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Climate Change in the Mediterranean  
over the Last Five Hundred Years 

Dario Camuffo et al.*  
National Research Council of Italy (CNR)  

Institute of Atmospheric Sciences and Climate (ISAC), Padua  
Italy 

1. Introduction 

Global Warming (GW) is expected to affect the Mediterranean area with three major 
challenges, i.e. increase in temperature, decrease in precipitation and sea level rise that will 
likely submerge the coastal areas, including Venice. Aim of this Chapter is to discuss the 
expected changes under the light of long-term observations. Documentary proxies and 
instrumental readings in Portugal, Spain, France and Italy have been recovered and 
analysed. These observations cover the last five centuries from the Little Ice Age (LIA) to the 
present-day GW. 
This Chapter is based on documentary proxies and instrumental series collected over the 
Mediterranean area, i.e. Portugal, Spain, France and Italy (Fig.1) within the EU funded 
ADVICE, IMPROVE, MILLENNIUM, and Climate for Culture projects. A huge effort was made to 
seek for written sources and original logs with early and less recent instrumental readings. 
The next steps were to recover, correct, adjust to modern standards, homogenize and 
analyse the earliest data and most of the longest European series. The detailed study of the 
history of the series (e.g. instrument type, calibration, observational methodology, sampling 
time, exposure, location) and the recovery of any related metadata were fundamental to 
apply and perform the due corrections to the series. The methodology was presented in 
previous papers (Camuffo and Jones, 2002, Camuffo et al. 2010a) 
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Fig. 1. The Mediterranean Basin with the indicated locations (black circles) where documentary 
proxies and/or instrumental observations have been retrieved for use in this Chapter, divided 
by countries, i.e.: Portugal (P), Spain (S), France (F) and Italy (I). The stations are: Lisbon (P), 
Cadiz (S), Seville (S), Murcia (S), Barcelona (S), Perpignan (F), Narbonne (F), Carcassonne (F), 
Toulouse (F), Montpellier (F), Lyon (F), Milan (I), Padua (I), Bologna (I), Vallombrosa (I), 
Florence (I), Benevento (I), Naples (I), Locorotondo (I) and Palermo (I). 

2. Weather in the Mediterranean  

The Northern part of the Mediterranean Basin is under the influence of the European 

continental climate, the shield of extended mountain chains and the penetration of 

external air masses through the mountain gates. The rest of the Basin is strongly 

conditioned by the difference in temperature between the air and the seawaters and the 

expected increase in temperature could reduce the annual precipitation, increasing the 

aridity in the warmest areas. 

In the warm season (May-October) the Azores High is well developed and prevents external 

air from entering the Mediterranean. The local air is warmer than the seawater and blows 

over the Mediterranean with reduced heat and moisture exchanges, forming thermal 

layering, atmospheric stability and clear sky. In the warm season, precipitation is possible 

only on the Northern side, for the passage of Atlantic disturbances or the formation of 

convective clouds and afternoon thunderstorms especially in the mountain areas. 
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In the mid seasons, when the Azores High weakens, Atlantic disturbances penetrate and 
diagonally cross the Mediterranean, bringing cold air and stormy weather. The southern 
part of the Basin remains untouched, with no precipitation. 
In the cold season, when continental Europe is cold, a high-pressure ridge forms over 

Europe, joining the Russian with the Azores High, and tends to block the passage of 

fronts and disturbances coming from West. Polar or arctic air blows from North or from 

East. During their motion towards lower latitudes, the cold air masses increase in 

temperature and depart more and more from saturation, so that no precipitation is 

possible on the Northern coast. However, when cold air blows over the Mediterranean 

Sea, the air gains heat and moisture from the warm water, forming atmospheric mixing, 

large clouds and precipitation on the downwind regions. Warm water feeds clouds and 

enhances depressions and storms, especially in the occasion of cold air inflows from 

North or East. The mountain chains surrounding the Mediterranean shield most of the 

basin but leave some open gates through which external air may enter with violence, 

determining some local strong winds e.g. Mistral, Libeccio, Bora, Etesians, Vardar and 

Sirocco. However, the worst stormy weather is associated with the penetration of low 

pressures from North or West. When a northern trough enters the Mediterranean in the 

cold season, it is fed by the warm water and generates violent storms on the Eastern coast 

of the Spain, Southern France and Italy. Atlantic depressions enter the Mediterranean 

crossing diagonally France and penetrating through the gate between the Pyrenees and 

the Alps, or crossing the Iberian Peninsula with a westerly circulation. Westerly 

depressions bring heavy precipitation over Portugal and Spain with decreasing intensity 

while advancing. When they enter the Mediterranean, they are fed by the warm seawater, 

increase in strength and cause heavy precipitation on the Eastern coast of Spain, Southern 

France and Northern-Central Italy. More details about the particularities of the 

Mediterranean climate can be found for instance in UK Meteorological Office (1962); 

Reiter (1975); Wallén (1970; 1977), Jeftic et al. (1992), Bolle (2003), Xoplaki et al. (2003; 

2004); Fletcher et al. (2005), Lionello et al. (2006) Camuffo et al. (2010a,b), Glaser et al. 

(2010), Luterbacher et al. (2010). 

3. Documentary proxies 

3.1 Documentary sources in the Mediterranean area 
In the period before the instrumental observations, the climate in the Mediterranean area is 

known after written sources that fully cover the Medieval Optimum and the LIA. This area 

is rich in documents concerning descriptions of exceptional or regular weather events and 

natural hazards, e.g. intense rain and rivers in flood; aridity, famine and rivers in low; 

severe cold killing people, animals and trees; freezing over large water bodies; regular 

weather and abundant yield. These documents may be manuscript or printed press and can 

be classified according their character and purposes, as follows. 

 Narrative sources: generic descriptions of events, such as chronicles, annals, diaries, 
correspondence, poems and compilations of remarkable events written for historical 
purposes, the pleasure of informing or disseminating news. 

 Ecclesiastic sources: registers noting liturgical services and rogation ceremonies 
commissioned by the local community or authority in the case of adverse conditions. 
The most relevant topics were: to beg for rain (pro pluvia) in view of the yield, or to 
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stop precipitation (pro serenitate) especially in the case of rivers in flood, or in the 
occasion of famine, plague, locust invasions or any other challenge. 

 Administrative sources: official documents (e.g. diplomatic letters, municipal registers, 
inspection reports) written by public officers to describe some local catastrophe 
happened, its impact on the society and the landscape and the remedy actions to 
undertake, e.g. repair and maintenance, temporary reduction of taxes. 

In principle, the most accurate sources are the Administrative ones, being written with the 

purpose of being absolutely precise and objective; then the Ecclesiastic ones reflecting the 

duration and severity of the extreme meteorological events, because the clergy followed a 

rather standardized style combining some liturgical formats with challenge severity level, 

being more solemn and complex with increasing hazard severity and risk. Abundant 

literature exists on the above subjects (Camuffo and Enzi, 1992a,b, 1994, 1996, 2010a; Enzi 

and Camuffo, 1995; Martín-Vide & Barriendos, 1995; Brazdil, 1999; Barriendos, 1997, 2005; 

Pfister et al., 1999; Alcoforado et al., 2000; Piervitali & Colacino, 2001; Barriendos & Llasat, 

2003; Chuine et al., 2004; Brazdil et al., 2005, 2010; Luterbacher et al., 2006; Dominguez-

Castro et al., 2008; Rodrigo & Barriendos, 2008). Written documents describe events with 

emphasis proportional to the impact that the event had on the society, the landscape or 

something else that the observer considered highly relevant to his advice. A number of 

severe events, confirmed by a number of dramatic consequences, were caused by some 

relatively short-term peaks, or drops, in temperature, precipitation or other meteorological 

variables. For instance, severe floods were generated by rain persisting over a limited 

number of days. The greatest winters in the history were renamed for some dramatic and 

spectacular effects (e.g. large water bodies unusually frozen over and supporting people) 

but were caused by two, three, maximum four weeks of very intense cold. However, from 

the comparison between documentary sources and instrumental observations, we see that 

such peaks and drops appear evident on the daily series, but tend to disappear when 

increasing the averaging period, i.e. they are almost damped on monthly averages. 

Therefore, some extreme events that are well known after written sources, when compared 

with instrumental data, may appear fully or partially justified depending on the temporal 

window used for the statistical analysis of the instrumental observations. Documentary 

sources are useful to establish the occurrence, and the frequency, of extreme events, the 

short-term variability, the persistence of some dry or wet, cold or hot periods particularly 

relevant to the agriculture, the landscape or the society. However, they are unable to 

provide long-term trends. 

3.2 From written documents to indexes, and from indexes to proxy data 
It is obvious that the written documents are extremely relevant because they qualitatively 

inform us about the weather and the climate in the period before the instrumental 

observations. Their value is even greater if they can be transformed from literary items into 

numbers to be used instead of instrumental readings. If such a case, the above written 

sources are transformed into “proxy data” that constitute an indirect way of assessing what 

historical temperature or precipitation might have been. Literally, “proxy” is a person 

having power of attorney, i.e. authorized to act for, or to represent another person on a 

single occasion. In the case some items are objectively related to temperature or 

precipitation, they can be considered “proxies”, i.e. a valid replacement of real instrumental 
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observations if the latter are missing. If we can express proxies in numerical terms, and if we 

can in some way control and validate the numbers that we will obtain after having applied 

some transformation, we will obtain sound “proxy data” that will provide the needed 

information about past climate. 

Written sources are transformed into proxy data following a careful series of 

transformations. First the sentence is interpreted, analysed and classified in terms of 

exceptionality looking at the description of the event and on the ground of objective facts, 

e.g. the effects it has produced. The classification is made attributing levels from +3 to a 

really extreme and well-documented event (e.g. extremely high temperature or abundant 

precipitation), as we can expect to occur not more than two or three times per century, to -3 

to the symmetrical, but negative case (e.g. extreme cold or aridity). Levels ±2 and ±1 are 

used for intermediate levels at decreasing severity and of course level 0 is “normality”. The 

various severity levels are inspired to the departure of readings from the average, expressed 

in terms of standard deviation (SD), e.g. level 0 lies between + 0.5 SD; levels +1 lie externally 

to level 0 but are topped by +1 SD; and similarly with levels +2 topped by +2 SD; the levels 

+3 being external to +2 SD. In this way the episodes taken from written sources are indexed 

into severity levels, but they are not yet expressed in quantitative terms of degrees of 

temperature (°C) or precipitation amount (mm, or % in comparison with the precipitation 

occurred in a selected reference period). The transformation of an index into numerical 

values of temperature or precipitation, i.e. into a proxy data, is made with the help of a 

common period in which we have both such indexes and instrumental observations. In such 

a case it is immediate to find a correspondence between the two and know the 

transformation. 

Proxies are useful in the absence of instrumental observations and their transformation is 

made in an objective way. However, they have some weak points, as follows:  

- In some periods the documentation is scarce and we cannot be sure that the totality of 

the events, or what part of them, has been represented. In these periods it is impossible 

to know if the 0 level is “normality” or missing value. 

- It is obvious that all the data are expressed in relative terms, the absolute reference level 

being missed. The transformed data are similar to the so called “anomaly”, i.e. the 

difference between the selected level and the 1961-1990 reference period for 

temperature, and the ratio between these two values for precipitation, but reference is 

made with the personal experience of the writer and not with a standard period. 

- The severity is based on the witness of people living at that time, and reflects what was 

considered regular or extraordinary at that time. This means that the zero level, i.e. the 

“normality” remains flat: we can evaluate high-frequency fluctuations, but we miss 

long-term trends or cycles. 

- Calibration and validation are based on a relatively recent period when simultaneous 

instrumental observations were available. However, going back in the time, we 

automatically extend the results to earlier periods in which the perception of man was 

different and conditioned by the culture of his time. This means that the calibration 

becomes uncertain when we extend it back over the previous centuries. 

However, despite the above limits, proxy data constitute a very valuable source of 

information for the climate of the past centuries. The data analysis has been performed as 

already discussed in Camuffo et al. (2010a). 
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3.3 Results from the documentary proxies 
This research was able to recover a satisfactory amount of proxies, sufficient to provide a 

reasonable documentation for all the four seasons in Northern-Central Italy followed by 

Southern France for temperature, and in Spain, Southern France and Northern-Central Italy 

for precipitation. The period after 1700 is better documented by instrumental records, but it 

has been useful for the calibration and validation of the proxies. 

The temperature in Southern France is shown in Fig.2 and in Northern-Central Italy in Fig.3. 

In general, temperature is best documented in winter, followed by spring, for many 

complaints concerning cold severity, snow and frost. The less documented season is 

autumn, because in this season temperature is not a critical factor. In the period from 1500 to 

1700, winter and spring seem having been characterized by cold episodes more frequently 

than today both in Southern France and in Northern-Central Italy. Hot summers have been 

more frequent than fresh summers, at least in Italy. 

 
 
 
 
 

 
 

 
 

Fig. 2. Seasonal temperature anomaly (°C) from documentary proxy data in Southern France. 
The baseline has been set to be correspondent to the average of the whole instrumental period. 
Thin  lines refer to proxies, thick  lines to 11-year running averages. Seasons in the plots are 
related to DJF (Winter), MAM (Spring), JJA (Summer) and SON (Autumn). 
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Fig. 3. Seasonal temperature anomaly (°C) from documentary proxy data in Northern-
Central Italy. Symbols as in Figure 2. 

The precipitation too is presented in terms of anomaly, but expressed as normalized ratio, 

i.e. the ratio between the observed values and the related ones in the 1961-1990 reference 

period, i.e. 0 means no precipitation, 1 the same precipitation as in the reference period, 2 is 

twice the precipitation observed in the reference, etc. This style follows IPCC 2007 (Le Treut 

et al., 2007). 

The information concerning precipitation is more abundant in Spain (Fig.4) because this 

area is dryer than Southern France and Northern-Central Italy, with the consequence that 

people made frequent rogations and ceremonies to implore rain for crops. When rain occurs, 

it is intense or long lasting, and rivers risk being in flood. The risk of spot floods easily 

brings the local inhabitants to pray to stop rain.  Documents are almost equally distributed 

over the four seasons, and in all of them ultra-decadal swings between dryer and wetter are 

visible. In Southern France (Fig.5) the precipitation is a less critical factor and for this reason 

proxies are less frequent. Rainfall is better documented in spring and summer because in 

these seasons rainfall is necessary for the growth and maturation of the agricultural 

products. In the second half of the 1500s and in the first half of the 1700s when the 

information density is higher, we can recognize two oscillations. In particular the 1550-1570 

period rainfall was particularly abundant in summer and autumn. 

In Northern-Central Italy (Fig.6) the information is quite regularly distributed along the 

whole period and among all the seasons. The most severe impacts of rain and dryness were 

from 1500 to 1620, with particular relevance in the two decades 1600-1620. Moderate swings 

of the 11-yr running average are visible. 
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Fig. 4. Seasonal precipitation anomaly from documentary proxy data in Spain. Symbols as in 
Figure 2. 

 

 

Fig. 5. Seasonal precipitation anomaly from documentary proxy data in Southern France. 
Symbols as in Figure 2. 
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Fig. 6. Seasonal precipitation anomaly from documentary proxy data in Northern-Central 
Italy. Symbols as in Figure 2. 

4. Instrumental series 

The last period of the LIA and the present-day GW are well documented by the longest 
instrumental series that cover three centuries. 

4.1 The earliest series of instrumental observations 
The spirit-in-glass thermometer, the barometer, the rain gauge and some hygrometers were 
invented in Florence, Italy in the first half of the 17th century, where science flourished with 
Galileo, his pupils and the Grand Duke of Tuscany, Ferdinand 2nd De’ Medici (Magalotti, 1666, 
Targioni Tozzetti, 1780) who was a supporter of the scientific research. He founded the first 
“modern” scientific Academy, i.e. the “Accademia del Cimento” (i.e. Academy of Experiment, 
flourished 1657 - 1667) with the first aim of investigating the Nature with particular reference 
to Mathematics, Physics, Astronomy, Meteorology, Biology and Medicine with instrumental 
observations and the second aim of expressing these disciplines in numbers and formulae. 
In this context the Grand Duke organized the first meteorological network, called Rete 
Medicea (i.e. Medici Network), active for the 1654-1670 period with regular temperature 
readings taken 6 to 8 times a day in a number of stations. Unbroken series were Florence 
and Vallombrosa on the mountain slope near to Florence. All stations received from the 
Grand Duke thermometers with the same calibration and an operational protocol for the 
exposure in order to obtain strictly comparable readings. The thermometers used in the 
Medici Network are known as the Little Florentine Thermometer, entirely made of glass 
except for the spirit, and resistant to any kind of weather. The readings taken by this 
Network are the earliest regular observations in the world, and are of excellent quality 
(Camuffo, 2002; Camuffo et al., 2010°, Camuffo and Bertolin, 2011). The activity of the 
Medici Network was stopped by the Inquisition that hardly accepted the idea that 
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somebody wanted to know the Nature from sources and modalities other than the Holy 
Bible. 
Next century, James Jurin coordinated the next international network, with climate and 
health purposes, on behalf of the Royal Society, London. Unfortunately, Jurin (1723) 
suggested indoor readings for two reasons: people lived in unhealthy houses and most of 
the early thermometers, made with a glass capillary fixed to a wooden tablet with a iron 
wire were unable to resist to outdoors because the wooden shrinkage and swelling varied 
the iron wire tension, breaking the glass tube. Fortunately, some Italian observers made 
parallel observations indoors and outdoors following the local tradition. The Network was 
active from 1724 to 1735. 
Some fifty years later, Vicq d' Azyr and Father Louis Cotte coordinated the next 
international network, also with climate and health purposes, on behalf of the Royal Society 
of Medicine, Paris. The Society published the meteorological observations from 1777 to 1786. 
In the same period, the German Prince Karl Theodor von Pfalz launched another 
international Network, i.e. the Societas Meteorologica Palatina, Mannheim, with secretary 
Jacob Hammer (1783) who published readings in the “Ephemerides Societatis Meteorologicae 
Palatinae” from 1781 to 1792. This Network was of excellent quality with a precise sampling 
(i.e. three readings a day) and exposition protocol, and distribution of instruments to the 
observers who needed them. The thermometers were weatherproof, so that outdoor 
measurements were possible without problems. 
The above meteorological networks had the primary merit of raising the public interest to 
regular daily observations, made with standardised instruments. All observers operated in 
the same way, with readings performed at the same sampling times and all instruments had 
similar exposure. 
In the next century the meteorology was better developed, with several national and 
international initiatives, so that the number of available data was largely increased. The first 
most important milestone of the nineteen century was the creation of the national weather 
services around 1860, with the production of many high-quality series of regular 
instrumental observations made with standardized features. The second milestone was the 
foundation in 1873 of the International Meteorological Committee that in 1950 was transformed 
into the World Meteorological Organization. 

4.2 Results from the instrumental observations of temperature 
In this Chapter the temperature is presented in terms of anomaly, expressed as the 
difference between the observed values and the related values in the 1961-1990 reference 
period, following the IPCC 2007 style (Le Treut et al., 2007).  
If we compare the instrumental records with the above documentary proxies, the first 
remarkable difference with the documentary proxies is the high time resolution and the 
high density of readings. All the plots show high-frequency fluctuations and ultradecadal 
swings, i.e. 12.7, 26.5, 34.4 and 57.3 yr over the whole set of data, that are characteristic of the 
Mediterranean climate (Camuffo et al., 2010a,b). 
The temperature in Spain is reported in Fig.7 and refers only to the long time series of 
Cadiz-S. Fernando. The plots show that autumn and winter months experienced a colder 
period that reached the minimum around 1850. Spring and summer months are linearly 
interpolated with no trends but with some persistent swings alternating colder and warmer 
periods, with a marked warming in the most recent decades. However, the period of the 
GW, i.e. after 1980 is evident in the cold season and spring, more exactly from November to 
June, but it is not dissimilar from other previous warm periods, and it is not the warmest 
one in the Spanish series. 
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Fig. 7. Monthly temperature anomaly (°C) from instrumental data in Spain. The zero level 
corresponds to the average of the 1961-1990 reference period. Thin black lines refer to 
instrumental observations, thick black lines to 11-year running averages. 

In Southern France (Fig.8), December and January undergone a change in temperature 
around 1900, passing from colder to milder winters. On the other hand, from the 
beginning of the series to 1800, the warm season from May to September was warmer 
than the 1961-1990 reference period, reaching a maximum slightly after 1750 with 
temperature levels higher than today. All the months are characterized by absence of long 
period trends but include several warm-cold swings. 
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Fig. 8. Monthly temperature anomaly (°C) from instrumental data in Southern France. Zero 
level, thin and thick lines as in Fig.7.  

In Northern-Central Italy (Fig.9) January, February and March show warming trends from 
1739 to nowadays. No trends in other months. Warm-cold swings are evident in all 
months. In most months, and especially in May, June and August, the temperature 
increased after 1980 following the GW. However, around 1725-1730 the temperature was 
similar, or even higher than today in a number of months, i.e. May, September, October, 
November and December. The great winter in December 1738 and January 1739 is clearly 
visible; as opposed, the great winter 1929 with a deeper extreme in temperature the first 
half of February 1929 is not visible in the monthly averages being masked by the 
contribution of the second half of the month that was milder. 
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Fig. 9. Monthly temperature anomaly (°C) from instrumental data in Northern-Central Italy. 
Zero level, thin and thick lines as in Fig.7.  

Southern Italy is located in the middle of the Mediterranean and its climate is strongly 
influenced by the difference between air and seawater temperature, differently from the 
Northern-Central part of the Italian Peninsula. The monthly temperature of Southern Italy is 
reported in Fig.10. The earliest period before 1800 is not homogeneous with the rest of the 
series and seems to overestimate the readings for some instrumental bias or relocation 
problem, and should be disregarded. The series seem more or less stationary till 1920, 
followed by a positive trend, i.e. increasing temperature. However, the most recent period, 
i.e. 1990-today, is not the warmest one in the series, maybe for the effect of change of phase 
of decadal swings or other chaotic factors. 
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Fig. 10. Monthly temperature anomaly (°C) from instrumental data in Southern Italy. Zero 
level, thin and thick lines as in Fig.7.  

4.3 Results from the instrumental observations of precipitation 
The precipitation is presented in terms of anomaly as normalized ratio following the IPCC 
2007 style (Le Treut et al., 2007). This style is particularly convenient in the case of arid regions, 
e.g. Spain and Southern Italy. The precipitation in the Mediterranean is characterized by large 
high-frequency variability, with irregular rainy-dry swings and 93 yr periodicity that has 
already been observed over the whole set of data (Camuffo et al., 2010a,b). 
The precipitation in Portugal (Fig.11) is characterized by huge variability, with several 
extreme episodes from no rain at all to extremely intense rain episodes, in particular July 
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and August exceeding in a number of episodes the average of the 1961-1990 reference 
period by an order of magnitude. The high frequency fluctuations are superimposed to a 
decadal swing. In the crucial last three decades of GW, i.e. after 1980, the situation is 
apparently contradictory, i.e. March, September and October seem to be characterised by 
positive trend, i.e. rainy; as opposed, February, May and July by negative trend, i.e. 
aridity, the other months having no or unclear trends. 
 

 

Fig. 11. Monthly precipitation anomaly from instrumental data in Portugal. Non 
dimensional units, the anomaly being expressed as a ratio with the 1961-1990 reference 
period. The 1-line level corresponds to the 1961-1990 average. Thin black lines refer to 
instrumental observations, thick black lines to 11-year running averages. Numbers on the 
side of peaks indicate the top level, external to the scale. 

The precipitation (Fig.12) in all the Spanish stations shown in Fig.1 largely differs from 
month to month, including the reaction to the last three decades of GW, i.e. after 1980. In 
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particular, February, March, April and July seem to go toward dryness; as opposed January, 
September and December toward wetness, the other months being unchanged or unclear. 
Some extreme episodes appear especially in June, July, August and September. 

 

 

Fig. 12. Monthly precipitation anomaly from instrumental data in Spain. Units and symbols 
as in Fig.11. 

The precipitation in Southern France (Fig.13) is more abundant in autumn, winter and spring, 
and less frequent in summer. All the monthly series are characterized by high frequency 
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fluctuations and wet-dry swings for the whole period. December, January and February had 
less precipitation from the beginning of the instrumental records to 1900 and a wetter regime 
after 1900. The recent decades in the GW period are not characterized by any specific trends. 
 

 

Fig. 13. Monthly precipitation anomaly from instrumental data in Southern France. Units 
and symbols as in Fig.11. 

The rainy season in Northern Central Italy (Fig.14) is late spring (May-June) and autumn 
(October-November). In these months the series are almost regular from the statistical 
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point of view, with high frequency fluctuations and some dry-wet decadal swings but no 
major changes. In general, peaks of abundant rain and episodes of aridity appear 
repeatedly, over the whole series. The last three decades of GW, i.e. after 1980, do not 
present any specific character. 
 

 

Fig. 14. Monthly precipitation anomaly from instrumental data in Northern-Central Italy. 
Units and symbols as in Fig.11.  

The rainy season in Southern Italy (Fig.15) is the cold season, from October to April. The 
series are characterized by chaotically distributed short-term fluctuations and longer-term 
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variability, with unclear or contradictory response to GW, especially after 1980. In this 
recent period, some months, e.g. June, September and December seem to be characterized 
by a positive trend, October and November by a negative one, the other months having 
no specific trends. 
 

 

Fig. 15. Monthly precipitation anomaly from instrumental data in Southern Italy. Units and 
symbols as in Fig.11. 
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5. Biological proxies and the sea level rise 

At Venice, regular tide gauge records are available since 1872 and show that the city is 
sinking at impressive rate, i.e. 2.4 mm yr-1 1872-2009 average rate. Sinking is due to the 
combined effect of local land subsidence and sea level rise. The land subsidence is mainly 
due to tectonic drift, at constant rate, with some minor departures due to other factors, e.g. 
ground compaction, underground water extraction. The other key variable is the sea level 
rise for thermal expansion of the ocean water on the global scale (i.e. eustatic sea rise) and is 
expected to worsen for GW. The tide gauge measures the relative sea level (RSL), i.e. the sea 
level measured in relation with a frame fixed to the soil, that is a mobile reference. 
The period before instrumental records is known after the fortunate combination of two 
available factors: a biological marker constituted by green algae, and their precise 
reproduction in some particular paintings. The methodology is simple. Buildings facing the 
canals have a green belt of algae living on walls at levels periodically reached by tides, and 
the belt front corresponds to the average of the high tides of the year. When the sea level 
changes, the green belt follows it by the same amount. The front of the algae on the Venice 
buildings was accurately reproduced by Paolo Caliari, nicknamed Veronese (1528-1588), 
and especially by the painters of Vedutas Giovan Antonio Canal, nicknamed Canaletto 
(1697-1768) and his nephew Bernardo Bellotto (1720-1780). All of them used a Camera 
Obscura as a tool to obtain precise reproductions of the views and were extremely accurate 
in reporting the algae levels as it has been verified with historical and statistical tests 
(Camuffo and Sturaro, 2003, 2004; Camuffo et al., 2005). After having determined the level 
of the algae as it was in the paintings, and how it is today, it is possible to obtain the RSL 
rise occurred in the meantime after the difference between the two levels. 
The first painting useful to our aims is by Veronese and is dated 1571. It accurately 
reproduces the Coccina Palace, facing the Grand Canal, with people standing on the 
staircase that has five steps clear from algae. Nowadays the algae infest all the steps of this 
staircase. The height of each step is 18 cm, so that the algae belt has displaced by 5×18 cm = 
90 cm. We should, however, correct this finding for two factors that have caused an 
additional rise of the algae belt. The first factor is that modern motorboats generate waves 
higher than the rowboats in use at the XVIII century. The difference in wave height was 
assessed after wave gauge monitoring in the Grand Canal during normal business days and 
in the occasion of the ‘Regatta’, i.e. the historical happening repeated every year, in which 
accurate replicas of rowboats and characters from the XVIII century rowing on the Grand 
Canal as in the times of the Venice Republic, ended 1797. The result was 5 cm additional 
wall wetting for motorboat waves. The second factor is the dynamic increase of the tidal 
wave for the excavation of deep and wide canals in the Lagoon and was evaluated to cause 
3 cm additional wetting. If we subtract to the finding after the Veronese painting the 8 cm 
for the above corrections, we get RSL = 82±9 cm where we have attributed the uncertainty of 
one step, i.e. ±9 cm (Camuffo, 2010). The result from twelve Canaletto and Belotto paintings 
with the algae belt clearly visible was that the RSL rose by 69±11 cm. After having 
subtracted 8 cm for the above corrections, the bulk submersion of Venice, i.e. the RSL 
estimated from the Canaletto and Bellotto paintings is 61±11 cm. 
If we combine in the same graph the 1872-2010 tide gauge record in Venice with the 
biological proxies related to the tide level in 1571, i.e. Veronese, and around 1750, i.e. 
Canaletto and Bellotto, we can assess the past sea level at Venice back to 1571 as 
summarized in Fig.16. 
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Fig. 16. Relative sea level (RSL) in Venice. Small black dots: tide gauge readings; white 
circles: proxies from Canaletto and Bellotto paintings; grey circle: proxy from Veronese 
painting. Thick black line: exponential interpolation with equation RSL = 71.196 exp (0.0016 
X) where X is the year AD; thin grey lines: 95% confidence interval. 

In the period from Veronese to Canaletto the average yearly trend is 1.2 mm yr-1; from 
Canaletto to nowadays the average yearly trend is 1.9 mm yr-1 (Camuffo and Sturaro, 2003, 
2004; Camuffo et al., 2005). The tide gauge and the displacement of the algae front show that 
the relative sea level has increased at exponential rate (i.e. acceleration for increasing 
thermal expansion) over the last five centuries. This is a real problem for the city. 
A dramatic consequence of SLR is that exceptionally high tides, i.e. surges generated by the 
Sirocco wind when a low pressure lies in the western Mediterranean, become more and 
more frequent, with seawaters flooding Venice. Flooding tides, locally called “acqua alta” 
invade the lowest part of the city when the sea water exceeds 110 cm above the average tide 
level in 1897 established as a reference. The long series of flooding surges from documentary 
sources for the 792–1867 period (Camuffo, 1993; Enzi and Camuffo, 1995), combined with 
the tide- gauge records for the 1872–2010 period, show that the frequency of the flooding 
tides too is exponentially increasing (Fig.17). 
 

 

Fig. 17. Occurrence of the flooding tides (i.e. sea level 110 cm higher than the average in 
1897) at Venice over the last 500 years. The graph reports the number of independent floods, 
i.e. one flooding tide per surge disregarding the short-term interruptions and repetitions for 
the astronomical tide modulation.   
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6. Conclusions 

This Chapter has presented the trends in temperature, precipitation and sea level rise over 
the last five centuries, i.e. from the Medieval Optimum to the present-day GW. 
The air temperature series do not provide clear evidence for marked increasing trends over 
the long period (e.g. one or more centuries), except for the recent GW over the last 30-40 
years (Le Treut et al., 2007). Short term fluctuations and decadal or pluridecadal cycles are 
not a novelty for the Mediterranean. All the series show that both the temperature and the 
precipitation are characterized by repeated swings. Individual swings may differ in 
amplitude and duration, depending on the historical period. In previous papers it has been 
demonstrated that the periodicity of temperature is 12.7, 26.5, 34.4 and 57.3 years (Camuffo 
et al., 2010a,b). In conclusion, it is probable that the Mediterranean temperature will not 
increase like a hockey stick as expected for the GW over the Northern Hemisphere but will 
continue to swing maybe in association with the GW trends. 
The precipitation series too are characterized by huge variability, not by specific decreasing 
trends. Decadal dry-wet swings are chaotically distributed and disappear for the change of 
phase when common periodicities are searched in the whole set of data, except for the 90 
year period (Camuffo et al., 2010a,b). Air temperature and precipitation evolve in an 
apparently independent way, changing in phase and having correlation coefficient variable 
over time. This means that the two phenomena are not fully controlled by the same forcing 
factors. The crucial factor is that air temperature and precipitation are related between each 
other through the action of the sea, and the mechanism will depend on the thickness of the 
thermocline and the resulting Sea Surface Temperature (SST). The Mediterranean water 
constitutes a huge reservoir of heat, and the weather conditions depend on the seawater 
temperature profile i.e. the thermocline. In the case summer and early autumn have been 
relatively calm, the summer has accumulated heat near the surface, forming a thin, warm 
layer and the higher SST will start earlier and will favour the rainy season. On the other 
hand, if the summer had a violent storm with high waves that mixed the surface waters and 
deepened the thermocline redistributing in depth the heat, the SST will be lower and the 
winter rains will be less. In conclusion, any feedback governed by a number of interacting 
factors will necessarily be complex because of the chaotic variability in correlation and 
phase, making difficult any forecast. 
Swings and chaos make obscure any tendency that may derive from the GW. Today 

temperature and precipitation have opposing trends, i.e. hot and dry. However, the 

observations suggest that no any combination is stable and persistent for a long time. Today 

we see hot and dry, but in the past we also had hot and wet, cold and wet and cold and dry 

periods. The observations suggest that the local climate system is not characterized by any 

stable equilibrium and in the future it will continue to swing and change temperature and 

precipitation coupling. 

Although the temperature in the Mediterranean will increase less than in the Northern 
Hemisphere, nevertheless the thermal expansion of oceanic waters on the global scale will 
govern the water fluxes through the Gibraltar Strait, increasing the level of the 
Mediterranean Sea and flooding the coastal areas. The problem will be especially relevant in 
the areas affected by land subsidence because of the synergistic effect of both factors. The 
most famous example is the city of Venice, where the local sea level, observed over the last 
500 years, is exponentially increasing and the expectation by 2100 will likely be 30 cm higher 
than the 1980-1999 average level. In the future, the most dramatic impact will affect 
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historical buildings. The problem is that the Venice buildings originally had an impermeable 
basement and a protruding protection against splashing waves. At present, the protective 
elements sunk below the average high tide level, with the consequence that walls are 
impregnated with seawater, with internal migration of NaCl and crystallisation cycles 
which loose rendering, destroy mortars, bricks and stones. Briefly, this is a tremendous, 
powerful mechanism that is destroying at slow rate all buildings reached by seawaters. 
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