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1. Introduction   

Bone is a specialized connective tissue that performs many important functions: (i) 
mechanical, supporting the whole body and allowing the movements; (ii) protective, 
shielding many vital organs, such as brain, lung, heart and bone marrow; (iii) metabolic, 
regulating the homeostasis of calcium and phosphate (Baron, 1999); (iv) endocrine, 
regulating kidney function (Fukumoto & Martin, 2009; Mazzaferro et al., 2010) and 
contributing to global energy balance (Ducy et al., 1996; Ferron et al., 2010; Lee et al., 2007) 
and male fertility (Oury et al., 2011). Bone is a dynamic tissue, subjected to a continuous 
process of renewal and remodelling in which bone resorption by osteoclasts and bone 
formation by osteoblasts occur at the same site along the bone surface (Pogoda et al., 2005). 
About 10% of bone is replaced each year, with complete skeletal renewal every 10 years. An 
imbalance between osteoblast and osteoclast activities can cause serious consequences: if 
bone formation is enhanced or bone resorption is impaired, bone mass is increased, and vice 
versa (Parfitt, 1982; Pogoda et al., 2005). Often osteoclast diseases are monogenic, and in 
many of them the responsible gene and the respective function have been identified, while 
for other osteoclast diseases the causative gene has not been isolated or the exact function of 
the matching protein still remains unknown. In this review, a brief description of osteoclast 
biology will be provided and examples of genetic osteoclast diseases, including 
osteopetrosis, pycnodysostosis and Paget’s disease of bone, will be discussed. 

2. Osteoclast 

The osteoclast is the unique cell that is able to destroy the tissue to which it belongs 
(Teitelbaum, 2007). It is a giant cell with a diameter of 20-100 μm containing 4 to 50 nuclei, 
depending on the species (Roodman, 1996). The multinuclearity of osteoclast derives from 
the fusion of monocyte-macrophage mononuclear cells (Figure 1). In histological sections, 
osteoclasts appear variable in shape and size, adherent to the bone, within a small 
depression, called Howship’s lacuna, that is the result of their bone resorbing activity 
(Roodman, 1996). Osteoclasts are polarized cells (Takahashi et al., 2007). In fact, it is possible 
to identify a zone facing the bone matrix presenting a particular area of the plasma 
membrane, named ruffled border, composed by deep and irregular foldings that increase 
the size of the membrane located in front of the bone that will be resorbed (Stenbeck, 2002). 
The peripheral domain, named “sealing membrane”, represents the adhesion area by which 
the osteoclast attaches to the bone matrix around the site where it will be degraded. The 
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remaining membrane constitutes the basolateral domain containing proteins important for 
ion balance and response to regulatory stimuli. Opposite to the ruffled border domain, there 
is the apical domain, that is thought to be important for the transcytosis of bone resorption 
products from the resorbing lacuna to the extracellular fluids (Coxon & Taylor, 2008; Nesbitt 
& Horton, 1997; Peruzzi & Teti, 2011; Salo et al., 1996; Takahashi et al., 2007). Underneath 
the apical domain there are the nuclei that, under the light microscope, appear different in 
shape: some are round and euchromatic, others are irregular and more heterochromatic 
(Baron, 1989).  
 

 

Fig. 1. Osteoclast differentiation. The cartoon illustrates the different phases of osteoclast 
differentiation, from the hematopoietic precursor to the mature multinuclear osteoclast. 
Some of the genes implicated in this process are indicated.   

Moreover, ultrastructural studies showed Golgi complexes associated with each nucleus, 
many mitochondria and lysosomes (Baron et al., 1988; Stembeck, 2002). These latter 
organelles, approximately 0.5 μm in diameter, contain acid hydrolases, such as cathepsin K 
and Tartrate Resistant Acid Phosphatase (TRAcP), representing markers of the osteoclast 
phenotype (Garnero, 1998; Sakigiyama et al., 2001). Mitochondria are very abundant, 
correlating with the high energy expenditure that is required for the degradation of bone 
matrix (Miyazaki et al., 2006).  

2.1 The molecular mechanisms of bone resorption 

Bone resorption is a complex process requiring two different phases, the acidification of the 
extracellular lacuna to dissolve the inorganic bone matrix and the secretion of proteolytic 
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enzymes to digest the organic components (Blair et al., 1986; Vaananen et al., 1998) (Figure 
2). To achieve the acidification of the resorption lacunae and begin the process of bone 
demineralization, Carbonic Anhydrase II (CAII) generates carbonic acid from the hydration 
of CO2. Carbonic acid spontaneously dissociates in proton and bicarbonate (Bothwick et al., 
2003; Boyle et al., 2003). The protons so generated are actively released in the resorbing 
lacuna through an osteoclast-specific vacuolar-type (V)-H+-ATPase (Nishi & Forgac, 2002; 
Teitelbaum & Patrick, 2003). The excess of bicarbonate is removed by a bicarbonate/chloride 
exchanger, localised in the basolateral membrane (Baron, 1989; Teti et al., 1989). The chloride 
ion is then released in the bone resorption lacuna by a Cl-/H+ antiport, ClC7, that, coupling 
with the proton pump activity, balances the ion charge across the membrane (Boyle et al., 
2003; Graves et al., 2008; Teitelbaum & Patrick, 2003). The final goal of this process is to 
demineralise the bone and uncover the organic matrix ready to be digested by proteolytic 
enzymes, such as the metalloproteinase MMP9 released by endosomal vesicles, and the 
cathepsin K released by lysosomes (Blair et al., 1986; Bossard et al., 1996; Everts et al., 1992). 
 

 

Fig. 2. The bone resorption process. The cartoon illustrates the molecular patterns involved 
in bone resorption by osteoclasts. See text for detailed description.  

2.2 Osteoclastogenesis and regulation of osteoclast activity 

Osteoclasts are cells that belong to the monocyte/macrophage lineage and derive from the 
fusion of monocuclear precursors (Teitelbaum, 2007) (Figure 1). In 1981, Marks and Walker 
showed, by experiments with parabiotic animals, that circulating blood contains cells able to 
differentiate into osteoclasts, thus identifying their haematogenous origin (Marks & Walker, 
1981). Subsequently, in vitro studies with bone marrow-derived cells (Burger et al., 1989) 
suggested that osteoclasts arise from the differentiation of precursor cells of the CFU-M 
(Colony Forming Unit-Macrophage) lineage. This evidence suggested that osteoclasts 
present the same haematopoietic origin of antigen presenting cells and tissue macrophages. 
The pathway of osteoclast differentiation is now well characterized (Teitelbaum et al., 1997). 
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The PU.1 transcription factor is essential for the earliest phase of osteoclast differentiation, 
regulating the expression of the c-fms gene (Hayashi et al., 1998). c-fms encodes for the 
receptor of M-CSF (Macrophage-Colony Stimulating Factor), a cytokine crucial for the 
survival and the proliferation of early progenitors since it stimulates the cyclinD/CDK4 
(Cyclin-Dependent Kinase 4) pathway (Mundy, 1993; So et al., 2003). Moreover, c-fms is able 
to stimulate the expression of PU.1 itself, establishing an amplification loop (Mundy, 1993). 
The essential role of PU.1 during osteoclast commitment is even due to its ability to regulate 
the expression of RANK (Receptor Activator of NF-κB) that, upon interaction of its ligand 
RANKL, is able to initiate the differentiation and the fusion of osteoclast precursors (Kwon 
et al., 2005). In fact, subsequent to RANKL-RANK interaction, TRAF6 (TNF Receptor-
Associated Factor 6) is recruited and activates IĸB and MAP kinases (Takayanagi et al., 
2005), causing the nuclear translocation of NF-ĸB and of other transcription factors, 
including ATF2 (Activating Transcription Factor 2), c-fos and c-jun, required for the 
progression of osteoclast differentiation (Wada et al., 2006). Other two transcription factors 
important for osteoclast differentiation are MITF (MIcrophthalmia-associated Transcription 
Factor) (So et al., 2003) and NFATc1 (Nuclear Factor of Activated T-cells, cytoplasmic, 
calcineurin-dependent 1) (Takayanagi, 2007) that regulate the expression of osteoclast 
specific genes, like TRAcP, OSCAR (OSteoClast-Associated immunoglobulin-like Receptor), 
CTSK, CLC7 and OSTM1 (OSteopetrosis associated TransMembrane protein) (Takayanagi, 
2007; Meadows et al., 2007). The activation of RANK by RANKL is counterbalanced by the 
expression of a soluble decoy receptor, OPG (OsteoProteGerin), that is able to bind RANKL, 
preventing its interaction with RANK (Kong et al., 1999). The expression of RANKL by 
stromal cells and, during inflammation, by T cells and synovial fibroblasts, is regulated by 
hormones and local factors as it is stimulated by PTH (ParaThyroid Hormone), PGE2 

(ProstaGlandin E2) and 1,25(OH)2Vitamin D3 (Lips, 2006; Parfitt, 1976; Takeda et al., 1999). 
According to other studies, osteoclast progenitors express 1,25(OH)2Vitamin D3 receptors 
and their activation could contribute to the induction of RANK (Blair & Zaidi, 2006). Even 
sex hormones regulate osteoclast differentiation and function (Manolagas et al., 2002). 
Estrogens and androgens are believed to attenuate the rate of osteoclast formation 
downregulating genes essential for osteoclastogenesis (Cheung et al., 2003; Girasole et al., 
1992; Imai et al., 2009) and exerting a potent pro-apoptotic effect. Glucocorticoids are also 
thought to target the osteoclasts, preventing cell spreading and reducing their bone 
resorbing activity (Dempster et al., 1997; Kim et al., 2007). However, the use of 
glucocorticoids leads to a reduction of bone mass due to a direct negative effect on 
osteoblast activity and to inhibition of osteoclasts, that result in the interruption of the bone 
remodeling cycle (Dovio et al., 2004). Furthermore, osteoclasts are very sensitive to pH 
levels as it is known that systemic acidosis has detrimental effects on the skeleton and local 
acidosis is associated with bone destruction (Arnett, 2003; Krieger et al., 2004; Muzylak et al., 
2007). It has been shown that the Ovarian cancer G-protein-coupled Receptor 1 (OGR1 or 
GPR68), a proton sensing receptor, is essential for osteoclast formation inducing RANKL-
dependent osteoclastogenesis and activating NFATc1 (Iwai et al., 2007). 

3. Osteopetrosis 

Osteopetrosis is a rare (>1:100.000) genetic disorder characterized by an impaired 
osteoclast function that leads to pathological increase of bone mass and skeletal fragility. 
It was identified for the first time in 1904 by Albers-Scönberg, who described a patient 

www.intechopen.com



 

Osteoclast Genetic Diseases 61 

with  generalized sclerosis of the skeleton, suffering from several fractures (Albers-
Schönberg, 1904). Subsequently, in 1926, Karshner denominated the syndrome “marble 
bone disease” or “osteopetrosis” (Karshner, 1926). Impaired bone resorption causes 
persistence of old bone, increase of bone mass and obstruction of cavities containing vital 
organs such as the bone marrow and the nervous system. Osteopetrotic patients usually 
suffer from pathological fractures, short stature and haematological and neural failures 
(Balemans et al.; 2005; Del Fattore et., 2008; Frattini et.; 2003; Loria-Cortes et al., 1977). 
Osteopetrosis is a heterogeneous disorder which includes several forms that differ on the 
basis of inheritance, severity and secondary clinical features (Balemans et al., 2005). So far, 
there is no effective cure for osteopetrosis (Del Fattore et al., 2010). Haematopoietic Stem 
Cell Transplantation (HSCT) is indicated only for some severe forms; however a large rate 
of unsuccessful engraftment and persistence of irreversible symptoms are frequently 
observed (Driesses et al., 2003). 

3.1 Clinical features and genetic inheritance 

The various forms of osteopetrosis are classified on the basis of clinical, radiological and 
inheritance features into three major groups (Balemans et al., 2005; Whyte, 2002): the 
Autosomal Recessive Osteopetrosis (ARO), the Intermediate autosomal Recessive 
Osteopetrosis (IRO) and the Autosomal Dominant Osteopetrosis (ADO). Although these 
forms display different symptoms, they share common clinical traits such as increase of 
bone density, spontaneous fractures and haematological failures (Del Fattore et al., 2008). 
ARO is the most severe form and it is commonly diagnosed soon after birth or within the 
first years of life. Patients display a generalised osteosclerosis, especially in skull, pelvis, 
spine and long bones (Frattini et al., 2000; Kornak et al., 2000; Loria-Cortes et al., 1977), 
which display the so-called “bone in bone” appearance (Figure 3). The poor development 
and/or compression of the bone marrow and the nervous system leads to severe anaemia, 
pancytopenia, hepatosplenomegaly, visual impairment, optic atrophy and deafness. Less 
common features are hydrocephaly, macrocephaly and strabismus. In a subtype of ARO 
primary degeneration of brain and retina are observed (Askmyr et al., 2008). Unfortunately, 
a fatal outcome generally occurs in 75% of ARO patients, who die at 3-4 years of age because 
of haematological failure and recurrent infections (Balemans et al., 2005).   
 

 

Fig. 3. X-ray analysis illustrating generalized osteosclerosis in an ARO patient. The picture 
shows the extensive sclerosis of spine, ribs and skull. 
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IRO is milder than ARO and life expectancy is much longer. Typical symptoms of this form 
are generalized increase of bone density, osteomyelitis, short stature, dental malformations, 
and mild to moderate anaemia (Balemans et al., 2005; Bolt et al., 2005; Del Fattore et al., 2010;  
Sly et al., 1983). The Autosomal Dominant Osteopetrosis, also called Albers-Schönberg 
disease (Albers-Schönberg, 1904), was previously described inappropriately as the “benign 
form” but it is now accepted as an extremely heterogeneous osteopetrosis, ranging from 
asymptomatic to severe (Del Fattore et al., 2006; Frattini et al., 2003; Waguespack et al., 
2007). This phenotypic variability is even observed within the same family (Letizia et al., 
2004). ADO patients usually present with sclerosis of skull base, pelvis, and vertebral end-
plates (Figure 4) (sandwich vertebrae or rugger-jersey spine), bone pain, osteomyelitis and 
frequent pathological fractures. Life expectancy is generally normal, but in some cases 
complications due to cranial nerve compression, a rather poor quality of life and death have 
been reported (Albers-Schönberg, 1904; Balemans et al., 2005; Del Fattore et al., 2006).  
 

 

Fig. 4. X-ray analysis of an ADO patient showing sclerosis of vertebral end-plates (sandwich 
vertebrae) and pelvis. 

Besides these classical forms, five male cases have been described so far with X-Linked 
Osteopetrosis (XLO) associated with lymphedema, anhidrotic ectodermal dysplasia, and 
immunodeficiency (so-called OL-EDA-ID syndrome). They died very young for severe 
phenotype and infection complications (Smahi et al., 2002). 

3.2 Genetic features 

The extreme phenotypic variability of osteopetrosis arises from the genetic heterogeneity. 

As shown in Table 1, in osteopetrotic patients mutations in genes encoding proteins 

essential for correct bone resorption or for osteoclast differentiation have been observed. As 

discussed above, these mutations can be inherited in an autosomal recessive, autosomal 

dominant or X-linked manner (Del Fattore et al., 2010). ARO, the most severe form, is due in 

more than 50% of cases to loss-of-function mutations of the TCIRG1 gene, encoding for the 

osteoclast-specific a3 subunit of V-H+-ATPase (Del Fattore et al., 2006; Frattini et al., 2000; 

Kornak et al., 2000; Taranta el al., 2003). 
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Gene Protein 
Type of 

mutation 
Form of 

osteopetrosis 

TCIRG1 a3 subunit of vacuolar H+-ATPase Loss-of-function
 

ARO 
 

TCIRG1/ATP6V1B1
a3/B1 subunits of vacuolar H+-

ATPase 
Loss-of-function ARO 

CLC7 Chloride/proton antiport 

Loss-of-function ARO 

Dominant 
negative 

ADO 

OSTM1 
Trasmembrane protein associated 

with ClC7 function 
Loss-of-function ARO 

PLEKHM1 
Protein with undefined function, 

probably associated with vesicular 
trafficking and acidification 

Loss-of-function IRO 

CAII Carbonic anhydrase type II Loss-of-function IRO 

NEMO Regulatory subunit of IKK Loss-of-function XLO 

TNFSF11 
Receptor activator of NF-kB ligand 

(RANKL) 
Loss-of-function ARO 

TNFRSF11A RANK Loss-of-function ARO 

Table 1. Genetic defects in human osteopetroses 

The V-H+-ATPase is central to the mechanism of bone resorption because it is located in the 

osteoclast ruffled border membrane where it releases protons in the underneath resorbing 

lacuna (Nishi & Forgac, 2002). In rare cases, double mutations of the TCIRG1 gene and the 

ATP6V1B1 genes, this latter encoding the B1 subunit of V-H+-ATPase, were described 

(Bothwick et al., 2003). As shown in Table 1, other four genes are associated with ARO. 

About 10-15% of patients harbours mutations of the CLC7 gene (Frattini et al., 2003; Kasper 

et al., 2005; Kornak et al., 2001), encoding for the so called chloride channel type 7, recently 

reclassified as a Cl-/H+ antiport (Graves et al., 2008). This dimeric protein is located in 

lysosomes and osteoclast ruffled membrane where, as previously described, it is essential to 

restore the correct electrical potential altered by proton flux (Graves et al., 2008). So far, only 

5 patients affected by ARO were found to harbour loss-of-function mutations of the OSTM1 

gene, encoding for a protein whose role in bone resorption is still unknown (Chalhoub et al., 

2003; Pangrazio et al., 2006). Ostm1 function is probably important for Cl- conductance, 

because it was recently shown that the protein is involved in the stabilization and correct 

localization of the Cl-/H+ antiport (Lange et al., 2006). The correlated functions of ClC7 and 

Ostm1 proteins are demonstrated by the similar clinical features of patients harbouring 

mutations of the respective genes (Pangrazio et al., 2006). Primary retinal degeneration and 

lysosomal storage disease are observed in these patients, who are believed not to benefit 

from HSCT because it cannot cure the neural defects. Beside the types of AROs described 

above, so-called “osteoclast-rich” osteopetroses because in these forms osteoclasts form 

normally or are even increased in number, there is also a particularly rare form of ARO 

where the osteoclasts are absent (Helfrich, 2005). The patients affected by this “osteoclast-

poor” osteopetrosis present mutations of the TNFSF11 (Sobacchi et al., 2007) or the 

TNFRSF11A (Guerrini et al., 2008) genes (Table 1), encoding the RANKL and its receptor 
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RANK, respectively. Both proteins are required for osteoclast differentiation. So far, only 6 

patients have been described to carry mutations of the TNFSF11 gene. The importance of 

this discovery relies on the fact the these patients could not be effectively treated with 

HSCT, because the genetic defect is not osteoclast-autonomous but rather relies on the 

inability of stromal/osteoblastic cells to produce RANKL. ADO, the most frequent 

osteopetrosis, is caused in about 70% of patients by heterozygous dominant negative 

mutations of the CLC7 gene (Bollerslev et al., 1988; Del Fattore et al., 2005; Frattini et al., 

2003; Letizia et al., 2004; Waguespack et al., 2007). CLC7 gene mutations tend to affect the 

entire length of the gene, even if the most frequent mutations have been described in the 

regions encoding the C-terminal CBS (Cystathionine Beta Synthase) domains of the protein 

(Del Fattore et al., 2006; Waguespack et al., 2007). As described above, ADO is characterized 

by a phenotypic variability probably due to the incomplete penetrance of the mutant gene 

(Frattini et al., 2003; Letizia et al., 2004). No other genes are known so far to be correlated 

with ADO and about 30% of patients still lacks a genetic diagnosis (Del Fattore et al., 2010). 

As in ADO, also in IRO a considerable clinical heterogeneity is observed. Presently, the two 

genes known to be associated with IRO are CAII (Bolt et al., 2005) and PLEKHM1 (Van 

Wesenbeeck et al., 2007), encoding the carbonic anhydrase type II and the Plekhm1 protein, 

respectively. Patients harbouring loss of function mutations of the CAII gene display, 

besides osteopetrosis, tubular acidosis, cerebral calcifications and mental retardation 

(Balemans et al., 2005). The novel gene recently associated with osteopetrosis, PLEKHM1, 

has been identified as the human homolog of the gene responsible of the incisor absent (ia) 

rat phenotype (Van Wesenbeeck et al., 2007). To date, only one female patient affected by 

IRO has been identified to harbour a mutation of the PLEKHM1 gene. The clinical features 

described in this patient were increased bone density, Erlenmeyer flask’ deformity of the 

distal femora and a chondrolysis of the left hip. The exact function of the Plekhm1 protein is 

not completely elucidated, but recent findings suggest that it is a member of Rab7-regulated 

proteins involved in late endosomal trafficking (Del Fattore et., 2008; Van Wesenbeeck et al., 

2007), vesicular acidification and TRAcP release by osteoclasts (Del Fattore et al., 2008). As 

previously described, there is a XLO osteopetrosis, due to mutations of the NEMO (NF-ĸB 

Essential Modulator) gene, encoding the IκB regulatory subunit of IKK. The mutations 

described in the only 5 so far known patients cause the replacement of the NEMO stop 

codon with tryptophan, leading to the addition of 27 irrelevant residues that strongly 

destabilize the protein (Smahi et al., 2002). All other forms of osteopetrosis, about 30% of 

patients, still lack of a recognized gene involved and much effort should be made to identify 

new genes associated with this disease.  

4. Pycnodysostosis 

Pycnodysostosis is a skeletal disorder also known as Toulouse-Lautrec disease because it is 
believed that the famous French painter Henri Toulouse-Lautrec (1864-1901) suffered from 
this syndrome (Maroteaux & Lamy, 1965). It is a rare monogenic disease (approximately 150 
cases reported in the literature worldwide), first described in 1962 by Maroteaux and Lamy, 
who coined this term from the word of Greek origin puknos meaning “dense”, associated 
with the words dys meaning “defective” and ostosis meaning “condition of the bone”. 
Pycnodysostosis is characterised by a general osteosclerosis leading to short stature and 
increased bone mass. In fact, Schilling and coworkers analysed the volumetric bone density 
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in a cohort of pycnodysostosis patients and controls showing a value of 686 mg/cm in the 
group of patients versus 290 mg/cm in the control group (Shilling et al., 2007). This disease 
appears to be especially common among the Japanese, but many cases are even described in 
Europe and United States (Muto et al., 1991). 

4.1 Clinical features 

The diagnosis of pycnodysostosis is usually performed during infancy or early childhood 
because of increased bone mass, short stature and cranial dysplasia. Pycnodysostosis could 
be confused with osteopetrosis, although it has peculiar features such as gracile clavicles 
with hypoplastic ends, obtuse mandibular angle, enlarged skull with opened anterior 
fontanel and cranial sutures, and acroosteolysis of distal phalanges (Soliman et al., 2001). 
Moreover, in pycnodysostosis anaemia and hepatosplenomegaly have not been reported. 
The exfoliation of deciduous teeth is usually altered, as well as the eruption of the 
permanent dentition. Endobones and radiodense striations are absent. As in osteopetrosis, 
pycnodysostosis patients may suffer from frequent fractures since the first year of life. 
Moreover, fractures of the mandible during tooth extractions have been described. Lower 
limbs seem to be particularly involved in fractures, resulting in genu valgu deformity. About 
10% of the patients show mental retardation. Moreover, recurrent respiratory infections and 
right heart failure have been described (Muto et al., 2005). 

4.2 Genetic inheritance 

Pycnodysostosis is an autosomal recessive disease caused by mutations of the CTSK gene.  
In 1995, Gelb and coworkers first mapped the disease in a narrow region on chromosome 
1q21 with a maximal lod score of 11.72 (Gelb et al., 1996). In 1996, they identified the 
mutated gene, CTSK, encoding the cathepsin K, a cystein proteinase expressed in many 
tissues such as bone, ovary, colon, skeletal muscle, placenta and small intestine (Zhao et al., 
2009). Cathepsin K is synthesized as an inactive precursor of 329 amino acids (aa). The N-
terminal pro-peptide of 99 aa is cleaved between Arg 114 and Ala 115 to supply the mature 
cathepsin K of 215 aa (Bromme & Okamoto, 1995). In the bone, it plays an important role in 
bone resorption since it cleaves, at acidic pH, collagen type I, osteopontin and other proteins 
of the bone matrix (McQueney et al., 1997). Particularly, cathepsin K cuts triple-helical 
collagen into small peptides. Cleavage occurs in its non collagenous termini (N- and C-
telopeptide regions). These fragments can be detected in urine and serum as markers of 
bone resorption (Atley et al., 2000). Cathepsin K-deficient mice generated by inactivation of 
the ctsk gene display an increase of bone mass as well as radiological and histological 
abnormalities typical of pycnodysostosis (Gowen et al., 1999; Saftig et al., 1998). The analysis 
of the genomic DNA indicated that the CTSK gene is composed by eight exons and seven 
introns (Rood et al., 1997). Presently, 27 different types of mutations, spread throughout the 
whole gene, have been described in 34 unrelated families (Helfrich, 2003; Toral-López et al., 
2011). According to bio-informatic analyses, all mutations seem to affect the protein folding, 
destabilizing the whole structure or creating locally structural changes that could affect the 
conformation of a small part of the protein (Donnarumma et al., 2007).  

5. Paget’s disease of bone 

Paget’s disease of bone is a common disorder characterized by increased bone turnover 
within focal lesions throughout the skeleton. It was described for the first time in 1876 by Sir 
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James Paget as a disease that “begins in middle age or later . . . affects most frequently the 
long bones of the lower extremities and the skull”. Moreover, he stated that “the bones 
enlarge and soften, and those bearing weight yield and become unnaturally curved and 
misshapen” (Paget, 1876). Paget’s disease of bone affects both men and woman, with a slight 
predominance in males (van Staa et al., 2002). Although many patients are often 
asymptomatic, others have a poor quality of life, with bone pain, skeletal deformities and 
fractures (Selby et al., 2002). The estimated prevalence of Paget’s disease of bone in the 
world is about 1%, arising up to about 3% in North America, Great Britain, Australia and 
Western Europe. Conversely, this disease is very rare in Scandinavia and in the Indian 
subcontinent (Detheridge et al., 1982). These marked geographical differences in the 
prevalence strengthen the importance of genetic factors involved in the pathogenesis of 
Paget’s disease of bone, but some evidence suggests an important role also for 
environmental determinants. 

5.1 Clinical features 

Paget’s disease of bone is a disorder of bone remodelling. It is very important to underline 

the localized nature of the disease. It could affect a single bone or only a portion of it, or it 

could involve more bones (Ralston, 2008). As described above, many patients affected by 

Paget’s disease of bone are often asymptomatic and the diagnosis is usually performed 

incidentally on the basis of elevated serum alkaline phosphatase levels not correlated with 

other diseases, or of abnormal skeletal radiographs (Tiegs et al., 2000). Conversely, other 

patients suffer from mild to moderate bone ache that characteristically begins late in the 

clinical course (Ralston et al., 2008). The direct cause of pain could be difficult to explain, 

requiring a careful analysis. An increase of vascularity and consequent warmth usually 

occur in pagetic bones, leading to unpleasant sensation perceived by patients (Altman, 

1980). Micro-fractures that frequently affect the diseased bone can contribute to discomfort. 

Another typical sign of the disease is skeletal deformity, usually of the femur or tibia, that 

could aid in the cause of pain onset (Ralston et al., 2008). Moreover, severe secondary 

osteoarthritis can be observed at joints close to pagetic bones. Patients affected by Paget’s 

disease of bone suffer from fractures that could be either traumatic or pathologic, 

particularly involving the long bones. The involvement of the skull in the disease 

complaints occurs in up to one third of the patients, and is characterized by macrocephaly, 

frontal bossing and hearing loss. Palsies of cranial nerves II, VI and VII could also be 

observed. Neoplastic degeneration, particularly osteogenic sarcoma involving the pelvis 

(although both fibrosarcoma and chondrosarcoma are also observed), develop in less that 

1% of patients (Reddy et al., 2001). 

5.2 Genetic inheritance 

As aforementioned, both genetic and environmental factors can contribute to the 
pathogenesis of Paget’s disease of bone. In less than 15-40% of cases, this disease is inherited 
in an autosomal dominant manner, even if many patients do not have a family history 
(Haslam et al., 1998; Hocking et al., 2000). Seven different loci have been identified by locus 
linkage studies associated with the onset of the disease. They are located on chromosomes 
2p36, 5q31, 5q35, 10p13, 18q21 and 18q23 (Good et al., 2002; Haslam et al., 1998; Hocking et 
al., 2001; Laurin et al., 2001; Tilyard et al., 1982). Other studies confute this linkage 
association, showing that the analysis may have false positives (Ralston, 2008). 
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Subsequently, Laurin et al. and Hocking et al. identified, by positional cloning studies on 
chromosome 5q35, the SQSTM1 gene as the most important cause of the disease (Hocking et 
al., 2002; Laurin et al., 2002). The SQSTM1 gene encodes the p62/sequestosome 1, an 
ubiquitously expressed adapter protein involved in several cellular activities, including 
regulation of NF-κB signalling, autophagy, sequestration of ubiquitinated proteins and 
inhibition of ERK-MAPK signalling (Mosca & Diaz-Meco, 2002) (Figure 5). Particularly, it 
was shown that p62 is able to bind TRAF6 and K48- and K63-linked ubiquitin chains via the 
UBA (UBiquitin-Associated) domain (Figure 5) (Seibenhener et al., 2004). It was shown that 
sequestosome 1 colocalizes with ubiquitinated protein aggregates, and it has been detected 
in protein aggregates typical of Alzheimer’s and Parkinson’s diseases (Paine et al., 2005). 
Moreover, most of the mutations found in Paget’s disease of bone are located in the UBA 
domains, preventing protein aggregation or, conversely, inducing the formation of 
aggregates larger than normal (Cavey et al., 2005; Cavey et al., 2006; Yip et al., 2006). 
However, it is not yet clear what role these aggregates might play in the pathogenesis of 
Paget's disease of bone. 
 

 

Fig. 5. Sequestosome/p62 pathway in osteoclasts. The binding of RANKL to the receptor 
RANK results in recruitment of TRAF6, p62 and aPKC (atypical Protein Kinase C). 
Moreover, the RANKL-RANK interaction leads to the phosphorylation of IKK (Inhibitor of 
κb kinase), that subsequently phosphorylates IκB (Inhibitor of κB). The phosphorylated IκB 
is degraded by the proteasome. NF-κB can translocate to the nucleus, inducing the 
expression of osteoclast specific genes. VCP (Valosin-Containing Protein) is involved in the 
regulation of IκB degradation by the proteasome. 

The first mutation identified in French pagetic patients was the Proline-Leucine mutation 
affecting codon 392 (P392L) in the UBA domain (Laurin et al., 2002). A transgenic mouse 
carrying the P392L mutation under the control of the tracp promoter was generated and 
displayed an osteopenic phenotype, with increased number of osteoclasts, but no osteolytic 
lesions (Kurihara et al., 2000). Another animal model was generated by the group of Ralston, 
carrying a truncating mutation at serine 409, that developed focal lesions, representing the 
first true model of the disease (Rojas et al., 2007). Several other genes have been associated 
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with Paget’s disease of bone, such as TNFSF11, TNFRSF11A and TNFRSF11B, this latter 
particularly in juvenile disease. However, these association studies still lack a sample size 
large enough to enable to draw definitive conclusions on the involvement of these genes in 
the disease (Ralston, 2008). 

6. Conclusions 

Osteopetrosis, pycnodysostosis and Paget’s disease of bone are examples of genetic diseases 
that underlie the essential role of osteoclasts in the regulation of bone homeostasis. They 
have been instrumental for the understanding of the mechanisms by which osteoclasts form 
and resorb bone and contributed to shed light on the pathogenesis of more frequent bone 
diseases, including osteoporosis and bone inflammatory disorders, such as osteoarthritis 
and rheumatoid arthritis (Tanaka et al., 2005). Further investigation on osteoclast genetic 
diseases is expected to help increase our knowledge about the recently identified 
relationships between the bone and other systems, including the immune system 
(Takayanagi, 2010), the nervous system (Kumar et al., 2010), the endocrine system (Ferron et 
al., 2010; Fukumoto & Martin, 2009; Karsenty & Oury, 2010), the reproductive system (Oury 
et., 2011) and the skeletal muscle system (Rufo et al., 2011), in which osteoclasts may be 
implicated. Therefore, in the next future we are likely to assist to flourishing novel insights 
into the osteoclast biology, physiology and pathology, which could represent the basis for a 
better prophylaxis and more effective treatments of bone diseases. 
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