cardiomyopathies are a heterogeneous group of diseases of the myocardium associated with 
mechanical and/or electrical dysfunction that usually (but not invariably) exhibit inappropriate 
ventricular hypertrophy or dilatation and are due to a variety of causes that frequently are genetic. 
Cardiomyopathies either are confined to the heart or are part of generalized systemic disorders, often 

leading to cardiovascular death or progressive heart failure related disability” (1). Within this broad 

definition, WHO (1995) and International Society & Federation of Cardiology has classified 

cardiomyopathies into four types:  

 Dilated cardiomyopathy  (DCM) 

 Hypertrophic cardiomyopathy (HCM) 

 Restricted cardiomyopathy (RCM) 

 Arrhythmogenic right Ventricular cardiomyopathy   

2. Dilated cardiomyopathy 

Dilated cardiomyopathy (DCM) is the third most common cause of heart failure after 
coronary artery disease and hypertension with an estimated prevalence of 1:2500 (1, 2). 
DCM is characterized by a progressive course of ventricular dilatation and systolic 
dysfunction clinically. The life expectancy is limited and varies according to the underlying 
etiology. Myocarditis, immunological abnormalities, toxic myocardial damage, and genetic 
factors are all assumed to be causes. The familial occurrence of DCM, mostly as an 
autosomal dominant trait, is more common than generally believed. As a matter of fact, 20–
30% of all cases of DCM are caused by genetic mutations in sarcomeric and non sarcomeric 
genes. In the past decade, major progress has been achieved by investigating families with 
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inherited DCM. The analysis of candidate genes led to the discovery of cardiac ┙-actin, the 
first DCM-causing gene. In the first report on MYH7 mutations as cause of familial DCM, 
two different missense mutations were identified in 2 out of 21 families with heritable pure 
DCM without other organ manifestations. In addition, several groups have described 
patients who exhibit a conversion from a hypertrophic cardiomyopathy (HCM) to a DCM 
phenotype.  Mutations in TNNT2 seem to lead to complete penetrance and a high 
proportion of patients die suddenly at younger ages whereas patients with mutations in 
MYH7 may have a more benign disease course. Mutations in genes encoding sarcomere, 
cytoskeletal, and nuclear proteins, as well as proteins involved in regulation of Ca2+ 
metabolism have been found to be associated with DCM (6-16). When considering the 
contribution of all known DCM genes, it is estimated that mutations in known disease genes 
are the cause of inherited DCM in approximately 20% of cases. This low proportion reflects 
a more complicated genetic etiology than assumed. 

3. Hypertrophic cardiomyopathy 

HCM is a mendelian trait with an autosomal dominant pattern of familial inheritance whose 
clinical diagnosis is based on the identification of increased wall thickness of left ventricle in 
absence of loading conditions (hypertension and valve disease) (17, 18). Mostly based on 
studies performed until the late 1980s, HCM was originally described and perceived as a 
rare disease. Later subsequent studies revealed HCM as an epidemiologically relevant, 
widespread, yet infrequently diagnosed condition. These studies, however, were run 
according to different designs: some utilized echocardiography as a screening tool of large 
populations and should thus be considered as true prevalence studies, while others reported 
data from large group of subjects referred to echocardiography according to different 
criteria and protocols. Thus, this latter group of studies may have underestimated the 
prevalence of HCM as small fraction of the originally screened individuals was 
subsequently referred to echocardiography. From these studies HCM emerges as an 
important global disease affecting approximately 1:500 individuals worldwide, and   is the 
most common cause of sudden death in the young (3). 
The disease seems to be sporadic in ~ 50% of cases but the incomplete penetrance of the 
phenotype in carriers of some mutations could lead to underestimation of the percentage of 
familial cases. It is now known that HCM is genetically heterogeneous and caused by 
mutation in any one of the genes that encode contractile proteins of the cardiac sarcomere, 
involving thick filaments and thin filaments and in cardiac myosin binding protein C - the 
structural network that joins thick and thin filaments (17, 19-22). Hundreds of mutations in 
more than a dozen genes that encode protein constituents of the sarcomere have been 
identified in HCM (23, 24). MYH7, MYBPC3, TNNI3 and cardiac troponin T (TNNT2) are 
the most prevalent disease genes, but mutations have also been found in ┙-tropomyosin 
(TPM1), cardiac actin (ACTC), cardiac troponin C (TNNC1), essential myosin light chain 
(MYL3), regulatory myosin light chain (MYL2), ┙-cardiac myosin heavy chain (MYH6), titin 
(TTN), ┛2 subunit of the protein kinase A (PRKAG2). The prognosis of HCM varies 
considerably with respect to the reported mutations.  

4. Restrictive cardiomyopathy 

Restrictive cardiomyopathy (RCM) is an uncommon myocardial disease characterized by 
increased stiffness of ventricles leading to impaired filling of blood in the presence of 
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normal wall thickness and systolic function. Most affected individuals have severe signs and 
symptoms of heart failure. RCM may present with interventricular conduction delays, heart 
block, or skeletal muscle disease. However, the diagnostic criteria for restriction are not 
universally accepted, and the morphology generally overlaps with HCM, often making the 
diagnosis difficult.  
Previously, RCM was believed to be of idiopathic origin unless otherwise associated with 
inflammatory, infiltrative or systemic disease but now the results of recent molecular genetic 
investigations have revealed that a substantial proportion of RCM (not associated with 
systemic disease) is caused by mutations in sarcomeric disease genes that have been 
associated with HCM and DCM (25-29). 

5. Arrhythmogenic right ventricular cardiomyopathy 

Arrhythmogenic Right Ventricular cardiomyopathy/Dysplasia (ARVD) is a cardiomyopathy 
characterized by progressive degeneration and fibrous-fatty replacement of right ventricular 
myocardium, by arrhythmias with a left branch block pattern and by increased risk of sudden 
death in juveniles. The prevalence of ARVD has been estimated to be 1 in 5,000. Several forms 
of dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia have been 
identified so far: ARVD1 (14q24.3), ARVD2 (1q42), ARVD3 (14q11-q12), ARVD4 (2q32), 
ARVD5 (3p23), ARVD6 (10p12-p14) and ARVD7 (10q22). Mutations in the genes encoding the 
cardiac ryanodine receptor were detected in patients affected with ARVD2.11 (30, 31). 
Attempts to identify genes involved in other dominant ARVDs were so far unsuccessful. 

6. Modifier genes 

In many genetic disorders in which a primary disease-causing locus has been identified, 

evidence exists for additional trait variation due to genetic factors. These findings have led 

to studies seeking secondary ‘modifier’ loci. Identification of modifier loci provides insight 

into disease mechanisms and may provide additional screening and treatment targets. 

Genetic background, often referred to as the modifier genes, do not cause the disease but 

simply affects the severity of its phenotypic expression particularly in case of autosomal 

dominant disorders in which age-dependent onset and variable expressivity are 

characteristic. The final phenotype is the result of interactions between the causal genes, 

genetic background (modifier genes), and probably the environmental factors.  

One of the major features of cardiomyopathies is a wide phenotypic heterogeneity among 
affected subjects, which is characterized by variable degree or distribution of hypertrophy 
and prognosis in HCM patients and variable penetrance of disease in DCM patients 
carrying same mutations. Part of this can be explained by locus heterogeneity but genetic 
studies have revealed the presence of clinically healthy individuals carrying the mutant 
allele, which is, in first-degree relatives, associated with a typical phenotype of the disease. 
This variable expressivity suggests the existence of modifier genes or polymorphisms, 
which modulate the phenotypic expression of the disease. Obvious candidate modifier 
genes encode proteins implicated in cardiac growth and hypertrophy. Several components 
of the renin–angiotensin–aldosterone system (RAAS) and adrenergic signaling pathways 
have been analyzed in patients with idiopathic cardiomyopathies. In fact genetic variations 
in these genes might be one explanation for the well known inter-individual variations in 
drug responses (ACE inhibitors and beta blockers) in patients.  

www.intechopen.com



 
Atherosclerotic Cardiovascular Disease 

 

60

In this chapter, we have provided information on association of several candiadate genes 
with clinical phenotype of cardiomyopathies. We identified studies of modifier genes from  
PubMed search using the MESH terms ‘cardiomyopathy and genetics or genetic 
polymorphisms, or MESH terms Modifier genes and cardiomyopathy or heart failure, 
limiting results to the English language publications on studies in human adults. We further 
identified specific polymorphisms of interest noted in earlier reviews and performed 
additional PubMed searches based on these candidate genes. Our aim was to collate the 
existing body of knowledge on common genetic polymorphisms and their relationship to 
phenotypic expression of cardiomyopathy. We have included information on individual 
study size and design, as well as the strength of statistical association.  We tried to remove 
bias in the selection of research articles by selecting maximum number of studies and from 
different ethnic groups and by reviewing both published and unpublished (where ever 
possible) data. The reference lists of all articles obtained were examined to identify 
additional studies.  All titles and abstracts from the search process were examined. The 
retrieved studies were examined and included if: 1) the patients were well characterized for 
cardiomyopathies i.e. LVEF ≤40% for DCM and LVH (septal thickness) >13mm for HCM 
and 2) Results were compared with well categorized control samples. 

7. Renin Angiotensin System genes as modifiers in idiopathic 
cardiomyopathies 

The classical renin-angiotensin system (RAS) consists of renin, angiotensin-converting 
enzyme, angiotensinogen and its receptors. Renin is synthesized in the kidney, stored in the 
afferent arterioles and released in response to hemodynamic, neurogenic, and ionic signals. 
Renin, has a very high specificity for its substrate angiotensinogen (AGT). Renin cleaves 
AGT to release the amino terminal decapeptide angiotensin I (Ang I). Angiotensin-
converting enzyme (ACE), which is expressed endothelially, then cleaves Ang I to release 
the two carboxy terminal amino acids. The resulting octapeptide is designated angiotensin II 
(Ang II). Ang I is biologically inactive while Ang II is a potent vasoconstrictor. The members 
of RAS pathway acting as modifier genes will be described in this chapter. 

8. Angiotensin Converting Enzyme (ACE) 

Angiotensin I-converting enzyme (ACE), is a dipeptidyl peptidase transmembrane-bound 
enzyme (32). A soluble form of ACE in plasma is derived from the plasma membrane-bound 
form by proteolytic cleavage of its COOH-terminal domain. There are two distinct isoforms 
of ACE: somatic and testicular. They are transcribed from a single gene at different initiation 
sites. The somatic form of ACE is a large protein (150–180 kDa) that has two identical 
catalytic domains and a cytoplasmic tail. It is synthesized by the vascular endothelium and 
by several epithelial and neural cell types. The testicular form of ACE is a 100- to 110-kDa 
protein that has a single catalytic domain corresponding to the COOH-terminal domain of 
somatic ACE and is only found in developing spermatids and mature sperm where it may 
play a role in fertilization. It has two primary functions: 

 ACE catalyses the conversion of  AngI to AngII, a potent vasoconstrictor  

 ACE degrades bradykinin, a potent vasodilator, and other vasoactive peptides, (33)  
These two actions make ACE inhibition a goal in the treatment of conditions such as high 
blood pressure, heart failure, diabetic nephropathy, and type 2 diabetes mellitus. Inhibition 
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of ACE (by ACE inhibitors) results in the decreased formation of AngII and decreased 
metabolism of bradykinin, leading to systematic dilation of the arteries and veins and a 
decrease in arterial blood pressure. In addition, inhibiting AngII formation diminishes 
AngII-mediated aldosterone secretion from the adrenal cortex, leading to a decrease in 
water and sodium reabsorption and a reduction in extracellular volume (34).  
Genetic variations in ACE gene have been reported to be associated with many 
cardiovascular diseases including cardiomyopathies. An insertion or deletion of a 287bp 
DNA fragment in the ACE gene (ACEI/D) has been found to be an important modifier 
which may influence the clinical phenotype in cardiomyopathies. ACE I/D polymorphism 
has been shown to be associated with left ventricular hypertrophy (LVH) in untreated 
hypertension, complications of atherosclerosis (35) and HCM (36- 40).  D allele was shown 
to be associated with increased risk of cardiomyopathy in Asian Indians; HCM patients with 
DD genotype were found to be more susceptible to disease (38). D allele carrying genotypes 
(DD, ID)  were also found to be associated with  higher mean septal thickness as compared 
to II genotype in HCM patients, however, the difference was not significant (P>0.05). DCM 
patients with ID genotype also showed significantly decreased left ventricular ejection 
fraction (LVEF) indicating a possible association of D allele in pathogenesis of DCM.  It has 
been suggested  that DD genotype may be an important biomarker of HCM and presence of 
the ACE gene I/D polymorphism may be an important marker to identify those individuals 
with HCM who are likely to have more progressive disease, and therefore at higher risk of 
adverse clinical outcomes (38, 39). DD-ACE is considered a ‘pro-LVH’ modifier in HCM 
(41). DD genotype has been shown to be associated with increased tissue levels of ACE 
resulting in increased AngII which may lead to increased hypertrophy and fibrosis. 

9. Angiotensinogen (AGT) 

AGT is an inactive peptide of Renin-Angiotensin System that is produced constitutively 
and released into the circulation mainly by the liver. Gene for AGT is located on 
chromosome 1 and codes for 452 amino acids. The first 12 amino acids are the most 
important for activity. Angiotensinogen is converted into bioactive Angiotensin II, mainly 
by the action of Renin and ACE. 
Given the importance of AGT as a substrate for generation for vasoconstrictive AngII, it has 
been used as a therapeutic target in heart failure (HF). Genetic variations of this gene have 
been suggested to represent a predisposing factor to heart failure. Two single nucleotide 
polymorphisms (SNPs) in AGT (T174M and M235T) have been shown to be associated with 
HF; for example, an increased frequency of the AGT T235 allele and the AGT 235TT 
genotype has been reported in HCM associated HF. Rigat et al (1990) have studied AGT 
polymorphism in 111 healthy volunteers and 58 HF patients with a documented left 
ventricular ejection fraction (LVEF) ≤40% within the previous 6 months.  And observed 
mutant T allele (T235) to be more prevalent in HF group as compared to healthy controls (P 
= 0.0025, OR 2.02, 95% CI 1.24, 3.30); AGT haplotype (174M and 235T) was also found to be 
associated with the HF phenotype (P = 0.0069) (45). An evaluation of gene-gene interactions 
revealed significant interaction between AGT (T235) and ACED polymorphisms in the HF 
group (P = 0.02, OR 2.12, 95% CI 1.11, 4.06) suggesting that AGT/ACE gene combination 
may play an important role in disease predisposition (43).  Since polymorphisms of the ACE 
gene can modulate the circulating AngII levels (42), thus co occurrence of risk alleles of both 
ACE and AGT genes could be associated with left ventricular hypertrophy (LVH).  
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AngII, along with pressure overload, has been shown to play a key role in myocardial fibrosis 
(one of the key features in HCM) by regulation of synthesis of fibrillar collagen in cardiac 
fibroblasts (44).  However, several studies failed to find an association between AGT M235T 
polymorphism and risk of heart failure (45, 46).  Thus, role of these genetic polymorphisms as 
determinants of disease phenotype (i.e. LVH) still remains to be confirmed.  

10. Angiotensin Receptors (AGTR) 

AGTRs are a class of G protein-coupled receptors . There are two types of angiotensin 
receptors: Angiotensin Receptor Type1 (AGTR1) and Angiotensin Receptor Type2 (AGTR2). 
AGTR1 and AGTR2 receptors share a sequence identity of ~30%, but have a similar affinity 
for AngII, which is their main ligand.  
The AGTR1 receptor belongs to the G protein-coupled receptor (GPCR) superfamily and is 
primarily coupled through G proteins to the activation of phospholipase C and calcium 
signaling. The AGTR1 receptors mediate virtually all of the known physiological actions of 
AngII in cardiovascular, renal, neuronal, endocrine, hepatic, and other target cells. These 
actions include the regulation of arterial blood pressure, electrolyte and water balance, 
thirst, hormone secretion, and renal function. The gene coding for AGTR1 is located on 
chromosome 3 and codes for 359 amino acids. A single nucleotide polymorphism A1166C in 
3’ UTR of AGTR1 gene has been found to be associated with increased left ventricular mass 
without hypertension (47). Arthur et al showed that the AGTR1 genotype influenced the 
magnitude of LVH in subjects with HCM and it was significantly higher in patients carrying 
risk ‘C’ allele genotypes than in AA homozygotes, so proposed that A/C1166 
polymorphism could modulate the phenotypic expression of hypertrophy in subjects with 
HCM and may explain why individuals with the same HCM mutation show a significant 
variability in the magnitude of LVH (48). 

11. Adrenergic receptor genes as modifiers in idiopathic cardiomyopathies 

Adrenergic receptors mediate the central and peripheral actions of the neurohormones 
epinephrine and norepinephrine. Stimulation of adrenergic receptors by catecholamines 
released from sympathetic branch of autonomic nervous system results in a variety of effects 
such as increased heart rate, regulation of vascular tone and bronchodilation. In the central 
nervous system, adrenergic receptors are involved in many functions including memory, 
learning, alertness and the response to stress. 
┚-Adrenoceptors (┚-AR) are expressed in many cell types throughout the body and play a 
pivotal role in regulation of cardiac, pulmonary, vascular, endocrine and central nervous 
system. Although originally adrenergic receptors were divided into two types: ┙ and ┚, but 
later on depending on the pharmacological differences these were further divided into 
many subtypes.  
Several different subtypes of ┚-ARs have been reported in the myocardium and many 
functionally relevant polymorphisms in the genes encoding for these receptor subtypes have 
been identified (49). The ┚1-AR is the dominant subtype and represents 70-80% of ┚-ARs in 
the non failing heart (50); ┚2-AR represents 20-40% (51). In vascular smooth muscle the 
majority of ┚-ARs are ┚2AR.  Desensitization and downregulation of adrenergic receptors 
are principal mechanism observed in heart failure. Desensitization is the mechanism by 
which cells decrease effector responses, despite the presence of ligands; this is usually due to 
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defect in G-protein coupling. In heart failure, both ┚1-AR and ┚2-AR are significantly 
desensitized due to uncoupling of receptor from its respective signaling pathways (52, 53).  
Several SNPs in both ┚1-AR (ADRB1) and ┚2-AR (ADRB2) genes  have been examined for 
association with HF. Two (ADRB1) SNPs Ser49Gly and Arg389Gly have been commonly 
studied for association with HF (54). Cinzia et al. showed that the β1-AR Gly49 variant and 
the β2-AR Gly16Gly genotypes were significantly and independently associated with the 
DCM phenotype (55). We have examined association of ADRB2 Gln27Glu polymorphism in 
modulating the phenotypic variability in patients diagnosed with idiopathic 
cardiomyopathies in Asian Indian patients and observed that  HCM patients with mutant 
Glu27 allele had lower mean septal thickness as compared to carriers of wild type allele but 
the results lacked statistical significance (p>0.05). DCM patients with 27Glu allele also 
showed decreased LVEF indicating a possible role of this polymorphism in pathogenesis of 
DCM. Another polymorphism (ADRB2 Q27E), however, was not found to be associated or 
influence phenotypic variability of the idiopathic cardiomyopathies in the same cohort 
(unpublished data). In vitro studies have indicated that these SNPs result in variation in the 
receptor coupling to stimulatory G (Gs)-protein or agonist-promoted receptor 
downregulation (56-60). Unlike the ┚1-AR, the ┚2-AR does not undergo down regulation in 
failing myocardium, but may account for about 40% of surface receptors (61). It has been 
proposed that changes in the expression or properties of the ┚-adrenergic receptors due to 
single nucleotide polymorphism (SNPs) might influence cardiovascular function or may 
contribute to the pathophysiology of several disorders like hypertension, congestive heart 
failure, asthma, obesity or type 2 diabetes mellitus. 

12. Other modifier genes in cardiomyopathies 

Recently several other genes such as ACE2, Calmodulin III and TnnI3K have been also 
studied for their role  as modifier genes in cardiomyopathies. 

13. Angiotensin Converting Enzyme 2 (ACE2) 

Angiotensin-converting enzyme 2 (ACE2) is a homolog of ACE, and  hydrolyzes Ang I to 
produce Ag-(1-9), which is subsequently converted into Ang-(1-7) by a neutral 
endopeptidase and ACE. ACE2 releases Ang-(1-7) more efficiently than its catalysis of Ang-
(1-9). Thus, the major biologically active product of ACE2 is Ang-(1-7), which is considered 
to be a beneficial peptide of the RAS cascade in the cardiovascular system (62, 63). ACE2 is 
present in a wide variety of cells including heart (64-68). ACE2 is a carboxy-monopeptidase 
with a preference for hydrolysis between a proline and carboxy-terminal hydrophobic or 
basic residues, differing from ACE, which cleaves two amino acids from AngI. ACE 
inhibitors have no direct effect on ACE2 activity. As a result, ACE2 is a central enzyme in 
balancing vasoconstrictor and proliferative actions of AngII with vasodilatory and 
antiproliferative effects of Ang-(1-7) (66, 69). 
Genetic variants in the ACE2 have been recently shown to be associated with left ventricular 
mass, and LVH in hemizygous men (70). Two mutant alleles of ACE2 SNPs (rs2106809 and 
rs6632677) have been also found to be associated with increased risk of HCM. An ACE2 
haplotype comprising of mutant alleles of these two SNPs was found to be associated with 
1.59 fold increased risk of HCM in male patients (71). These observations suggest that ACE2 
genotypes may be important determinants of quantum of LVH in patients with HCM.  
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14. Calmodulin gene 

Proteins involved in hypertrophic pathways or mediators of Ca2+ signaling in 
cardiomyocytes are promising candidates as modifier genes (72, 73). Calmodulin (CaM) is a 
ubiquitous, highly conserved Ca2+ sensor involved in the regulation of a wide variety of 
cellular events. Many of the actions of Ca2+ are mediated through its interaction with 
calmodulin (CaM), which serves as an intracellular sensor for Ca2+ ions and plays a major 
role in Ca2+ homeostasis. Thus, any genetic variant that directly affect CaM gene expression 
and/or function would be expected to impact on the intracellular Ca2+ concentration. In 
humans, CaM is encoded by a multigene family consisting of three members, CALM1, 
CALM2, and CALM3, which are located on chromosomes 14q24–q31, 2p21.1–p21.3, and 
19q13.2–q13.3.22.  A -34 T>A polymorphism in the 5’-flanking region of human CALM3 
gene has been shown to be differently distributed between familial HCM (FHC) patients 
and controls and between affected and healthy carriers of an FHC mutation indicating that -
34 T>A CALM3 polymorphism is a potential modifier gene for FHC in patients carrying a 
mutation in either the MYH7 or MYBPC3 gene (74).  

15. Cardiac Troponin I-interacting kinase 

Cardiac troponin I-interacting kinase (Tnni3k) is a novel cardiac specific protein kinase that 
interacts with cardiac Troponin I (cTnI) (75). A yeast two hybrid interaction screen with a C-
terminal fragment of Tnni3k identified several additional sarcomeric proteins as putative 
binding partners such as cardiac ┙-actin and myosin binding protein C (76). Wheeler et al 
showed that a 3784(C>T) polymorphism in intron 19 in Tnni3k coding gene activates a 
cryptic splice site, generating an aberrant transcript that undergoes NMD (Nonsense 
Mediated Decay), leading to drastically reduced mRNA levels and an apparent absence of 
Tnni3k protein. Their study showed that Tnni3k might modulate sarcomere function 
through interactions with key components of the sarcomeric complex (77). However, the 
role of TNNI3K polymorphisms in modulating phenotype of cardiomyopathy patients is not 
well studied and needs to be examined in different ethnic populations.  

16. Modifier genes as potential therapeutic interventions in cardiomyopathies 

Cardiomyopathies are emerging as a frequent cause of hospitalization and mortality among 
men and women world wide. Traditional risk factors and mutations in causal genes alone 
cannot fully account for the inter-individual variation in the prevalence and penetrance of 
the disease in general population. Identification of modifier loci provides insight into 
disease mechanisms and may provide additional screening and treatment targets.  
Recent studies suggest that pharmacologic blockade of modifier genes could confer 
beneficial effects in cardiomyopathies, such as relief in symptoms (syncope, dyspnea, LVEF 
etc.). ACE inhibitors, Angiotensin Receptor Blockers (ARBs) and beta blockers are now part 
of routine therapy for hypertension, heart failure and myocardial infarction (MI). They 
reduce the risk of all cardiovascular events and all-cause mortality by reducing blood 
pressure makes it easier for the heart to pump blood and can improve heart failure. 
Apart from the pharmacological modulations of modifier genes, many trials on gene 
therapy and animal models of the disease are on going which will provide better 
understanding of the pathophysiology of cardiomyopathies and will also help in better 
patient management. For example, pharmacologic interventions in transgenic animal 
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models of HCM aimed at the potential modifier genes have highlighted the role of modifier 
genes in the pathogenesis of morphologic and histological phenotypes in HCM.  Lim et al  
showed that blockade of AGTR1 in the cardiac troponin T-Q92 transgenic mouse model 
reduced interstitial collagen volume by 49% and expression of collagen (I) mRNA and 
transforming growth factor, a known mediator of profibrotic effects of angiotensin II, by 
approximately 50% (78). Because interstitial fibrosis is considered a major risk factor for SCD 
and ventricular arrhythmias in human patients with HCM (69, 79), it illustrates that 
interventions aimed at the modifier genes could reduce the severity of the phenotype 
(myocardial fibrosis, LVH, risk of SCD) and mortality in idiopathic cardiomyopathies.  
To conclude, along with identification of mutations in causal genes, delineation of genetic 
variations in modifier genes is needed to understand the pathogenesis of the 
cardiomyopathies and for symptomatic treatment of the patients. This approach will be 
helpful for personalized medicine as etiology and severity of idiopathic cardiomyopathies is 
highly variable in patients. 
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