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1. Introduction 

In hemodialysis, the patient’s blood is flown through an extracorporeal circuit containing a 

hemodialyzer. This process stimulates coagulation for several reasons, most notably the 

blood’s contact with the artificial surfaces of the tubing and dialyzer membrane and with air in 

the venous bubble trap, turbulent and stagnant blood flow, shear stress and 

hemoconcentration during the treatment [1]. Technological advances, e.g., the development of 

air-free blood circuits and more biocompatible materials for both tubing and dialyzer 

membranes, may eventually help reduce thrombogenicity of the extracorporeal circuit but are 

unlikely to eliminate this problem anytime soon. As a result, anticoagulation is (and will be, 

for the years to come) generally required for hemodialysis in the vast majority of patients. 

In most cases in the United States, unfractionated heparin is the agent of choice to provide 

dialysis anticoagulation. While this is usually well-tolerated and relatively safe, there are 

significant drawbacks. The most obvious of these is that the anticoagulation is systemic in 

nature, which translates into an increased bleeding risk. This is certainly undesirable in end-

stage renal disease patients, who are already afflicted with uremic thrombocytopathy, and it 

is particularly dangerous for patients with additionally increased bleeding risk, e.g., patients 

after surgery or trauma, and patients with active (e.g., gastro-intestinal) bleeding. Another 

possible complication related to heparin use, albeit rare in dialysis patients, is heparin-

induced thrombocytopenia (HIT) type II [2], a potentially life-threatening condition 

associated with a mortality rate of 8 to 20 percent. Other possible side-effects of heparin use 

include osteoporosis, hair loss, and hyperlipidemia. Starting in late 2007, a series of severe 

anaphylactoid reactions had caused serious injuries and deaths. These reactions were later 

linked to heparin contaminated with oversulfated chondroitin sulfate [3, 4]. 

Several alternatives to heparin anticoagulation are potentially available, each of them 
accompanied by specific disadvantages. Intermittent saline flushes, i.e., flushing of the 
extracorporeal circuit with 25 to 50 mL of 0.9% sodium chloride solution every 15 to 30 
minutes, is often used during acute dialysis in patients with increased bleeding risk or in 
patients with HIT type II. Since the procedure, surprisingly, is not automated, it is very 
laborious. Furthermore, its capacity to prevent clotting is rather limited, with partial clotting 
occurring in approximately 20 percent, and complete clotting of the extracorporeal circuit in 
about 7 percent of treatments [1]. Clotting of the extracorporeal system, of course, is 
associated with blood loss to the patient, and even with partial clotting, solute clearances 
will be impaired. Other agents used for systemic anticoagulation in hemodialysis are 
fondaparinux, danaparoid, and direct thrombin inhibitors. These have other downsides, 
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such as long half-life, lack of an antidote, or high cost, and all of them increase the bleeding 
risk as they are administered systemically. 
The primary purpose of anticoagulation during hemodialysis is to prevent clotting of the 
blood while it is traveling through the blood tubing and dialyzer. Against this background, 
the cornerstones of optimal anticoagulation for hemodialysis are complete suppression of 
the activation of the clotting cascade, strict limitation to the extracorporeal circuit, absence of 
serious side-effects, and low cost. 
Limitation of anticoagulation to the extracorporeal circuit, also known as regional 

anticoagulation, is important because it eliminates the increased bleeding risk associated 

with systemic anticoagulation. Originally, this was accomplished by infusing heparin into 

the arterial line of the blood circuit and antagonizing its anticoagulant effect by infusing its 

antidote protamine into the venous line. Since protamine’s half-life is shorter than heparin’s, 

the anticoagulant effect may return after the dialysis procedure, increasing the bleeding risk. 

Also, this mode of anticoagulation is not suitable for HIT type II patients because of the 

heparin administration. Regional anticoagulation by infusing the arachidonic acid 

derivative prostacyclin into the arterial line is based on this molecule’s inhibitory effect on 

thrombocyte aggregation and its short half-life of only a few minutes. The downsides are its 

vasodilatatory properties, which can cause significant hypotension during the treatment, 

and its prohibitive cost. Regional citrate anticoagulation is an alternative to these two 

methods that also confines anticoagulation to the extracorporeal circuit but does not come 

with the disadvantages mentioned above. In fact, it conveys a set of additional advantages 

that go above and beyond merely providing regional anticoagulation. 

2. The principles and history of citrate anticoagulation in hemodialysis 

The anticoagulant properties of citrate have been known since the late 1800s already and are 

based on its capacity to chelate calcium ions. Ionized calcium (iCa) is an important co-factor 

at several steps in the coagulation cascade and, in that role, was formerly called coagulation 

factor IV. Addition of citrate to whole blood leads to formation of stable calcium-citrate 

complexes, thereby lowering the concentration of ionized calcium. At iCa levels below 0.5 

mmol/L, clotting becomes impaired; at levels below approximately 0.3 mmol/L, 

coagulation is virtually blocked. This principle has been applied for storage of red cells in 

transfusion medicine since the early 20th century and later on for blood cell apheresis and 

lipid apheresis. Citrate physiologically occurs in the human body. It is an intermediate 

metabolite in the mitochondrial Krebs cycle, and all human cells that possess mitochondria 

can generate and metabolize citrate, particularly those tissues that are rich in mitochondria, 

such as the liver. 

The first mention of citrate for anticoagulation in hemodialysis dates back to 1961 [5]. 
Traditionally, regional citrate anticoagulation in hemodialysis involves infusion of 
trisodium citrate into the arterial line of the extracorporeal circuit in sufficient quantities to 
lower iCa levels to around 0.25 to 0.35 mmol/L in order to substantially inhibit coagulation. 
In the venous limb of the dialysis tubing, ideally close to the point of blood reinfusion into 
the patient, calcium is substituted in the form of a calcium chloride or calcium carbonate 
infusion. This calcium substitution primarily serves to raise the iCa concentration in the 
blood to safe levels before the blood re-enters the patient’s circulation, but there is another 
aspect to it as we shall see later. Classically, a calcium-free dialysate is used in this setting so 
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as not to compromise anticoagulation due to calcium influx from the dialysate [6]. This 
setup of regional citrate anticoagulation is depicted in Figure 1. 
 

 

Fig. 1. Conventional setup of regional citrate anticoagulation in hemodialysis. 

A question of central importance is how plasma citrate concentrations relate to iCa 
concentrations. We analyzed the data from 21 regional citrate anticoagulation treatments 
performed at Renal Research Institute facilities in New York, USA, in 10 patients, during 
which 4% trisodium citrate (136 mmol/L) was infused into the arterial line and iCa 
measured before the dialyzer. Blood flow rates were 350 mL/min in 4 treatments, 400 
mL/min in 13 treatments, and 450 mL/min in 4 treatments. Hematocrit and iCa were 
measured 13 minutes into the treatment using an Abbott i-Stat point-of-care analyzer. 
Hematocrits ranged from 28% to 39% (average, 33.6%). Citrate infusion rates ranged from 
140 to 480 mL/h, and iCa ranged from 0.27 to 0.68 mmol/L (average, 0.38 mmol/L). Plasma 
citrate concentrations were calculated based on citrate infusion rates and calculated plasma 
flow rates. Figure 2 illustrates the relationship between pre-dialyzer blood iCa activity and 
plasma citrate concentration. As can be seen, a plasma citrate concentration of >3.5 mmol/L 
is typically required to bring iCa levels to below 0.3 mmol/L. The exact citrate concentration 
necessary depends mainly on the individual patient’s plasma calcium and protein 
(primarily albumin) concentrations. Total calcium in the serum comprises a protein-bound 
and a free (ionized) fraction, and the equilibrium concentrations of each can be estimated 
based on the respective dissociation constant [7-10]. Likewise, free citrate reacts with free 
calcium to form calcium-citrate complexes, again with a known dissociation constant [11]. 
Strictly, the multi-ionic milieu of the plasma should be considered, but reducing the 
relationships to calcium, protein, and citrate is a fair approximation. In clinical practice, 
these relationships are, however, not calculated. Instead, the citrate infusion rate is generally 
based on empirical knowledge and in most cases only tailored to the patient’s blood flow 
rate. As can be expected, this may occasionally lead to citrate concentrations that are either 
too low to provide sufficient anticoagulation, or unnecessarily high. To assess the individual 
situation, pre-dialyzer (some groups use post-dialyzer) iCa levels can be measured in the 
plasma to ascertain that they are within the desired target range of approximately 0.25 to 
0.35 mmol/L. If they are not, adjustments to the citrate infusion rate can be implemented 
and the iCa levels reassessed. Likewise, the post-dialyzer iCa concentrations are not known 
in clinical practice, and the rate of calcium substitution is based on empirical knowledge. 
Routinely, systemic iCa levels are measured in the patient at multiple time points during the 
treatment, and the calcium substitution rate is adjusted to counter drops or rises in systemic 
iCa concentration. Each adjustment usually necessitates a reassessment of iCa levels after 15 
to 30 minutes to monitor its effect. 
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Fig. 2. Pre-dialyzer ionized calcium (iCa) concentration plotted against plasma citrate 
concentration. 

During regional citrate anticoagulation, citrate enters the body in the form of both free 
citrate and calcium-citrate complexes. When this citrate is metabolized, each molecule yields 
three molecules of bicarbonate, which will have an impact on the acid-base status. Also, 
calcium is released from calcium-citrate complexes as they are metabolized, which impacts 
serum calcium concentration. The use of trisodium citrate or Acid Citrate Dextrose (ACD) 
solution further entails an additional sodium load to the patient that should be taken into 
account. In clinical practice, the dialysis prescriptions for regional citrate anticoagulation 
typically incorporate reduced sodium (by about 2 mmol/L) and bicarbonate (by about 5 
mmol/L) concentrations. Magnesium concentration in the dialysate may be increased since 
citrate also complexes magnesium, leading to increased magnesium losses across the 
dialyzer. 
Over the years, different algorithms for the administration of regional citrate 

anticoagulation have been suggested and studied, both for intermittent as well as 

continuous hemodialysis. These algorithms usually define blood and dialysate flow rates, 

the starting rates for citrate infusion and calcium substitution, rules on how these rates 

should be adjusted in case of iCa deviations from the specified circuit or systemic target 

ranges, time points for monitoring iCa, and downward adjustments for sodium and 

bicarbonate in the dialysate. Since citrate and calcium kinetics during dialysis depend on 

many factors, including the type of dialyzer used and the blood and dialysate flow rates, 

such algorithms generally are only applicable to the particular dialysis setting for which 

they have been validated. The purpose of all these algorithms is always to make the 

administration of regional citrate anticoagulation as safe and simple as possible, i.e. to 

minimize the risk for calcium or acid-base derangements, circuit clotting or other 

complications while requiring as little monitoring or intervention by the staff as possible. 

3. The benefits of regional citrate anticoagulation 

Regional citrate anticoagulation does not increase the patient’s bleeding risk and is, 
therefore, not only an ideal mode of anticoagulation in any patient with high bleeding risk 
or active bleeding but also for the average hemodialysis patient. Furthermore, citrate 
anticoagulation avoids all the other potential side effects of heparin use noted above, which 
also makes it a choice mode of anticoagulation in patients with HIT type II. Aside from these 
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obvious advantages, however, there are several additional benefits to using regional citrate 
anticoagulation. One of these appears to be improved biocompatibility of the dialysis 
procedure: comparing heparin anticoagulation with citrate anticoagulation, Böhler et al. 
found that citrate anticoagulation reduced complement activation, neutropenia and 
lactoferrin release with the use of cuprophane dialyzers, and significantly inhibited 
neutrophil degranulation with the use of polymethyl methacrylate membranes [12]. 
Likewise, Gritters and colleagues compared anticoagulation using unfractionated heparin, 
low molecular weight heparin and citrate in a randomized crossover trial and found that 
citrate anticoagulation suppressed the dialysis-associated degranulation of 
polymorphonuclear cells and platelets. Furthermore, pro-atherogenic oxidized low-density 
lipoprotein levels were reduced by a median of 26% after only one week on citrate 
anticoagulation [13]. In view of the heightened inflammatory state of chronic hemodialysis 
patients, the reduction of oxidative stress, complement and cell activation associated with 
citrate dialysis may be a relevant benefit with regard to reducing the high cardiovascular 
morbidity in these patients. Hofbauer et al. compared anticoagulation with unfractionated 
heparin, low molecular weight heparin and citrate during dialysis with a single-use 
polysulfone dialyzer and used scanning electron microscopy to quantify the degree of 
membrane-associated clotting [14]. The highest degree of cell adhesion and thrombus 
formation was observed with unfractionated heparin, and it was only slightly reduced with 
the use of low molecular weight heparin. With regional citrate anticoagulation, on the other 
hand, thrombus formation was found to be negligible, indicating a far superior 
anticoagulation using citrate compared to both unfractionated and fractionated heparin. 
Gabutti et al. employed a randomized controlled cross-over design to compare standard 
heparin dialysis with regional citrate anticoagulation, dosed to achieve a similar degree of 
coagulation activation, and study the effects on complement activation and interleukin-1 
beta release. In this setting, complement activation was slightly but significantly higher in 
the citrate dialysis group, but at the same time, interleukin-1 beta release was markedly 
reduced. Citrate can, and often is, dosed higher in regional citrate anticoagulation than was 
done in this study, and it stands to reason that with such higher citrate concentrations, 
complement activation would have been lower than with standard heparin dialysis, 
associated perhaps with a further decrease in interleukin-1 beta secretion. In line with 
Hofbauer’s results mentioned above, regional citrate anticoagulation appears to allow for 
markedly prolonged filter patency times in continuous dialysis [15-18]. Lastly, a recent 
study by Oudemans-van Straaten and colleagues found higher patient and kidney survival 
in critically ill patients on citrate versus low-molecular weight heparin [19]. On top of these 
benefits, citrate is a relatively inexpensive compound compared to heparin. 

4. The downsides of regional citrate anticoagulation 

The single biggest concern with regional citrate anticoagulation is the development of 
potentially life-threatening systemic calcium derangements. Acute changes in systemic iCa 
can develop quickly when calcium elimination across the dialyzer (in the form of free 
calcium and calcium-citrate complexes), calcium release from the metabolism of calcium-
citrate complexes, and calcium substitution (from the calcium infusion and/or the dialysate, 
if a calcium-containing dialysate is used) are mismatched. From this concern springs the 
need to monitor, at least initially, systemic iCa levels fairly closely during regional citrate 
anticoagulation. This, along with the more complex setup, presents a significant strain on 
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staff resources and, consequently, can make citrate dialysis more costly than standard 
heparin dialysis. The prolonged filter patency times seen with citrate anticoagulation, 
however, may also introduce cost savings compared to heparin dialysis in continuous 
dialysis therapies [20]. The administration of buffer base in the form of citrate can further 
lead to metabolic alkalosis [20-22]. Hypernatremia can occur secondary to the additional 
sodium load administered with the citrate infusion (e.g., in the form of trisodium citrate, 
which carries 3 moles of sodium for each mole of citrate) [5, 21]. With high citrate infusion 
rates and/or in patients with impaired liver function (liver failure, cirrhosis), systemic 
citrate accumulation may occur. Measurements of plasma citrate concentrations are not 
usually readily available in clinical laboratories, but citrate accumulation may be detected 
by looking for its effects on calcium levels: citrate accumulation traps calcium in the form of 
calcium-citrate complexes. The growing plasma pool of calcium-citrate complexes and the 
insufficient release of calcium from this pool via citrate metabolism lead to a drop in 
systemic iCa which is spotted in systemic iCa measurements and countered by an increase 
in the calcium substitution rate in order to restore systemic iCa to physiologic levels. Under 
such conditions, the amounts of free calcium, calcium-protein complexes and the increased 
amount of calcium-citrate complexes add up to an increased total calcium concentration. 
Therefore, citrate accumulation may be detected by an increased total calcium concentration 
or an increased ratio of total to ionized serum calcium concentration [23]. An increased 
anion gap may also point towards citrate accumulation [24]. 

5. The future of citrate anticoagulation in hemodialysis 

The fundamental roadblocks to widespread implementation of regional citrate 
anticoagulation are fear of electrolyte or metabolic disturbances and the relative 
laboriousness of this mode of anticoagulation. These two domains are interconnected. What 
current citrate dialysis algorithms have in common is that they are empiric. There is some 
degree of individualization, but only on a relatively low level. As a consequence, while these 
algorithms may work for the average patient, or even a majority of patients, there will 
always be the concern that the characteristics of a particular patient situation are not 
captured adequately, leading to unexpected and possibly dangerous changes in electrolyte 
or acid-base parameters. And for this very reason, these algorithms will never help 
eliminate the intensive laboratory monitoring that, at least initially, is currently required for 
regional citrate anticoagulation. 
Tailoring the citrate infusion rate to the blood flow rate alone is a crude oversimplification. 
Anticoagulation along the extracorporeal circuit depends on a myriad things, such as the 
hematocrit, the void volume fraction, the plasma water calcium concentration, the 
composition of the other ionic species in the multi-ionic milieu of the plasma, the 
ultrafiltration rate, the type, size and geometry of the dialyzer used and, consequently, its 
solute removal characteristics, the blood and dialysate flow rates, the concentration of the 
citrate infusion (high concentrations entail low infusion rates, which may cause mixing 
issues or discontinuous, pulsatile flow), the dialysate composition (e.g., in terms or calcium, 
magnesium and citrate concentration), the plasma protein concentration, the rates of citrate 
generation and metabolism, the systemic citrate levels, the degree of access recirculation, the 
patient’s capacity to buffer changes in extracellular calcium concentration, and so on, to 
name but a few. Some of these have greater impact than others; some are easier to model 
than others. But if the kinetics of calcium and citrate are to be predicted (not on average, but 
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for a particular patient) with any degree of reliability, then these factors must be taken into 
account. Needless to say, the interactions between all these factors cannot possibly be 
assessed (let alone integrated over an entire treatment and beyond) based on intuition or 
clinical experience. Computer-aided calcium and citrate kinetic modeling is the only way to 
simulate in detail the processes during regional citrate anticoagulation. We have recently 
published a comprehensive, yet versatile, mathematical model for citrate dialysis [25]. A 
refinement of this model (comprised of our original model combined with a statistical 
correction component), recently presented as a talk at the XLVII ERA-EDTA conference in 
Munich, Germany, showed excellent prediction quality [26]. When applied to 120 patients 
on pure dialysate-side citrate dialysis (dialysate containing 2.4 mEq/L citrate and 2.25 
mEq/L calcium), the model overestimated end-dialysis ionized calcium levels by only 0.026 
mmol/L on average. While current clinical citrate dialysis algorithms are only applicable to 
a rather narrow setting for which they have been developed, computer-aided calcium and 
citrate kinetic modeling affords much greater flexibility and could possibly even be adapted 
on-the-fly to different conditions. 
As was mentioned above, the calcium substitution in regional citrate anticoagulation is 
currently dosed empirically and adjusted so as to keep systemic iCa within the physiologic 
range. However, it must be born in mind that this approach pays no heed to the question of 
calcium mass balance. This is, of course, not done deliberately but simply from necessity, 
because clinicians have no way of assessing intradialytic calcium mass balance reliably, let 
alone under such complex conditions as occur in regional citrate anticoagulation. The 
difference between calcium substitution and calcium loss across the dialyzer membrane 
determines the intradialytic calcium mass balance, and from this perspective, the calcium 
substitution should be chosen so as to effect the desired mass balance. The challenges with 
determining what calcium mass balance is required for a given patient is a related but 
separate issue and shall not be discussed here. With higher citrate infusion rates, and 
accompanying citrate accumulation and calcium “trapped” systemically in the form of 
calcium-citrate complexes, calcium mass balances can easily become positive. In practice, 
this point is often dismissed and calcium substitution rates justified with reference to the 
need to maintain serum ionized calcium within the normal range. What becomes clear, 
however, when simulating citrate dialysis is that many roads lead to Rome, and, within 
limits, different calcium mass balances can be achieved without compromising the 
extracorporeal anticoagulation by modifying parameters such as dialysate calcium and 
citrate concentrations and blood and dialysate flow rates. Dialysis dose issues certainly have 
to be considered, and the combination of calcium and citrate kinetic modeling with urea 
kinetic modeling would be a particularly powerful tool. Conversely, the same calcium mass 
balance can be achieved in different ways, potentially allowing for individualization of the 
citrate dialysis prescription according to particular patient characteristics, such as impaired 
liver function or reduced calcium buffering capacity. In view of the ever-increasing 
awareness of the potential importance of calcium mass balance for long-term outcomes in 
hemodialysis patients, calcium and citrate kinetic modeling offers a unique opportunity for 
actively incorporating this parameter into the dialysis prescription. This may turn out to be 
crucial for translating the compelling short-term benefits associated with regional citrate 
anticoagulation into long-term improvements in cardiovascular outcomes and ultimately 
survival. Currently, this mode of anticoagulation is thoroughly ignoring this aspect and is 
lagging behind the trend towards neutral calcium mass balance seen in standard heparin 
hemodialysis. Similar to calcium mass balance considerations, dialysis-related sodium 
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loading is another topic that has been receiving more and more attention in recent years and 
is another domain of solute kinetic modeling that should ultimately be integrated into 
citrate dialysis modeling, particularly given the additional sodium load administered with 
the use of regional citrate anticoagulation. 
The use of dialysate-side citrate anticoagulation (i.e., the use of a citrate- and calcium-
containing dialysate without arterial citrate infusion or venous calcium substitution) has 
sparked interest recently for its alleged heparin-sparing potential and its safety and ease of 
use [27-29]. At unchanged heparin doses, using citrate-containing dialysate (instead of 
bicarbonate dialysate acidified with acetate) appears to improve solute removal [30]. 
Citrate anticoagulation holds great promises for improving the outcomes of hemodialysis 
patients. Ultimately, kinetic modeling will be essential for taking this therapy to the next 
level (i.e., a high degree of individualization and increased safety through accurate 
prediction of electrolyte and acid-base kinetics) and to facilitate its widespread use in 
routine clinical practice. 

6. References 

[1] Suranyi M, Chow JS: Review: anticoagulation for haemodialysis. Nephrology (Carlton) 
2010;15(4):386-392. 

[2] Arepally GM, Ortel TL: Clinical practice. Heparin-induced thrombocytopenia. N Engl J 
Med 2006;355(8):809-817. 

[3] Kishimoto TK, Viswanathan K, Ganguly T, Elankumaran S, Smith S, Pelzer K, Lansing 
JC, Sriranganathan N, Zhao G, Galcheva-Gargova Z, Al-Hakim A, Bailey GS, Fraser 
B, Roy S, Rogers-Cotrone T, Buhse L, Whary M, Fox J, Nasr M, Dal Pan GJ, Shriver 
Z, Langer RS, Venkataraman G, Austen KF, Woodcock J, Sasisekharan R: 
Contaminated heparin associated with adverse clinical events and activation of the 
contact system. N Engl J Med 2008;358(23):2457-2467. 

[4] Blossom DB, Kallen AJ, Patel PR, Elward A, Robinson L, Gao G, Langer R, Perkins KM, 
Jaeger JL, Kurkjian KM, Jones M, Schillie SF, Shehab N, Ketterer D, Venkataraman 
G, Kishimoto TK, Shriver Z, McMahon AW, Austen KF, Kozlowski S, Srinivasan A, 
Turabelidze G, Gould CV, Arduino MJ, Sasisekharan R: Outbreak of adverse 
reactions associated with contaminated heparin. N Engl J Med 2008;359(25):2674-
2684. 

[5] Morita Y, Johnson RW, Dorn RE, Hall DS: Regional anticoagulation during hemodialysis 
using citrate. Am J Med Sci 1961;242:32-43. 

[6] Buturovic-Ponikvar J, Cerne S, Gubensek J, Ponikvar R: Regional citrate anticoagulation 
for hemodialysis: calcium-free vs. calcium containing dialysate - a randomized 
trial. Int J Artif Organs 2008;31(5):418-424. 

[7] Pedersen KO: Binding of calcium to serum albumin. I. Stoichiometry and intrinsic 
association constant at physiological pH, ionic strength, and temperature. Scand J 
Clin Lab Invest 1971;28(4):459-469. 

[8] Pedersen KO: Binding of calcium to serum albumin. II. Effect of pH via competitive 
hydrogen and calcium ion binding to the imidazole groups of albumin. Scand J 
Clin Lab Invest 1972;29(1):75-83. 

[9] Pedersen KO: Binding of calcium to serum albumin. IV. Effect of temperature and 
thermodynamics of calcium-albumin interaction. Scand J Clin Lab Invest 
1972;30(1):89-94. 

www.intechopen.com



 
Citrate Anticoagulation in Hemodialysis 

 

225 

[10] Pedersen KO: Protein-bound calcium in human serum. Quantitative examination of 
binding and its variables by a molecular binding model and clinical chemical 
implications for measurement of ionized calcium. Scand J Clin Lab Invest 
1972;30(3):321-329. 

[11] Toffaletti J, Gitelman HJ, Savory J: Separation and quantitation of serum constituents 
associated with calcium by gel filtration. Clin Chem 1976;22(12):1968-1972. 

[12] Bohler J, Schollmeyer P, Dressel B, Dobos G, Horl WH: Reduction of granulocyte 
activation during hemodialysis with regional citrate anticoagulation: dissociation of 
complement activation and neutropenia from neutrophil degranulation. J Am Soc 
Nephrol 1996;7(2):234-241. 

[13] Gritters M, Grooteman MP, Schoorl M, Bartels PC, Scheffer PG, Teerlink T, Schalkwijk 
CG, Spreeuwenberg M, Nube MJ: Citrate anticoagulation abolishes degranulation 
of polymorphonuclear cells and platelets and reduces oxidative stress during 
haemodialysis. Nephrol Dial Transplant 2006;21(1):153-159. 

[14] Hofbauer R, Moser D, Frass M, Oberbauer R, Kaye AD, Wagner O, Kapiotis S, Druml 
W: Effect of anticoagulation on blood membrane interactions during hemodialysis. 
Kidney Int 1999;56(4):1578-1583. 

[15] Hetzel GR, Schmitz M, Wissing H, Ries W, Schott G, Heering PJ, Isgro F, Kribben A, 
Himmele R, Grabensee B, Rump LC: Regional citrate versus systemic heparin for 
anticoagulation in critically ill patients on continuous venovenous haemofiltration: 
a prospective randomized multicentre trial. Nephrol Dial Transplant 
2011;26(1):232-239. 

[16] Kutsogiannis DJ, Gibney RT, Stollery D, Gao J: Regional citrate versus systemic 
heparin anticoagulation for continuous renal replacement in critically ill patients. 
Kidney Int 2005;67(6):2361-2367. 

[17] Monchi M, Berghmans D, Ledoux D, Canivet JL, Dubois B, Damas P: Citrate vs. 
heparin for anticoagulation in continuous venovenous hemofiltration: a 
prospective randomized study. Intensive Care Med 2004;30(2):260-265. 

[18] Bagshaw SM, Laupland KB, Boiteau PJ, Godinez-Luna T: Is regional citrate superior to 
systemic heparin anticoagulation for continuous renal replacement therapy? A 
prospective observational study in an adult regional critical care system. J Crit Care 
2005;20(2):155-161. 

[19] Oudemans-van Straaten HM, Bosman RJ, Koopmans M, van der Voort PH, Wester JP, 
van der Spoel JI, Dijksman LM, Zandstra DF: Citrate anticoagulation for continuous 
venovenous hemofiltration. Crit Care Med 2009;37(2):545-552. 

[20] Morgera S, Scholle C, Voss G, Haase M, Vargas-Hein O, Krausch D, Melzer C, Rosseau 
S, Zuckermann-Becker H, Neumayer HH: Metabolic complications during regional 
citrate anticoagulation in continuous venovenous hemodialysis: single-center 
experience. Nephron Clin Pract 2004;97(4):c131-136. 

[21] Mehta RL, McDonald BR, Aguilar MM, Ward DM: Regional citrate anticoagulation for 
continuous arteriovenous hemodialysis in critically ill patients. Kidney Int 
1990;38(5):976-981. 

[22] Silverstein FJ, Oster JR, Perez GO, Materson BJ, Lopez RA, Al-Reshaid K: Metabolic 
alkalosis induced by regional citrate hemodialysis. ASAIO Trans 1989;35(1):22-25. 

www.intechopen.com



 
Progress in Hemodialysis – From Emergent Biotechnology to Clinical Practice 

 

226 

[23] Meier-Kriesche HU, Gitomer J, Finkel K, DuBose T: Increased total to ionized calcium 
ratio during continuous venovenous hemodialysis with regional citrate 
anticoagulation. Crit Care Med 2001;29(4):748-752. 

[24] Cassina T, Mauri R, Engeler A, Giannini O: Continuous veno-venous hemofiltration 
with regional citrate anticoagulation: a four-year single-center experience. Int J 
Artif Organs 2008;31(11):937-943. 

[25] Thijssen S, Kruse A, Raimann J, Bhalani V, Levin NW, Kotanko P: A mathematical 
model of regional citrate anticoagulation in hemodialysis. Blood Purif 
2010;29(2):197-203. 

[26] Thijssen S, Kossmann RJ, Sands JJ, Ofsthun NJ, Vienneau L, Levin NW, Kotanko P: 
Validation of a novel mathematical model of citrate dialysis in a large cohort of 
hemodialysis patients. Nephrol Dial Transplant Plus 2010;3 (Supplement 3):iii381-
iii382. 

[27] Hanevold C, Lu S, Yonekawa K: Utility of citrate dialysate in management of acute 
kidney injury in children. Hemodial Int 2010;14 Suppl 1:S2-6. 

[28] Cheng YL, Yu AW, Tsang KY, Shah DH, Kjellstrand CM, Wong SM, Lau WY, Hau LM, 
Ing TS: Anticoagulation during haemodialysis using a citrate-enriched dialysate: a 
feasibility study. Nephrol Dial Transplant 2011;26(2):641-646. 

[29] Sands JJ, Kotanko P, Segal JH, Ho CH, Young A, Carter M, Sergeyeva O, Korth L, 
Maunsell E, Zhu Y, Krishnan M, Diaz-Buxo JA: Citrasate®: Effects on Hemodialysis 
Adequacy and Heparin N Requirements. J Am Soc Nephrol 2010;21 (Abstract 
Supplement):434A. 

[30] Kossmann RJ, Gonzales A, Callan R, Ahmad S: Increased efficiency of hemodialysis 
with citrate dialysate: a prospective controlled study. Clin J Am Soc Nephrol 
2009;4(9):1459-1464. 

 

www.intechopen.com



Progress in Hemodialysis - From Emergent Biotechnology to

Clinical Practice

Edited by Prof. Angelo Carpi

ISBN 978-953-307-377-4

Hard cover, 444 pages

Publisher InTech

Published online 07, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Hemodialysis (HD) represents the first successful long-term substitutive therapy with an artificial organ for

severe failure of a vital organ. Because HD was started many decades ago, a book on HD may not appear to

be up-to-date. Indeed, HD covers many basic and clinical aspects and this book reflects the rapid expansion of

new and controversial aspects either in the biotechnological or in the clinical field. This book revises new

technologies and therapeutic options to improve dialysis treatment of uremic patients. This book consists of

three parts: modeling, methods and technique, prognosis and complications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Stephan Thijssen (2011). Citrate Anticoagulation in Hemodialysis, Progress in Hemodialysis - From Emergent

Biotechnology to Clinical Practice, Prof. Angelo Carpi (Ed.), ISBN: 978-953-307-377-4, InTech, Available from:

http://www.intechopen.com/books/progress-in-hemodialysis-from-emergent-biotechnology-to-clinical-

practice/citrate-anticoagulation-in-hemodialysis



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


