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1. Introduction  

EVs are divided into three categories: the pure EV, the hybrid EV, and the fuel cell  

EV. Although these three types of electric vehicle have different system configuration, one 

(or more) motor drive system is always needed to convert electrical power into 

mechanical ones. Among the drive systems used for EV, induction motor system and 

permanent magnet motor systems are mostly used for their high power density, high 

efficiency.  

The motor drive system for electric vehicle (EV) is composed of a battery, three phase 

inverter, a permanent magnet motor, and a sensor system. The inverter is a key unit 

important among these electrical components which converts the direct current of the 

battery into the alternating current to rotate the motor. Therefore, for predicting the 

dynamic power loss and junction temperature, the electro-thermal coupling simulation 

techniques to estimate the power loss and to calculate the junction temperature become 

important. 

This paper describes a compact thermal model suitable for the electro-thermal coupling 

simulation of EV inverter module for two current control methods. We can predict the 

dynamic temperature rise of Si devices by simulating the inverter operation in accordance 

with the real EV running. 

2. Dynamic model of the EV 

As shown in Figure 1 and table 1, there are six forces acting on the electric vehicle: the rolling 

resistance force, the aerodynamic force, the aerodynamic lift force, the gravity force, the 

normal force, and the motor force.  

2.1 Rolling resistance force 

Rolling resistance is due the tires deforming when contacting the surface of a road and 

varies depending on the surface being driven on. It can be model using the following 

equation: 

 
1 vF f M g=  (1) 
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Fig. 1. Diagram of forces applied to the EV 

 

Fr1x Rolling resistance force

Fr2x Rolling resistance force

Fav Normal force

Far Normal force

Fa Aerodynamic force

Fprop Thrust force

Fp Gravity force

Fm Motor force

θ Slope angle with the horizontal 

Table 1. Applied forces to EV 

2.2 Aerodynamic force 
Aerodynamic drag is caused by the momentum loss of air particles as they flow over the 
hood of the vehicle. The aerodynamic drag of a vehicle can be modeled using the following 
equation: 

 2

2

1

2
f xF S C Vρ=  (2) 

2.3 Gravity force 
The gravity force can be calculated as follows: 

 
3

sinvF M g θ=  (3) 

2.4 Motor force 
Using Newton's Second Law, we can deduce the motor force; it can be obtained by the 
following equation: 

 
v ext m p a r

dV
M F F F F F

dt

→ → → → →

= = + + +  (4) 
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By projection on the (O, x) axis, we obtain:  

 m v a p r

dV
F M F F F

dt
= + + +  (5) 

The power that the EV must develop at stabilized speed is expressed by the following 
equation: 

 ( )vehicle m r a p v

dV
P F V F F F M V

dt
= = + + +  (6) 

We deduce the expression of the total torque by multiplying equation (5) with the wheel 
radius R: 

 vehicle r a p v

dV
C C C C M R

dt
= + + +  (7) 

Neglecting the mechanical losses in the gearbox, the t electromagnetic torque Cem developed 
by the motor is obtained by dividing the wheels torque Cvehicle by the ratio reduction rd. 

 
1

em r a p v
d

dV
C C C C M R

r dt

 
= + + + 

 
 (8) 

Figure 2 presents the dynamic model of the EV load, implemented under Matlab/simulink. 
 

 

Fig. 2. SIMULINK dynamic model of electric vehicle  

3. Electric motor control 

Control of permanent magnet synchronous motor is performed using field oriented control. 

The stator windings of the motor are fed by an inverter that generates a variable frequency 

variable voltage. The frequency and phase of the output wave are controlled using a 

position sensor as shown in figure 3. 

In our studie, we have used two types of current control, Hysteresis and PWM. 
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Fig. 3. Drive system schematic  

3.1 PWM current controller 

PWM current controllers are widely used. The switching frequency is usually kept constant. 
They are based in the principle of comparing a triangular carrier wave of desire switching 
frequency and is compared with error of the controlled signal [Bose, 1996]. 
 

 

Fig. 4. PWM current controller  

3.2 Hysteresis current controller 

Hysteresis current controller can also be implemented to control the inverter currents. The 
controller will generate the reference currents with the inverter within a range which is fixed 
by the width of the band gap [Bose, 1996; Pillay et al., 1989]. 
 

 

Fig. 5. Hysteresis current controller  
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4. Thermal model of IGBT module 

The studied module is the Semikron module SKM 75GB 123D (75A/1200V) which 

contains two IGBTs and with two antiparallel diodes. The structure of the module 

contains primarily eight layers of different materials, each one of it is characterized by its 

thickness Li, its thermal conductivity Ki, density ρi and its heat capacity Cpi. Table 2 

show the materials properties of the various layers of module as shown in figure 6. These 

values are given by the manufacturer and/or of the literatures [Dorkel et al., 1996; Uta et 

al., 2000; Thoams et al., 2000]. 

 

 

Fig. 6. Example of the module structure 

 

Material L (mm) K (W/mK) ρCp (J/Kcm3) 

Silicium 0.4 140 1.7 

Solder 1 0.053 35 1.3 

Copper 0.35 360 3.5 

Isolation  0.636 100 2.3 

Copper 0.35 360 3.5 

Solder 2 0.103 35 1.3 

Base plate 3 280 3.6 

Grease 0.1 1 2.1 

Table 2. Thermal parameters of a power module 

In the power module, the heating flow diffuses vertically and also laterally from the heating 

source. So, a thermal interaction happens inside the module between the adjacent devices 

when they operate together.  

This thermal interaction depends from [Kojima et al., 2006; Ayadi et al., 2010; Fakhfakh et 

al., 2010]: 

- The dissipated power value of the various components. 

- The disposition of the chip components. 

- The boundary condition at the heat spreader. 

Figure 7 shows the thermal influence between the different components of the module. We 

notice that each component has a thermal interaction with the others and we supposed that 

each module have zero interaction with other modules. 

Solder 2 

Solder 1 

Copper 

Isolation 

Base plate 

Copper 

Grease 

Silicium 
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Fig. 7. Different thermal influences between the module components 

Literature proposes some thermal circuit networks for electrothermal simulation for the 
semiconductor device. For example the finite difference method (FDM) and the finite 
element method (FEM). In our study we have used the FEM technique to model our inverter 
module. Figure 8 shows the thermal circuit example obtained by the FEM of IGBT1 without 
thermal interaction. 
 

 

Fig. 8. Thermal circuit obtained by the FEM 

Where: 
- P is the input power dissipation device. 
- Tj is the junction temperature. 
- R1 is the thermal resistance. 
- Rc is the convection resistance. 
- C1 and C2 are thermal capacitance. 
- Ta is the ambient temperature. 
In order to introduce the thermal interaction between the different components of the 
module, we inserted three other current sources P1, P2 and P3. These sources are deduced 
from the structure of IGBT module [Drofenik et al., 2005; Hamada et al., 2006; Usui et  
al., 2006].  
The source P1 is the power loss of DIODE1; it is introduced at the interface between the 
silicon and the copper materials because the IGBT1 and the DIODE1 ships are bounded on 
the same copper area. The source P2 and P3 are power loss of IGBT2 and DIODE2, they 

IGBT 1

IGBT 2

DIODE 1

DIODE 2

www.intechopen.com



 
Thermal Behavior of IGBT Module for EV (Electric Vehicle) 449 

are introduced between solder 2 and base plate because all module components have the 
base plate as a common material. So the thermal circuit network of IGBT1 becomes as the 
figure 9. 
 

 

Fig. 9. Thermal model of IGBT module 

5. Simulation and results  

The PM motor drive simulation was built in several steps like abc phase transformation  
to dqo variables, calculation torque and speed, and control circuit [Ong, 1998; Roisse et  
al., 1998]. 
Parks transformation used for converting Iabc to Idq is shown in figure 10 and the reverse 
transformation for converting Idq to Iabc is shown in figure 11. 
 

 

Fig. 10. Iabc to Idq bloc 

The inverter is implemented in Simulink as shown in figure 12. The inverter consists of the 

"universal bridge" with the parameters of the IGBT module studied. All the voltages and the 

currents in the motor and the inverter can be deducted. The following figure shows the 

model of the inverter used. 

For proper control of the inverter using the reference currents, current controllers are 

implemented generate the gate pulses for the IGBT’s. Current controllers used are shown in 

figure 13 and 14. 
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Fig. 11. Idq to Iabc bloc 

 
 
 

 

Fig. 12. Inverter model 

 
 
 

 

Fig. 13. PWM current controller 
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Fig. 14. Hysteresis controller 

The complete system used for simulation and implemented in MATLAB / Simulink, is 
shown in Figure 15. This system was tested with two current controls, hysteresis and PWM 
control. The motor used is an axial flux Permanent Magnet Synchronous Motor (PMSM). 
For the simulation, we controlled the speed of EV at 30km / h. 
 

 

Fig. 15. PMSM in a traction chain 
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Figure 16 shows the EV speed regulated at 30km / h for the two types of control. We note 
that with the hysteresis control, we reach faster the steady state.  
 

 

Fig. 16. EV speed; (1): with PWM controller; (2): with hysteresis controller 

The stator phase currents corresponding to this regulation are represented by figure 17 and 
18 Figure 19 and 20 show the IGBT1 and DIODE1 power losses for hysteresis and PWM 
current control respectively.  

 

 

Fig. 17. Iabc currents with hysteresis control  
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Fig. 18. Iabc currents with PWM control 

 
 
 
 
 

 

 

Fig. 19. IGBT1 and DIODE1 power losses with PWM control 
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Fig. 20. IGBT1 and DIODE1 power losses with hysteresis control 

 
Figure 21 and 22 show the IGBT1and DIODE1 junction temperature obtained by the two 

types of current control. It is very clear that the junction temperature of IGBT1 and DIODE1 

is higher for the hysteresis control; this is due by the increase of power dissipation of the 

module components this type of control. 

 
 

 

Fig. 21. IGBT1 junction temperature 

3.01 3.015 3.02 3.025 3.03 3.035

0

5

10

15

20

25

30

35

40

45

50

Temps (s)

P
u
is

s
a
n
c
e
 d

is
s
ip

é
e
s
 (

W
)

 

 
IGBT1

DIODE1

0 1 2 3 4 5 6 7
32

34

36

38

40

42

44

46

48

50

52

Temps (s)

T
e

m
p

é
ra

tu
re

 d
e

 j
o

n
c

ti
o

n
 (

°C
)

Time (s) 

Time (s) 

P
o

w
er

 l
o

ss
es

 (
W

) 

Ju
n

ct
io

n
 t

em
p

er
at

u
re

 (
°C

) 

www.intechopen.com



 
Thermal Behavior of IGBT Module for EV (Electric Vehicle) 455 

 

Fig. 22. DIODE1 junction temperature 

6. Conclusion 

A detailed dynamic model for EV was studied using two current control systems. MATLAB 
/ Simulink were chosen from several simulation tools because of its flexibility in working 
with analog and digital devices, it is able to represent real-time results with the simulation 
time reduced. A comparative study was carried out in terms of switching frequency for 
power dissipated by the components of the inverter and junction temperature. The 
hysteresis current control has a variable switching frequency that depends on the hysteresis 
band, this type of control allows for fast simulations with a shorter time. The PWM current 
control has a fixed frequency switching and allows having junction temperatures lower than 
the hysteresis control. 
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