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1. Introduction  

The occurrence of several incidents in different countries during the seventies and the 
eighties promoted investigations into the cause of turbine-generator torsional excitation and 
the effect of the stimulated oscillations on the machine shaft. The best known incidents are 
the two shaft failures that occurred in the Mohave station in Nevada in 1970 and 1971, 
which were caused by sub-synchronous resonance (SSR) (Walker et al., 1975; Hall et al., 
1976). A major concern associated with fixed series capacitor is the SSR phenomenon which 
arises as a result of the interaction between the compensated transmission line and turbine-
generator shaft. This results in excessively high oscillatory torque on machine shaft causing 
their fatigue and damage. These failures were caused by sub-synchronous oscillations due 
to the SSR between the turbine-generator (T-G) shaft system and the series compensated 
transmission network. These incidents and others captured the attention of the industry at 
large and stimulated greater interest in the interaction between power plants and electric 
systems (IEEE committee report, 1992; IEEE Torsional Issues Working Group, 1997; 
Anderson et al., 1990; Begamudre, 1997). 
Torsional interaction involves energy interchange between the turbine-generator and the 
electric network. Therefore, the analysis of SSR requires the representation of both the 
electromechanical dynamics of the generating unit and the electromagnetic dynamics of the 
transmission network. As a result, the dynamic system model used for SSR studies is of a 
higher order and greater stiffness than the models used for stability studies. Eigenvalue 
analysis is used in this research. Eigenvalue analysis is performed with the network and the 
generator modelled by a system of linear simultaneous differential equations. The 
differential and algebraic equations which describe the dynamic performance of the 
synchronous machine and the transmission network are, in general, nonlinear. For the 
purpose of stability analysis, these equations may be linearized by assuming that a 
disturbance is considered to be small. Small-signal analysis using linear techniques provides 
valuable information about the inherent dynamic characteristics of the power system and 
assists in its design (Cross et al., 1982; Parniani & Iravani, 1995). 
In this research, two innovative methods are proposed to improve the performance of linear 

optimal control for mitigation of sub-synchronous resonance in power systems. At first, a 

technique is introduced based on shifting eigenvalues of the state matrix of system to the left 
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hand-side of s plane. It is found that this proposed controller is an extended state of linear 

optimal controller with determined degree of stability. So this method is called extended 

optimal control. A proposed design, which is presented in this paper, has been developed in 

order to control of severe sub-synchronous oscillations in a nearby turbine-generator. The 

proposed strategy is tested on second benchmark model and compared with the optimal 

full-state feedback method by means of simulation. It is shown that this method creates 

more suitable damping for these oscillations. 
In some of genuine applications, measurement of all state variables is impossible and 
uneconomic. Therefore in this chapter, another novel strategy is proposed by using optimal 
state feedback, based on the reduced – order observer structure. It was shown also that the 
Linear Observer Method can mitigate Sub-synchronous Oscillations (SSO) in power 
systems. The proposed methods are applied to the IEEE Second Benchmark system for SSR 
studies and the results are verified based on comparison with those obtained from digital 
computer simulation by MATLAB.  

2. System model  

The system under study is shown in Fig. 1. This is the IEEE Second benchmark model, with 
a fixed series capacitor connected to it. This system is adopted to explain and demonstrate 
applications of the proposed method for investigation of the single-machine torsional 
oscillations. The system includes a T-G unit which is connected through a radial series 
compensated line to an infinite bus. The rotating mechanical system of the T-G set is 
composed of two turbine sections, the generator rotor and a rotating exciter (Harb & 
Widyan, 2003). 
 
 
 
 
 
 
 
 

Fig. 1. Schematic diagram of the IEEE Second Benchmark System. 

2.1 Electrical system 

Using direct, quadrate (d-q axes) and Park’s transformation, the complete mathematical 
model that describes the dynamics of the synchronous generator system: 

 44332211 UBUBUBUBXAX GGGGGenGGen ∆+∆+∆+∆+∆=∆ 
 (1) 

 GenGGen XCy ∆=∆
 (2) 

Where, CG is an identity matrix. The following state variables and input parameters are used 
in (1): 

 
[ ]kqqkddfd

T
Gen iiiiiX ∆∆∆∆∆=∆

 (3) 
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[ ]EVU ggO

T
Gen ∆∆∆∆=∆ ωδ

 (4) 

Where, ∆VO is variation of infinitive bus voltage. In addition to the synchronous generator, 
the system also contains the compensated transmission line. The linearized model of 
transmission line is given by: 

 
LineLineLineLineLine UBXAX ∆+∆=∆ 

 (5) 

 
[ ]CqCd

T
Line VVX ∆∆=∆

 (6) 

 
[ ]qd

T
Line iiU ∆∆=∆

 (7) 

To obtain the electrical system, we can combine (1–7). Finally we can illustrate electrical 
system by below equations: 

 ElElElElEl UBXAX ∆+∆=∆ 
 (8) 

 
[ ]T

Line
T

Gen
T

El XXX ∆∆=∆
 (9) 

 
[ ]T

Gen
T

El UU ∆=∆
 (10) 

2.2 Mechanical system 

The shaft system of the T-G set is represented by four rigid masses. The linearized model of 
the shaft system, based on a mass-spring-damping model is: 

 2211 MMMMMechMMech UBUBXAX ∆+∆+∆=∆ 
 (11) 

 
[ ]332211 ωδωδωδωδ ∆∆∆∆∆∆∆∆=∆ gg

T
MechX

 (12) 

 
[ ]em

T
Mech TTU ∆∆=∆

 (13) 

The variation of electrical torque is denoted by ΔTe and is given by: 

 
kqkdqdfde iPiPiPiPiPT ∆+∆+∆+∆+∆=∆ ..... 54321

 (14) 

Parameters P1 – P5 can simplicity be founded by combination of electrical and mechanical 
system (Fig 2). Fig.3 illustrates the shaft system of the turbine-generator (T-G) in IEEE 
second benchmark model. 

2.3 Combined power system model 

The combined power system model is obtained by combining the linearized equations of the 
electrical system and mechanical system. 
Let us define a state vector as ΔXSysT = [ΔXElT  ΔXMechT]. So we can write: 
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 Sys Sys Sys Sys SysX A X B U∆ = ∆ + ∆
 (15) 

 [ ]T
Sys mU T E∆ = ∆ ∆  (16) 

 

 

Fig. 2. Schematic diagram of calculation of Te 
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Fig. 3. Schematic diagram of the shaft system of the turbine-generator IEEE second 
benchmark model. 

3. Modern optimal control  

Optimal control must be employed in order to damp out the sub-synchronous oscillations 

resulting from the negatively damped mode. For the linear system, the control signal U 

which minimizes the performance index (Zhu et al., 1996; Patel & Munro, 1982; Khaki 

Sedigh, 2003; Ogata, 1990; Friedland, 1989; Kwakernaak, 1972): 

 ( ) ( ) ( )[ ]T T
Sys Sys Sys SysJ x t Q x t u R u t dtµ= ∆ ∆ + ∆ ∆  (17) 

It is given by the feedback control law in terms of system states: 

 ( ) ( )SysU t K x t= − ⋅ ∆  (18) 

 1. .T
SysK R B P−

µ=  (19) 

Where P is the solution of Riccati equation: 

 1. . . . 0T T
Sys Sys Sys SysA P P A P B R B P Q−

µ+ − + =  (20) 

3.1 Extended optimal control 
In this chapter, a strategy is proposed, based on shifting eigenvalues of the state matrix of 
system to the left hand-side of s plane, for damping all sub-synchronous torsional 
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oscillations. In order to have a complete research, optimal full state feedback control is 
designed and the results are compared with extended optimal control as proposed method. 
It is found that we can design linear optimal controller to obtain special degree of stability in 
optimal closed loop system by using this method. In the other hand, we can design a new 
controller that it transfers all of poles of optimal closed loop system to the left hand-side of –
α (a real value) in S plane. For a linear system by (15), we can rewrite the performance index 
using proposed method: 

 ( ) ( ) ( )2 .[ ]t T T
Sys Sys Sys SysJ e x t Q x t u R u t dtα

µ= ∆ ∆ + ∆ ∆  (21) 

For the linear system the control signal U which minimizes the performance index is given 
by the feedback control law in terms of system states: 

 ( ) ( )SysU t K x tα α= − ⋅ ∆  (22) 

 1. .T
SysK R B P−

α µ α=  (23) 

Where Pα is the solution of Riccati equation in this case: 

 1( ) . .( ) . . 0T T
Sys n Sys n Sys SysA I P P A I P B R B P Q−

α α α µ α+ α + + α − + =  (24) 

Where In is an n×n identity matrix. So the state matrix of optimal closed loop system (Aα) is 
obtained by below: 

 1( ) . .( ) . . 0T T
Sys n Sys n Sys SysA I P P A I P B R B P Q−

α α α µ α+ α + + α − + =  (25) 

In order to be asymptotically stable for Aα, we can write: 

 ( ) ( . ) ( . )i i Sys n Sys i Sys SysA A I B K A B Kα α αλ = λ + α − = λ − + α  (26) 

Where λi(Aα) is eigenvalues of Aα for i=1,2,…,n. Because of  Re[λi(Aα)] <0, we can write : 

 Re[ ( )] Re[ ( . ) ] Re[ ( . )] 0i i Sys Sys i Sys SysA A B K A B Kα α αλ = λ − + α = λ − + α <  (27) 

So we can write: 

 Re[ ( . )]i Sys SysA B Kαλ − < −α  (28) 

In the other hand, all of eigenvalues of (ASys-BSys.Kα) are located on the left hand-side of –α 
in S plane. So the control signal U, which minimizes the performance index in (21), can 
create a closed lope system with determined degree of stability. 

3.1.1 Numeral sample 
This subsection gives a dimensional example in which the controllable system is to be 
designed in according to the proposed method. Suppose the nominal plant used for design 
of the controller is: 

 
0 1 1 0

. .
0 0 0 1

d
X X U

dt

   
= +   
   

 (29) 
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Where X=[x1(t) x2(t)]T and U=[µ1(t) µ2(t)]T. We want to design an optimal controller in which 

the closed-loop system achieves to a favourite prescribed degree of stability. In this case, we 

chose α=2. Suppose that 

 
1 1 1 0

,
1 1 0 1

Q R
   

= =   
   

 (30) 

The solution of Riccati equation in this case is equal to: 

 
3.9316 1.1265

1.1265 4.4462
Pα

 
=  
 

 (31) 

To obtain the feedback control law in terms of system states, we can combine (23) with (29 – 

31). Finally the optimal controller is given by: 

 ( ) ( ) ( )1 3.9316 1.1265
. . . .

1.1265 4.4462
TU t R B P x t x t−

α α

− − 
= − =  − − 

 (32) 

And then the state matrix of optimal closed loop system (Aα) is obtained by: 

 
3.9316 0.1265

2 .
1.1265 4.4462nA A I B Kα α

− − 
= + − =  − − 

 (33) 

So the poles of optimal closed loop system are located in -3.7321and -4.6458. It can be seen 

that both of them shift to the left hand-side of –α (α=2) in S plane. 

3.2 Reduced order observer 

The Luenberger reduced-order observer is used as a linear observer in this paper. The block 

diagram of this reduced-order observer is shown in Fig. 3. For the controllable and 

observable system that is defined by (15), there is an observer structure with size of (n-1). 

The size of state vector is n and output vector is l. The dynamic system of Luenberger 

reduced-order observer with state vector of z(t), is given by: 

 ( ) ( ). Totalz t L x t∆ = ∆  (34) 

 ( ) ( ) ( ) ( ). . .Total Totalz t D z t T y t R u t= + +  (35) 

To determine L, T and R is basic goal in reduced-order observer. In this method, the 

estimated state vector ( )ˆ
TotalX t∆  includes two parts. First one will obtain by measuring 

∆yTotal(t) and the other one will obtain by estimating ∆z(t) from (34). We can take: 

 
( )

( )
( )ˆ.TotalTotal

Total

Cy t
X t

Lz t

 ∆  
= ∆   ∆   

 (36) 

By assumption full rank [CTotalT    LT] T, we can get: 
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 ( )
( )

( )

1

ˆ .Total Total
Total

C y t
X t

L z t

−  ∆ 
∆ =    ∆   

 (37) 

By definition: 

 [ ]
1

1 2
TotalC

F F
L

−
 

= 
 

 (38) 

We get: 

 ( ) ( ) ( )1 2
ˆ . .Total TotalX t F y t F z t∆ = ∆ + ∆  (39) 

Where: 

 1 2. .Total nF C F L I+ =  (40) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Shematic Diagram of State Feedback Using Luenberger Reduced Order Observer  

Using estimated state variables, the state feedback control law is given by: 

 ( ) ( ) ( ) ( )1 2
ˆ. . . . . .Total Total Total TotalU t K X t K F C X t K F z t∆ = − ∆ = ∆ − ∆  (41) 

By assumption R=L.BTotal in (35), descriptive equations of closed loop control system with 
reduced-order observer are: 

 

( )
( )

( )
( )

1 2

1 2

. . . .
.

. . . . . . . .

Total

Total Total Total Total Total

Total Total Total Total

X t

z t

A B F C B K F X t

T C L B K F C D L B K F z t

 ∆
= 

∆  
− −  ∆ 

  − − ∆   




 (42) 

K 

A

B C
 u

u (t) 

y (t)

∫
z 

PLANT 

r

The Luenberg’s Reduced-order observer
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Dynamic error between linear combination of states of L.∆XTotal(t) system and observer ∆z(t) 
is defined as: 

 ( ) ( ) ( ). Totale t z t L X t= ∆ − ∆    (43) 

Combine (35) and (36), we get: 

 ( ) ( )2. . .
.

0
Total Total Total TotalTotal A B K B K F X tX t

D ee

− −  ∆ ∆  
=    
    




 (44) 

For stability of the observer dynamic system, the eigenvalues of D must lie in the left hand-
side of s plane. By choosing D, we can calculate L, T and R (Luenberger, 1971). 

3.2.1 Numeral sample 

The longitudinal equations of an aircraft are presented in steady state format (Rynaski, 
1982): 

 

( )
( )
( )
( )

( ) ( )

11 12 1

21 22 2

31 32 33 3

0

1 0

0

0 0 1 0 0

e

a g bv t

a a btd
x t t

a a a btdt

q t

α − ∆    
     α     = − δ     θ
     
      

 (45) 

Where Δv is variation of velocity, α is angle of attack, θ is pitch angle, δe is elevator angle 
and q is pitch rate. This equation in special state is presented by:  

 ( ) ( ) ( )

0.0507 3.861 0 9.8 0

0.00117 0.5164 1 0 0.0717

0.000129 1.4168 0.4932 0 1.645

0 0 1 0 0

e

d
X t X t t

dt

− − −   
   − − −   = − δ
   − − −
   
   

 (46) 

 ( )
1 0 0 0

0 1 0 0
y X t

 
=  
 

 (47) 

So Δv and α are measurable state variables. Therefor we can get final result by MATLAB 
simulations. 

4. Simulation results  

Eigenvalue analysis is a fast and well-suited technique for defining behavioral trends in a 
system that can provide an immediate stability test. The real parts of the eigenvalue 
represent the damping mode of vibration, a positive value indicating instability, while the 
imaginary parts denote the damped natural frequency of oscillation.  
As mentioned earlier, the system considered here is the IEEE second benchmark model. It is 
assumed that the fixed capacitive reactance (XC) is 81.62% of the reactance of the 
transmission line (XL1=0.48 P.u).  
The simulation studies of IEEE-SBM carried out on MATLAB platform is discussed here. 
The following cases are considered for the analysis. 
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Fig. 5. Variation of Measurable State Variables  

4.1 Without controller 

In the first Case, second benchmark model is simulated without any controller in initial 
conditions. Fig. 7 shows the variation of torque of the rotating mechanical system of the T-G 
set. It can be seen that variations of torque of the mechanical system are severe unstable and 
then power system tends to approach to the SSR conditions.  
The study is carried out with heavily loaded synchronous generator of PG=0.9 p.u, QG=0.43 
p.u and Vt=1.138 p.u. Figure. 8 shows the variation of real and imaginary parts of the 
eigenvalues of ASys with the compensation factor µC=XC/XL1. It can be observed that the first 
torsional mode is the most unstable modes at µC=81.62%. The unstable range of variation of 
torsional modes has been illustrated in Fig. 8.  
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Fig. 6. Variation of Immeasurable State Variables  

4.2 With proposed controller: Extended optimal control 

For presentation of the first proposed controller, power system is simulated by extended 
optimal control with using (20-24). Proposed method is carried out on second benchmark 
simultaneously. The obtained results have been compared with prevalent optimal control in 
(17-20) by Fig. 9-(a). It is observed that the proposed method has created more suitable 
damping for first torsional mode of second benchmark model than prevalent method. As 
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similar way, this proposed method has suitable results on second torsional mode. Fig. 9-(b) 
clearly illustrates this point.   
Fig. 10 illustrates variation of torque of the mechanical system in T-G set. It can be observed 
that the proposed method has more effect on the output of power system than prevalent 
method. 
 

 

 
 

Fig. 7. Variation of torque of generator – low pressure turbine in the T-G set for µC=81.62% 
without any controller. 

4.3 With proposed controller: Reduced order observer 

In order to have a complete research, optimal full state feedback control is designed and the 
results are compared with reduced-order method. Some parameters, such as Δikd and Δikq, 
are not physical variables. ΔVCd and ΔVCq are transmission line parameters that they are not 
accessible. So let us define: 

 ˆ [ ]T
Sys kd kq Cd CqX i i V V∆ = ∆ ∆ ∆ ∆  (48) 

 [ ]T
Sys EXC GEN GEN LP LP HPy T T T− − −∆ = ∆ ∆ ∆  (49) 

Where ΔySysT is used to obtain variation of torque of the rotating mechanical system of the  
T-G set . Full order observer estimates all the states in a system, regardless whether they are 
measurable or immeasurable. When some of the state variables are measurable using a 
reduced-order observer is so better. 
In this scenario, proposed method is carried out on second benchmark model 
simultaneously. The obtained results have been illustrates in Fig. 11. It is observed that the 
reduced-order method has created a suitable estimation from immeasurable variables that 
are introduced in (48).  
Fig. 12 shows variation of torque of the mechanical system in T-G set. It can be observed that 
the proposed method has small effect on the output of power system 
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Fig. 8. Variation of real and imaginary parts of eigenvalues as a function of µC  
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(a) 

 
 
 

 

(b) 

 
 
 

Fig. 9. Variation of first torsional mode (a) and second mode (b) in IEEE second benchmark 
to degree of compensation: Dotted (proposed controller), Solid (prevalent controller). 
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(a) 

 
 
 

 

(b) 

 
 
 

Fig. 10. Variation of torque of exciter-generator (a) and generator-low pressure (b): 
(proposed controller), Dotted (prevalent controller). 
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Fig. 11. Variation of δg, δ2and δ3: Solid (optimal full state feedback), Dotted (reduced-order 
observer control). 

 

 

Fig. 12. Variation of torque of exciter – generator and generator – low pressure turbine in the 
T-G set: (reduced-order observer control), Solid (optimal full state feedback). 

5. Conclusion 

Fixed capacitors have long been used to increase the steady state power transfer capabilities 
of transmission lines. A major concern associated with fixed series capacitor is the sub-
synchronous resonance (SSR) phenomenon which arises as a result of the interaction 
between the compensated transmission line and turbine-generator shaft. This results in 
excessively high oscillatory torque on machine shaft causing their fatigue and damage. 
This chapter presents two analytical methods useful in the study of small-signal analysis of 

SSR, establishes a linearized model for the power system, and performs the analysis of the 

SSR using the eigenvalue technique. It is believed that by studying the small-signal stability 

of the power system, the engineer will be able to find countermeasures to damp all sub-

synchronous torsional oscillations. 
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The first strategy is proposed, based on shifting eigenvalues of the state matrix of system to 
the left hand-side of s plane, for damping all sub-synchronous torsional oscillations. The 
proposed method is applied to The IEEE Second Benchmark system for SSR studies and the 
results are verified based on comparison with those obtained from digital computer 
simulation by MATLAB. Analysis reveals that the proposed technique gives more 
appropriate results than prevalent optimal controller. In the practical environment (real 
world), access to all of the state variables of system is limited and measuring all of them is 
also impossible. So when we have fewer sensors available than the number of states or it 
may be undesirable, expensive, or impossible to directly measure all of the states, using a 
reduced-order observer is proposed. Therefore in this chapter, another novel approach is 
introduced by using optimal state feedback, based on the Reduced – order observer 
structure. Analysis reveals that the proposed technique gives good results. It can be 
concluded that the application of reduced-order observer controller to mitigate SSR in 
power system will be provided a practical viewpoint. Also this method can be used in a 
large power system as a local estimator. 
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7. Appendix (Nomenclature)  

ΔXGen State Vector for Generator System Model 

AG State Matrix for Generator System Model 

BGi ith Input Matrix for Generator System Model 

ΔyGen Output Vector for Generator System Model 

ΔUGen Input Vector for Generator System Model 

Δifd Variation of Field Winding Current  

Δid,Δiq Variation of Stator Currents in the d-q Reference Frame 

Δikd,Δikq Variation of Damping Winding Current in the d-q Reference Frame 

Δδg Variation of Generator Angle 

Δωg Variation of Angular Velocity of Generator 

ΔXMech State Vector for Mechanical System Model 

AM State Matrix for Mechanical System Model 

BMi ith Input Matrix for Mechanical System Model 

ΔyMech Output Vector for Mechanical System Model 

ΔUMech Input Vector for Mechanical System Model 

ΔTm Variation of Mechanical Torque 

ΔTe Variation of Electrical Torque 

ΔXLine State Vector for Transmission Line System 

ALine State Matrix for Transmission Line System 

BLine Input Matrix for Transmission Line System 

ΔULine Input Vector for Transmission Line System 

ΔXSys State Vector for Combined Power System Model 
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ASys State Matrix for Combined Power System Model 

BSys Input Matrix for Combined Power System Model 

ΔUSys Input Vector for Combined Power System Model 

ΔE Variation of Field Voltage 

J Performance Index 

K Gain Feedback Vector in Linear Optimal Control 

Kα Gain Feedback Vector in Linear Optimal Control with Determined Degree of 
Stability 

P Solution of Riccati Equation in Linear Optimal Control 

Pα Solution of Riccati Equation in Linear Optimal Control with Determined 
Degree of Stability 
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