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1. Introduction 

The increasing demand for microelectromechanical systems (MEMS) as, for example, 

piezoresistive sensors with capabilities of operating at high temperatures, mainly for 

automotive, petrochemical and aerospace applications,  has stimulated the research of 

alternative materials to silicon in the fabrication of these devices. It is known that the 

high temperature operating limit for silicon-based MEMS sensors is about 150ºC (Fraga, 

2009). 

Silicon carbide (SiC) has shown to be a good alternative to silicon in the development of 

MEMS sensors for harsh environments due to its excellent electrical characteristics as wide 

band-gap (3 eV), high breakdown field strength (10 times higher than Si) and low intrinsic 

carrier concentration which allow stable electronic properties under harsh environments 

(Cimalla et al., 2007; Wright & Horsfall, 2007; Rajab et al., 2006). In addition, SiC exhibits 

high elastic modulus at high temperatures which combined with the excellent electronic 

properties make it very attractive for piezoresistive sensors applications (Kulikovsky et al., 

2008). 

Silicon carbide can be obtained in bulk or film forms. In recent years, great progress has 

been made in the field of the growth of SiC bulk. Currently there are 6H-SiC, 4H-SiC and 

3C-SiC wafers commercially available. However, these wafers are still very expensive 

(Hobgood et al., 2004; Camassel & Juillaguet, 2007), so encouraging studies on crystalline 

and amorphous SiC films deposited on silicon or SOI (Silicon-On-Insulator) substrates using 

appropriate techniques. The use of SiC films besides being less expensive has another 

advantage which is the well known processing techniques for silicon micromachining. The 

challenge is to obtain SiC films with mechanical, electrical and piezoresistive properties as 

good as the bulk form. 

Nowadays, some research groups have studied the synthesis and characterization of SiC 

films obtained by different techniques namely, plasma enhanced chemical vapour 

deposition (PECVD), molecular beam epitaxy (MBE), sputtering, among others, aiming 

MEMS sensors applications (Chaudhuri et al., 2000; Fissel et al., 1995; Rajagopalan et al., 

2003; Lattemann et al., 2003). 
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The purpose of this chapter is to present an overview of the deposition techniques of SiC 
films, summarizing the deposition conditions that affect the piezoresistive properties of 
these films, the influence of the temperature on their piezoresistive properties and 
comparing the performance of piezoresistive sensors based on SiC films with those based in 
other materials. Moreover, the chapter focus attention is on the development of pressure 
sensors and accelerometers based on SiC films with suited piezoresistive properties to  
substitute the silicon in the microfabrication of these sensors so as to extend their endurance  
under harsh environment. 

2. Piezoresistive effect in SiC 

2.1 Brief overview 
Piezoresistivity is a physical property which has been widely used to convert a mechanical 
signal into an electrical one, in different device types such as pressure sensors, 
accelerometers, tactile sensors, strain gauges and flow sensors, among others.  
The piezoresistive effect was discovered by Lord Kelvin in 1856. This property is quantified 
in terms of gauge factor (GF), which is defined as the fractional change in the resistance per 
unit strain (Window, 1992):  

 1R
GF

R ε

∆
=  (1) 

where R is the nominal electrical resistance and ε the strain. GF is a dimensionless number 
that depends on the crystallographic orientation and is related to the elastic or Young's 
modulus of the material (E) by the following expression, 

 E
σ

ε
=  (2) 

where σ is the mechanical stress. A positive GF indicates an increase in resistance with stress 
increases whereas the negative correspond a decrease. 
Thus, from eq. (1) and (2), the piezoresistivity can be defined as the fractional change in the 
resistivity of a material when submitted to a mechanical stress. The change in resistance 
arises from two effects: the change in the dimension of the resistor and the change in the 
resistivity of the material itself. 
The large piezoresistive effect in silicon and germanium was first observed by Smith in 1954. 
Since then, it has been noted that the piezoresistive effect in semiconductor materials is 
highly anisotropic and exhibits a dependence on the dopant type, dopant concentration and 
crystalline orientation. Furthermore, in 1956 Morin et al. demonstrated the temperature 
dependence of the piezoresistance of silicon and germanium. 

In 1968, Rapatskaya et al. were the first to report the piezoresistive properties of n-type α-

SiC (6H-SiC). In the 70’s  three papers on piezoresistance in SiC were published by Guk: two 

on the piezoresistive characterization and temperature depence of the 6H-SiC polytype and 

one on the piezoresistance of β-SiC (3C-SiC). In 1993, Shor et al. have extended this study on 

piezoresistive properties of β-SiC discussing the GF and the temperature coefficient of 

resistance (TCR) of this material for several doping levels. In 1997, Strass et al. investigated 

the influence of crystal quality on the piezoresistive effect in β-SiC. In 1998, Okojie et al. 

determined the longitudinal and transverse GF and the TCR of n- and p-type 6H-SiC. 
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In 2002, Toriyama & Sugiyama performed a theoretical analysis on the piezoresistivity of ǐ-

SiC based on electron transfer and the mobility shift mechanism and in 2004 a detailed 

experimental study on piezoresistive properties of single crystalline, polycrystalline, and 

nanocrystalline n-type 3C-SiC was reported by Eickhoff et al.  

In parallel to these studies on characterization of piezoresistive properties of the SiC 

polytypes, some SiC sensors have been developed. In the ´90s, Okoije et al. developed 6H-

SiC pressure sensors for high temperature applications and Ziermann et al. reported a 

piezoresistive pressure sensor with  n-type ǐ-SiC thin-film piezoresistors on Silicon-on-

Insulators (SOI) substrate. In 2003, Atwell et al. simulated, fabricated and tested bulk 

micromachined 6H-SiC piezoresistive accelerometers. 

The good performance exhibited by the sensors based on 6H-SiC bulk and on 3C-SiC film 

have motivated studies on the piezoresistive properties of amorphous SiC (a-SiC) films 

produced at low temperatures by techniques such as PECVD and magnetron sputtering 

(Fraga, 2010, 2011a; Fraga et al., 2011b, 2011c).  

Table 1 presents the GF and TCR values of different SiC types and of some other materials 

commonly used in piezoresistive sensors. As can be observed, the p-type Si has the greater 

GF whereas the a-SiC film the smaller TCR. 

 

Material Form Dopant Structure GF * 
TCR  
(ppm/ºC) 

p-type Si  bulk Boron Crystalline 140 1082 

n-type Si  bulk Phosphorus Crystalline -133 1920 

Ge  thin film Boron Amorphous  10 3100 

Polysilicon  thin film Boron Polycristalline 34 100 

a-SiC  thin film Nitrogen Amorphous 49 36 

3C-SiC  
thick 
film 

Nitrogen Crystalline -31.8 400 

6H-SiC bulk Nitrogen Crystalline 15 -240 

* GF measured at room temperature 

Table 1. Comparison among the properties of some piezoresistive materials reported in 

literature (Fraga, 2011c; Shor, 1993; Okoije 1998a). 

2.2 Physical description 
The piezoresistive effect can also be defined as the tensor relationship between applied 
stress and change in resistivity (Johns, 2005): 

 
ij

ij kl

ρ
π σ

ρ

∆
=  (3) 

where  ρ  is the resistivity, π is the piezoresistive coefficient and σ is the mechanical stress. 

In the case of a material with cubic structure, the stress has six components σ1, σ2, and σ3 

(along the axes of the cube) and σ4, σ5, and σ6 (the shear stresses) as shown in Figure 1. 
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Fig. 1. Schematic illustration of the stress components. 

The six stress components and six resistivity components result in a matrix with 36 

piezoresistive coefficients. For the cubic crystal structure of materials such as silicon or β-

SiC, the matrix simplifies to only three piezoresistive coefficients (π11, π12, and π44) as shown 
in the following equation (Singh et al., 2002): 
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 (4) 

Although equation (4) models the piezoresistive effect in silicon in the direction of the 

crystal axes, customarily this effect is measured using only two coefficients: πl that relates 

the resistance change due to stress in the longitudinal direction and πt in the transverse 
direction. Therefore, the total resistivity change of a material can be simplified considering 
only changes under longitudinal and transverse stress components, 

 l l t t

ρ
π σ π σ

ρ

∆
= +  (5) 

The piezoresistive effect can be better understood by the analysis of the behavior of a 
resistor when submitted to a mechanical stress. It is known that the electrical resistance of an 
unstressed resistor is given by, 

 
L

R
A

ρ=   (6) 
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where L is the length and A the cross-sectional area of the resistor. When the resistor is 
subjected to a longitudinal stress, the resistivity, cross-sectional area and length will be 
changed as shown in the equation below: 

 
R L A

R L A

ρ

ρ

∆ ∆ ∆ ∆
= + +  (7) 

This resistor that changes its resistivity with an applied stress is called piezoresistor. As can 

be observed in equation (7), a fractional resistance change, 
R

R

∆ 
 
 

, can be influenced by two 

factors: resistivity change 
ρ

ρ

 ∆
 
 

 and dimensions change 
L

L

∆ 
 
 

, 
A

A

∆ 
 
 

. The dominant factor 

depends on the material type. In your experiments, Smith observed that for silicon the 
change in resistivity gives a larger contribution to the resistance changes than the change in 
dimensions of the resistor (Smith, 1954). 
Considering that the components associated with dimension change can be written as a 
function of the strain, we have: 

 l

L

L
ε

∆
=  (8) 

and 

 2 t

A W H

A W H
ε

∆ ∆ ∆
= + =  (9) 

In the above equations the fractional change in length is equal to the longitudinal strain 

whereas the change in area is the sum of change in width 
W

W

∆ 
 
 

and height
H

H

∆ 
 
 

. It is 

known that w H tε ε ε= = .  

Considering also that the longitudinal and transverse strain are related through equation: 

 t lε νε=  (10) 

where ν is the Poisson´s ratio of the material, thus the equation (7) can be simplified to 

 1 2( )l

R
v

R

ρ
ε

ρ

∆ ∆
= + +  (11) 

Thus, the gauge factor can be related to resistivity, longitudinal strain and Poisson’s ratio by 
the following equation (Allameh et al., 2006): 

 
1

1 2( )
l

GF v
ρ

ε ρ

∆
= + +  (12) 

Another important parameter to evaluate the piezoresistive effect is the temperature, whose 
influence on strain measurement cannot be neglected. When the ambient temperature 
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changes, the electrical resistance of the resistor changes
T

R

R ∆

∆ 
 
 

. This influence is measured 

through temperature coefficient of resistance (TCR) and temperature coefficient of gauge 
factor (TCGF)  that  describe the parts per million change in resistance (or GF) for every one 
degree change in temperature. These coefficients can be determined by 

 0
1 1 T

T

R RR
TCR

T R T R

−∆
= =

∆ ∆
 (13) 

 0

0

1TGF GF
TCGF

GF T

−
=

∆
 (14) 

where ∆T is the change in temperature, R0 and GF0 are the electrical resistance and the gauge 
factor measured at room temperature or reference temperature (usually 25ºC), respectively; and 
RT and GFT are the electrical resistance and gauge factor measured at an operating temperature.  

In a first analysis, the sensitivity of a piezoresistive sensor is evaluated in terms of GF, TCR 

and TCGF, i.e., a sensor with good performance should exhibit high GF and low TCR.  For 

this, there is great interest by the piezoresistive characterization of materials with low TCR. 

In their study, Shor et al. reported that to reduce the effect of changing in temperature on 

the performance of a sensor the TCR should be positive and preferably constant, the TCGF 

negative and TCR TCGF>  (Shor et al., 1993).  
In respect to the layout of a piezoresistive sensor, in general the most used configuration for 
the resistors is the Wheatstone bridge. In this configuration, four resistors are connected in 
loop as shown in Figure 2 and the output voltage is related to the input voltage according to 
the following equation: 

 3 4

1 3 2 4

out A B

s s

V RV V R

V V R R R R

−
= = −

+ +
 (15) 

where Vs is the supply voltage and Vout is the output voltage. 
 

 

Fig. 2. Wheatstone bridge configuration. 
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When subjected to a mechanical stress, the electrical resistance of the resistors change 
leading to a variation of the output voltage, according to the following relationship 

 
( ) ( ) ( ) ( )

3 3 4 4

1 1 3 3 2 2 4 4

out

s

V R R R R

V R R R R R R R R

∆ + ∆ + ∆
= −

+ ∆ + + ∆ + ∆ + + ∆
  (16) 

Whereas the four resistors have the same nominal resistance value (R1=R2=R3=R4) and that 
under mechanical stress the resistances R2 and R3 increases their values in +∆R,  the 
resistances R1 and R4 decreases their values in -∆R. Therefore, the equation (16) can be 
simplified to 

 
( )

2 2

out

s

R RV R R R

V R R R

− ∆∆ + ∆ ∆
= − =   (17) 

Given this, the sensitivity of a piezoresistive pressure sensor is determined by 

 
1 1out

s

VR
S

R P V P

∆∆
= =

∆ ∆
  (18) 

where ∆P is change in pressure.  
Whereas, for a piezoresistive accelerometer, the sensitivity is defined as the electrical output 
per unit of applied acceleration: 

 
1 1out

s

VR
S

R g V g

∆∆
= =   (19) 

where g is the acceleration of gravity. 

3. When and why to use SiC films in piezoresistive sensors? 

As shown in the previous section, in recent years many researchers have been reported on 
the piezoresistive characterization of different SiC polytypes aiming the applicability of 
these materials in sensors. When comparing these studies, it is observed that for a same SiC 
polytype a dispersion of different values can be obtained for piezoresistive coefficient, GF 
and TCR (Okoije, 2002).  
It is known that the SiC has about 200 polytypes with different physical properties. This is 
one of the difficulties in characterizing the piezoresistivity in SiC. Moreover, studies show 
that maximum value of GF for SiC at room temperature is between 30 at 49 while for the 
monocrystalline p-type Si is 140 (see Table 1). However, all studies published until now 
have demonstrated the potential of the 6H-SiC and 3C-SiC polytypes besides a-SiC for the 
development of piezoresistive sensors for high temperature application. Given this, it is 
important to evaluate when it is advantageous to use SiC in piezoresistive sensors and 
whether is better to use SiC in bulk or thin film form. 
This analysis should begin with the following question: Why SiC? 
Several studies show that the SiC has mechanical and chemical stability at high 

temperatures. Due to these characteristics the application of SiC sensors is always associated 

with harsh environments. In these environments, silicon has mechanical and chemical 

limitations. At temperature greater than 500ºC, silicon deforms plastically under small loads 
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(Pearson et al., 1957). In addition, the silicon does not support prolonged exposure to 

corrosive media. Another important factor that should be considered is that silicon pressure 

sensors using p-n junction piezoresistors have exhibited good performance at temperatures 

up to 175ºC and the SOI sensors at temperatures up to 500ºC. 

Among the semiconductor materials with potential to substitute the silicon in harsh 

environments, SiC is the most appropriate candidate because its native oxide is SiO2 which 

makes SiC directly compatible with the Si technology. This signifies that a sensor based on 

SiC can be developed following the same steps used in silicon sensors. 

On the other hand, the chemical stability that have qualified SiC for harsh environments,  

makes it difficult to etch the bulk and to integrate any process step with already established 

Si based processes. Furthermore, the high cost of SiC wafer also difficult the development of 

“all of SiC” sensors.  Faced with these difficulties the use of SiC thin films is quite attractive 

because the film can be grown on large-area Si substrates and by the ease of using 

conventional Si bulk micromachining techniques (Fraga et al., 2011a).  

The second question is: When to use piezoresistive sensors based on SiC? 
As already mentioned in the beginning of this section, at room temperature the 
monocrystalline silicon has greater GF than the SiC, i.e. sensors based on silicon operating 
on this condition has superior sensitivity. This fact shows that the use of SiC is only justified 
for specific applications in four main types of harsh environments, namely:  
a. Mechanically aggressive that involve high loads as in oil and gas industry applications 

which require sensors to operate in pressure ranges up to 35,000 psi and at 
temperatures up to 200°C (Vandelli, 2008); 

b. Thermally aggressive that involve high temperatures as in combustion control in gas 
turbine engines, where the operating temperatures are around  600°C (Vandelli, 2008) 
and in pressure monitoring during deep well drilling and combustion in aeronautical 
and automobile engines that require sensors to operate at temperatures ranging 
between 300 and 600ºC (Stanescu & Voican, 2007); 

c. Chemically aggressive or corrosive environment as in biomedical and petrochemical 
applications where chemical attack by fluids is one of the modes of degradation of 
devices. The SiC sensors are a good choice for these applications because at room 
temperature, there is no known wet chemical that etches single-crystal SiC (George et 
al., 2006); 

d. Aerospace environment where sensors should to maintain their functionality under 
high cumulative doses of radiation. Due to well known chemical inertness of the SiC, 
sensors based on this material have exhibited great potential for these applications. 

4. Brief description of the main techniques to deposit SiC films 

Several techniques for obtaining thin films and bulks of SiC have been developed. Some 

companies that manufacture crystalline silicon wafers also offer SiC bulk wafers up to 4 

inches in diameter. However, SiC wafers have an average price fifteen times higher than Si 

wafers with the same dimensions (Hobgood et al., 2004; Camassel & Juillaguet, 2007). 

Besides the high cost, another problem of the use of SiC substrates is the difficult 

micromachining process and high density of defects (Wu et al., 2001). In this context, there is 

a crescent interest in deposition techniques of SiC films on Si or SOI (Silicon-On-Insulator) 

substrates. These films can be produced in crystalline and amorphous forms. 
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Crystalline SiC (c-SiC) thin films can be produced by techniques that use temperatures higher 

than 1000°C as chemical vapour deposition (CVD) (Chaudhuri et al., 2000), molecular beam 

epitaxy (MBE) (Fissel et al., 1995) and electron cyclotron resonance (ECR) (Mandracci et al., 

2001). However, it is known that this high substrate temperature required for growing 

crystalline SiC onto Si substrate can degrade the quality of the SiC/Si interface leading to 

many defects in the grown films, which often prevents the film processing in conjunction with 

other microfabrication processes involved in a MEMS device fabrication. Conversely, there are 

attractive processes for the synthesis of thin films at low temperature as those based on plasma 

assisted techniques, such as plasma chemical vapour deposition (PECVD) and plasma 

sputtering, which operate at temperatures below 600°C (Rajagopalan et al., 2003; Lattemann et 

al., 2003). But SiC films obtained at low temperature processes are amorphous (a-SiC) or nano-

crystallines (nc-SiC) and, thus, can exhibit properties somewhat different from those observed 

in crystalline films (Foti, 2001). Because of this, a process usually used to improve the 

crystallinity of the a-SiC films is the annealing (Rajab et al., 2006). 

Among the techniques used to deposit SiC films, in this chapter only four of them will be 

described: CVD, PECVD, magnetron sputtering and co-sputtering. These techniques were 

chosen because have been used with success in the deposition of undoped and doped SiC 

films for MEMS sensors application. A common point among them is the ease to perform 

the “in situ” doping by the addition of dopant gas (N2, PH3 or B2H6) during the film 

deposition.  

4.1 Chemical deposition processes: CVD and PECVD techniques 
One of the most popular (laboratory) thin film deposition techniques nowadays are those 

based on chemical deposition processes such as chemical vapor deposition (CVD) and 

plasma enhanced chemical vapor deposition (PECVD) (Grill, 1994; Ohring, 2002; Bogaerts et 

al., 2002).  

CVD or thermal CVD is the process of gas phase heating (by a hot filament, for example 

(Gracio et al., 2010)) in order for causing the decomposition of the gas, generating radical 

species that by diffusion can reach and be deposited on a suitably placed substrate. It differs 

from physical vapor deposition (PVD), which relies on material transfer from condensed-

phase evaporant or sputter target sources (see section 4.2.). A reaction chamber is used for 

this process, into which the reactant gases are introduced to decompose and react with the 

substrate to form the film. Figure 3a illustrates a schematic of the reactor and its main 

components. Basically, a typical CVD system consists of the following parts: 1) sources and 

feed lines of gases; 2) mass flow controllers for metering the gas inlet; 3) a reaction chamber 

for decomposition of precursor gases; 4) a system for heating up the gas phase and wafer on 

which the film is to be deposited; and 5) temperature sensors.  

Concerning the gas chemistry of CVD process for SiC film production, usually silane (SiH4) 

and light hydrocarbons gases are used, such as propane or ethylene, diluted in hydrogen as 

a carrier gas (Chowdhury et al., 2011). Moreover, the main CVD reactor types used are 

atmospheric pressure CVD (APCVD) and low-pressure CVD (LPCVD). 

As a modification to the CVD system, PECVD arose when plasma is used to perform the 
decomposition of the reactive gas source. By chemical reactions in the plasma (mainly 
electron impact ionization and dissociation), different kinds of ions and radicals are formed 
which diffuse toward the substrate where   chemical surface reactions are promoted leading 
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to film growth. The major advantage compared to simple CVD is that PECVD can operate at 
much lower temperatures. Indeed, the electron temperature of 2–5 eV in PECVD is sufficient 
for dissociation, whereas in CVD the gas and surface reactions occur by thermal activation. 
Hence, some coatings, which are difficult to form by CVD due to melting problems, can be 
deposited more easily with PECVD (Bogaerts et al., 2002; Peng et al., 2011). Among the 
kinds of plasma sources that have been used for this application stand out the 
radiofrequency (rf) discharges (Bogaerts et al., 2002), pulsed discharges (Zhao et al., 2010) 
and microwave discharges (Gracio et al., 2010). 
Basically, in PECVD the substrate is mounted on one of the electrodes in the same reactor 
where the species are created (see Figure 3b). Here, we focused the rf discharge because it is 
the configuration more used in research and industry. The rf PECVD reactor essentially 
consists of two electrodes of different areas, where the substrate is placed on the smaller 
electrode, to which the power is capacitively coupled. The rf power creates a plasma 
between the electrodes. Due to the higher mobility of the electrons than the ions, a sheath is 
created next to the electrodes containing an excess of ions. Hence, the sheath has a positive 
space charge, and the plasma creates a positive voltage with respect to the electrodes. The 
electrodes therefore acquire a dc self-bias equal to their peak rf voltage (self-bias electrode). 
The ratio of the dc self-bias voltages is inversely proportional to the ratio of the squared 
electrode areas, i.e., V1/V2 = (A1/A2)2 (Lieberman & Lichtenberg, 2005). 
 

 

Fig. 3. Schematic diagram of CVD (a) and PECVD (b) systems. 
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Therefore, the smaller electrode acquires a larger bias voltage and becomes negative with 

respect to the larger electrode. The negative sheath voltage accelerates the positive ions 

towards the substrate which is mounted on this smaller electrode, allowing the substrate to 

become bombarded by energetic ions facilitating reactions with substrate surface. 

In order to maximize the ion to neutral ratio of the plasma, the plasma must be operated at 

the lowest possible pressure. Nevertheless, the ions are only about 10 percent of the film-

forming flux even at pressures as low as 50 mTorr. Lower pressures cannot be used as the 

plasma wills no longer strike. A second disadvantage of this source is the energy spread in 

the ion energy distribution, prohibiting a controlled deposition. This energy spread is due to 

inelastic collisions as the ions are accelerated towards the substrate. The effect of this energy 

spread is to lower the mean ion energy to about 0.4 of the sheath voltage. Still, another 

disadvantage of the rf PECVD source is that it is not possible to have independent control 

over the ion energy and the ion current, as they both vary with the rf power. On the other 

hand, PECVD allows the deposition of uniform films over large areas, and PECVD systems 

can be easily scaled up (Neyts, 2006). 

The most used precursor gases to deposit SiC films by PECVD are SiH4, as the silicon 

source, and methane (CH4), as carbon source. Finally, Figure 4 illustrates the deposition 

mechanism of chemical vapor deposition technique (Grill, 1994). Basically the mechanism 

occurs by the following steps: (i) a predefined mix of reactant gases and diluents inert 

gases are introduced at a specified flow rate into the reaction chamber;  (ii) a heat source 

is applied in order to dissociate the reactant gases; (iii) the resulting radical species diffuse 

to the substrate; (iv) the reactants get adsorbed on the surface of the substrate; (v) the 

reactants undergo chemical reactions with the substrate to form the film; and (vi) the 

gaseous by-products of the reactions are desorbed and evacuated from the reaction 

chamber.        

 

 

Fig. 4. Chemical vapor deposition mechanism. Adapted from (Doi, 2006). 
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4.2 Physical deposition processes: Magnetron sputtering and co-sputtering 
techniques 
The physical deposition process comprise the physical sputtering and reactive sputtering 
techniques. Basically, these techniques differ when a neutral gas (physical sputtering) is 
added together with a reactive gas (reactive sputtering). In physical sputtering, ions (and 
atoms) from the plasma bombard the target, and release atoms (or molecules) of the target 
material. Argon ions at 500–1000 V are usually used. The sputtered atoms diffuse through 
the plasma and arrive at the substrate, where they can be deposited (Bogaerts et. al., 2002). 
In reactive sputtering, use is made of a molecular gas (for example, N2 or O2). Beside the 
positive ions from the plasma that sputter bombard the target, the dissociation products 
from the reactive gas will also react with the target. Hence, the film deposited at the 
substrate will be a combination of sputtered target material and the reactive gas (Bogaerts et 
al., 2002; Berg, 2005; Lieberman & Lichtenberg, 2005). The sputter deposition process is 
schematically presented in Figure 5. 
 

 

Fig. 5. Schematic of sputtering process. 

Basically the steps of sputtering process are the following: (i) the neutral gas is ionized by a 
external power supply, producing a glow discharge or plasma; (ii) a source (the cathode, 
also called the target) is bombarded in high vacuum by gas ions due to the potential drop 
acceleration in the cathode sheath; (iii) atoms from the target are ejected by momentum 
transfer and diffuse through the vacuum chamber; (iv) atoms are deposited on the substrate 
to be coated and form a thin film. 
Because sputter yields are of order unity for almost all target materials, a very wide variety 
of pure metals, alloys, and insulators can be deposited. Physical sputtering, especially of 
elemental targets, is a well understood process enabling sputtering systems for various 
applications to be relatively easily designed. Reasonable deposition rates with excellent film 
uniformity, good surface smoothness, and adhesion can be achieved over large areas 
(Lieberman & Lichtenberg, 2005). 
Typically, the sputtering process can be accomplished using a planar configuration of electrodes 
and a dc power supply, where one electrode is biased negatively (cathode) and suffer the 
sputtering process. However, the sputtering yield is directly dependent on the gas pressure 
(best sputtering rates are in the range of mTorr) a fact that compromises the efficiency of planar 
geometry for this application: it is great for pressures above 100 mTorr. To solve this problem, it 
was developed the magnetron discharge where the plasma is magnetically enhanced by placing 
magnets behind the cathode target, i.e., a crossed electric and magnetic field configuration is 
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created. Figure 6 shows a schematic drawing of a conventional dc magnetron sputtering 
discharge. The trapping of the secondary electrons results in a higher probability of electron 
impact ionization and hence higher plasma density, increasing the sputtering flux and allowing 
operation at lower pressures, bellows 10 mTorr. Furthermore, the discharge voltage can be 
lowered into the range of 300-700 V. The main problem with the magnetron sputtering 
configuration is that the sputtering is confined to a small area of the target cathode governed by 
the magnetic field. The discharge appears in the form a high-density annulus of width w and 
radius R, as seen in Figure 6. Sputtering occurs in the corresponding track of the target. This 
area, known as the race track, is created by the uneven ion density. 
 

 

Fig. 6. Schematic drawing of a conventional dc magnetron sputtering discharge. Adapted 
from (Bogaerts et al., 2002). 

Deposition of SiC films by the Magnetron Sputtering technique is performed generally using 
a SiC target in Ar atmosphere or a silicon target with precursor gases Ar plus CH4 (Stamate 
et al., 2008). The dual magnetron (or co-sputtering) method also has been used to deposit 
SiC films. In this technique, the films are produced by co-sputtering of carbon and silicon 
targets (see Figure 7) with Ar as precursor gas (Kikuchi et al., 2002; Kerdiles et al., 2002). The 
co-sputtering technique offers as main advantage to obtaining of SiC films with different 
electrical, structural and mechanical  properties by the variation of C/Si ratio in the film 
deposited (Kikuchi et al., 2002). Using this technique, it is possible to obtain a range of SiC 
film compositions by applied different power on each target (Medeiros et al., 2011). 

5. Requirements of SiC films for piezoresistive sensors application 

In order to develop piezoresistive sensors with high performance based on SiC films is 
necessary to optimize the properties of the SiC thin-film piezoresistors to maximize their 
sensitivity with the minimum temperature-dependent resistance variation (Luchinin & 
Korlyakov, 2009). 
The first step for this optimization is the choice of the technique to deposit SiC films onto an 
insulator on Si substrates. Silicon dioxide (SiO2) is the most used insulator material for this 
purpose, but some studies have showed silicon nitride (Si3N4) or aluminum nitride (AlN) as 
alternative materials. In general, good results have been achieved with the SiO2, although this 
material has a coefficient of thermal expansion (CTE) significantly lower than the SiC, giving 
rise to thermal stresses at the SiC/SiO2 interface. Many studies have shown CVD, PECVD and 
sputtering as appropriate techniques to deposit SiC films on SiO2/Si (Zanola, 2004).  
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Fig. 7. Schematic diagram of magnetron co-sputtering deposition technique. 

After the film deposition, the residual stress must be investigated. SiC films obtained by 
CVD have low residual stress due to high temperatures involved in this process. However, 
films obtained by PECVD and sputtering exhibit a significant tensile or compressive 
residual stress that is dependent on various deposition parameters. To reduce this stress 
post-deposition thermal annealing is usually performed (Zorman, 2006). 
The following step is used to determine the chemical, physical and structural properties of 
the as-deposited SiC film. For piezoresistive sensor applications, it is fundamental the 
knowledge of the orientation, elastic modulus, doping concentration and resistivity of the 
film. After determining these properties, the piezoresistive characterization of the film is 
started. First, a test structure must be developed. Generally, this structure consists of a SiC 
thin-film piezoresistor fabricated by photolithography, lift-off and etching processes as 
illustrated in Figure 8.  
 

 

Fig. 8. Schematic flow diagram of the SiC thin-film resistor fabrication process. 
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The most used technique to determine the value of GF of a piezoresistor is the cantilever 
deflection method. In this method, the piezoresistor is glued near to the clamped end of a 
cantilever beam and on the free end of the beam different loads are applied. The value of GF 
is obtained by monitoring the resistance change when the resistor is subjected to different 
applied stress. Once determined the GF, the TCR and the TCGF are determined to evaluate 
the influence of the temperature (see details on topic 2). 
Table 2 summarizes the main requirements that SiC film should present to be successfully 
used in the development of piezoresistive sensors. As can be seen, the resistivity of the SiC 

thin film should be low (preferably of the order of  mΩ.cm) because its thickness in general 

less than 1.0 µm. As the depth of the SiC thin-film piezoresistor is equals the thickness film, 
it is necessary a low resistivity film to form low electrical resistance piezoresistors.  
 

Electrical and Mechanical Characteristics Requirement 

Elastic modulus The greater 

Residual stress The lower 

Resistivity The lower 

GF The greater 

TCR The lower 

TCGF The lower 

Table 2. Main requirements of SiC films for piezoresistive sensor applications. 

6. Examples of piezoresistive sensors based on SiC films 

Among the many silicon-based microsensors, piezoresistive pressure sensors are one of the 
widely used products of microelectromechanical system (MEMS) technology. This type of 
sensor has dominated the market in recent decades due to characteristics such as high 
sensitivity, high linearity, and an easy-to-retrieve signal through bridge circuit. The main 
applications of Si-based piezoresistive pressure sensors are in the biomedical, industrial and 
automotive fields. However, these sensors have a drawback that is the influence of the 
temperature on their performance. For some applications, this temperature effect can be 
compensated by an external circuit, which adds substantial cost to the sensor. 
Given this, many studies have been performed aiming to reduce the temperature effects 

on the performance of the sensor through the use of piezoresistive sensing elements 

formed by wide bandgap semiconductor thin film as the SiC. The goal is to develop 

sensors as small as possible and enable to operate at high temperatures. For this, besides 

making the piezoresistors based on material with suitable properties for high temperature 

applications should also be used stable electrical contacts with excellent environmental 

stability. It is known that the metallization type also influences the performance of the 

devices at harsh environments. Studies show that for SiC sensors the best high-

temperature contacts are metal as Au, Ni, Ti and W and binary compounds such as TiSi2 

and WiSi2  (Cocuzza, 2003). 

A typical SiC thin-film based piezoresistive pressure sensor consists of SiC thin-film 
piezoresistors, configured in Wheatstone bridge, on a diaphragm. The monocrystalline silicon is 
the material most used to form the diaphragm due its mechanical properties which make it an 
excellent material for elastic structural members of a sensor. In addition, the Si diaphragms can 
be easily fabricated by KOH anisotropic etching from the backside of a (100) silicon wafer using 
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the SiO2 or Si3N4 film as etch mask. It is also necessary to grow SiO2 or Si3N4 on the front side of 
the wafer to perform the electrical insulation of the SiC thin-film piezoresistors from the 
substrate. Generally, the SiC thin-film piezoresistors are produced by RIE (reactive ion etching). 
Figure 9 illustrates two piezoresistive pressure sensors based on SiC films: one with six 
PECVD a-SiC thin-film piezoresistors, configured in Wheatstone bridge, on a SiO2/Si square 
diaphragm with Ti/Au metallization (Fraga et al., 2011b) and the other with phosphorus-
doped APCVD polycrystalline 3C-SiC piezoresistors on Si3N4/3C-SiC diaphragm with Ni 
metallization (Wu et al., 2006). 
 

 

Fig. 9. Schematic illustration of piezoresistive pressure sensors based on SiC films. 

Another sensor type that has been developed based on SiC is the accelerometer. However, 

for now, the studies are still focused on piezoresistive accelerometers based on 6H-SiC bulk 

substrate (Atwell et al., 2003) or  on SiC thin-film capacitive accelerometers (Rajaraman et 

al., 2011). 

This occurs because the capacitive accelerometer is usually more sensitive than 

piezoresistive one and furthermore can be used in a wide range of temperature. On the 

other hand, the capacitive accelerometers have elevated cost and necessity of signal 

conditioning circuit (Koberstein, 2005). The motivation to develop piezoresistive 

accelerometers on 6H-SiC bulk is the possibility of obtaining superior performance at high 

temperature in comparison with capacitive accelerometer. 
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As mentioned earlier, the cost of the 6H-SiC is  also  elevated which has stimulated the 
researches on SiC thin-film piezoresistive accelerometer. The simplest model for this 
accelerometer is illustrated in Figure 10. This accelerometer consists of a SiC thin-film 
piezoresistor (or four piezoresistors configured in Wheatstone bridge) on a silicon cantilever 
beam which has  a rigid silicon proof mass attached at its free end. The basic principle of this 
type of sensor is that the acceleration moves the proof mass   so deflecting the  cantilever  
which works as a spring. The mass shift produces a variation of the internal stress of the spring 
that can be sensed by the piezoresistor. The value of the acceleration can be inferred by the 
measurement of the magnitude of the stress. The main problem of this accelerometer is that all 
its structure is built on silicon which can limit the performance at harsh environments. 
 

 

Fig. 10. Schematic illustration of a SiC thin-film based piezoresistive accelerometer. 
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7. Summary 

It is notable that in recent years significant advances have been made in the SiC thin film 
technology for piezoresistive sensors application. These advances include improvement of 
deposition techniques to optimize the electrical, mechanical and piezoresistive properties of 
crystalline and amorphous SiC films which have enabled the development of sensors 
appropriate for harsh environments with costs lower than those based on SiC bulk. 
This chapter reviewed the concepts of piezoresistivity, presented a brief survey on the 
studies of piezoresistive properties of SiC films, described the main techniques that are 
being used to deposit SiC films for MEMS sensor applications, discussed when and why to 
use SiC and what are the requirements that  SiC films must attain to be applied successfully 
in piezoresistive sensors. Futhermore, it was shown examples of SiC film based pressure 
sensors and accelerometers. 
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