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The Use of Acoustic Telemetry in  

South African Squid Research (2003-2010) 

Nicola Downey, Dale Webber, Michael Roberts, Malcolm Smale,  

Warwick Sauer and Larvika Singh 
Bayworld Centre for Research and Education 

South Africa 

1. Introduction 

The South African chokka squid, Loligo reynaudii is found along the coast of South Africa, 
from Southern Namibia in the west to Port Alfred in the east (Augustyn, 1991). Inshore 
spawning, however, is limited to the South Coast between Plettenberg Bay and Port Alfred 
(Figure 1) (Augustyn, 1990). As it is these inshore spawning aggregations that are targeted 
by the squid jigging fishery (Sauer et al., 1992), an in depth knowledge of the spawning 
process is essential to the development of effective management strategies for this fishery. In 
addition squid catches are determined to a large extent by the successful formation and size 
of these aggregations. As a result, the majority of research on the chokka squid has focused 
on inshore spawning, i.e. environmental effects on spawning (Augustyn, 1990, Roberts, 
1998, 2005; Roberts & Sauer, 1994; Roberts & van den Berg, 2002, 2005; Sauer et al. 1991, 
1992), the impact of fishing on spawning concentrations (Hanlon et al., 2002; Oosthuizen et 
al., 2002a; Sauer, 1995; Schön et al. 2002), biological studies (Augustyn 1990; Lipinski & 
Underhill, 1995; Melo & Sauer, 1999; Olyott et al., 2006; Roel et al., 2000; Sauer & Lipinski, 
1990; Sauer, 1995; Sauer et al., 1992, 1999), life cycle (Augustyn, 1990, 1991; Olyott et al. 2007; 
Roberts & Sauer, 1994), feeding on the spawning grounds (Augustyn, 1990; Sauer & 
Lipinski, 1991; Sauer & Smale, 1991, 1993; Sauer et al., 1992), spawning behaviour (Hanlon et 
al, 1994, 2002; Sauer, 1995; Sauer & Smale, 1993; Sauer et al. 1992, 1993, 1997; Shaw & Sauer, 
2004), the inshore spawning environment (Augustyn, 1990; Roberts, 1998, 2002; Roberts & 
Sauer, 1994; Roberts and van den Berg, 2002; Sauer et al. 1991, 1992), the location of 
spawning grounds (Augustyn, 1990; Roberts, 1995; Roberts & Sauer, 1994; Sauer, 1995; Sauer 
et al., 1992, 1993), predation on spawning grounds (Hanlon et al. 2002; Roberts, 1998; Sauer 
& Smale, 1991, 1993; Smale et al., 1995, 2001), migration / movement on spawning grounds 
(Augustyn, 1990, 1991; Lipinski et al. 1998; Roberts & Sauer, 1994; Sauer & Smale, 1993) and 
paralarval development (Oosthuizen & Roberts, 2009; Oosthuizen et al. 2002b; Roberts & 
van den Berg, 2002; Vidal et al. 2005). 
A number of these studies have, however, been limited by certain factors. The inshore 
spawning grounds extend from ~20 to 70 m. Diving observations are only possible up to a 
depth of 30 m, are limited in terms of the amount of time that can be spent underwater and 
are highly dependent on water visibility. Many of these limitations can be overcome by the 
use of underwater cameras, however, the issue of water visibility remains. Not only has the 
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development of acoustic telemetry systems allowed researchers to overcome many 
limitations, it has also opened up new avenues of research. 
Initial telemetry experiments, conducted in 1993 and 1994 (Sauer et al., 1997), made use of a 
four buoy radio-linked acoustic positioning system and simple acoustic transmitters. The 
use of this then “unorthodox technique” (Sauer et al., 1997) led to the discovery that the 
formation of spawning aggregations and mating behaviours is well organized in time and 
space. The advancement of telemetry systems has enabled researchers to apply this 
technique to many different areas of research. This chapter describes and compares the 
various telemetry systems used in South African squid research from 2003 to date. These 
studies aimed to: 
1. further our knowledge of inshore (20-70 m) spawning behaviour 
2. determine the effect of upwelling and turbidity events on spawning 
3. investigate movement on the inshore spawning grounds 
4. investigate nocturnal behaviour 
5. monitor the presence and movement of predators on the inshore spawning grounds 
6. investigate movement on the deep spawning grounds (71-130 m) 
Also described are the types of transmitters used and the various transmitter attachment 
techniques developed, which are dependent on the species being tagged. 

2. The chosen study site for acoustic telemetry squid research 

Kromme Bay (St Francis Bay, South Africa, Figure 1) forms part of the main squid spawning 
grounds on the south coast of South Africa, and is a commonly used spawning area. 
Relatively sheltered from south-westerly swells and winds, with a gentle-sloping seabed 
(Birch, 1981) consisting mainly of rippled coarse sand (Roberts, 1998), this area is an ideal 
study site for squid acoustic telemetry experiments. The annual November squid fishery 
closed season provides an ideal opportunity to conduct such studies, as the potential impact 
of boat anchors on instrumentation, as well as intense commercial fishing on spawning 
aggregations, are avoided. 
 

 

Fig. 1. Maps of (a) the study site, Kromme Bay, (b) the main spawning grounds (shaded 
area) between Plettenberg Bay and Port Alfred 
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3. Passive tracking telemetry systems 

Passive tracking involves the use of stationary or fixed receivers to monitor the movement 
of acoustically tagged animals in a particular area. South African researchers made use of 
two such systems, namely VR2 receiver  arrays and the VRAP system. All acoustic telemetry 
equipment mentioned throughout this section and following sections was purchased from 
Vemco, Ltd, Canada. 

3.1 VR2 receivers 
VR2 receivers (Figure 2) are single frequency autonomous omnidirectional underwater 
units. Transmitters send out a series of pings, known as a ‘pulse train’, which are detected 
by the receivers. When all the pings are recognised in sequence, the ‘pulse train’ is then 
recorded as a signal detection by the VR2. The transmitter ID code, date and time of 
detection as well as any other received information (depth/temperature) are stored in the 
internal memory. Once the receiver has been recovered the data is downloaded using a VR 
PC interface and a computer running VR2PC software. Receiver ranges vary depending on 
the power output of the transmitters as well as local factors and environmental conditions 
(Singh et al., 2009). 
 

 

Fig. 2. VR2 receiver deployed in Kromme Bay 

3.2 VRAP system 
The VRAP (Vemco Radio-linked Acoustic Positioning) system (Figure 3) is comprised of 
three buoys and a computer base station. The three buoys are controlled from the base 
station by way of line-of-sight radio modems. Each buoy has a hydrophone which receives 
acoustic transmitter signals. The information received is then transmitted to the base station 
where a VRAP computer software programme calculates the position of the transmitter, 
based on the arrival time of the signal at each buoy. Each detected signal, as well as the 
position of the three buoys, is plotted in real-time on the computer monitor and stored in a 
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database for playback and analysis at a later date (Figure 4). A number of studies have 
shown the VRAP system to calculate transmitter position with an accuracy of 1 to 3 m 
(Bégout Anras et al., 1999; Klimeley et al., 2001; Zamora & Moreno-Amich, 2002 as cited in 
Jadot et al., 2006; Aitken et al., 2005), within the buoy triangle, with accuracy decreasing 
outside of the array. 
 

 

Fig. 3. One of the three VRAP buoys deployed in Kromme Bay 

 

 

Fig. 4. A single animal track, recorded by the VRAP Buoys, and played back using VRAP 
software. The smaller triangles in the diagram denote the position of the buoys in the 
equilateral triangular formation 
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3.3 Passive tracking studies 
Four experiments using VR2 receiver were performed in Kromme Bay during the November 
2003–2006 squid fishery closed seasons. In addition to the VR2 receiver arrays, the VRAP 
system was deployed in November 2005 and 2006. 

3.3.1 VR2 study 
Each year researchers searched for an active spawning aggregation. Diver observations 
confirmed the presence of egg beds, the footprint of these aggregations. VR2 receivers were 
then deployed 500 m apart, in a hexagonal array, on and around these egg beds. Initial 
range tests showed the receiving range of the VR2 receivers to be <500 m in Kromme Bay. It 
was therefore decided to deploy receivers 500 m apart to allow for an overlap in receiving 
ranges. In 2004, an additional VR2 receiver was deployed on a spawning site off Cape St 
Francis. The position of these arrays can be seen in Figure 5. Depending on the thermal 
conditions of the water column (Singh et al., 2009) the hexagonal configuration allowed an 
area of up to 1.28 km2 to be monitored. Each receiver was deployed 5 m above the seabed 
using a hollow-core polypropylene rope tensioned with a subsurface buoy. The mooring 
was anchored to the seabed with a 50 kg weight. During each study temperature data were 
collected using an array of Star-oddi Starmon mini underwater temperature recorders 
deployed at depths of 9, 14, 18, 21, and 24 m. This thermistor array (Figure 5) recorded 
temperature hourly. Hourly wind data, recorded at Port Elizabeth (Figure 1) airport, for 
2003-2006 were obtained from the South African Weather Services. Wind data were filtered 
using an UNH Lanczos filter (weighted 73), and stick vector plots generated. 
 

 

Fig. 5. The positions of the hexagonal VR2 receiver arrays (2003–2006) and the thermistor 
array overlaid on the bathymetry (contour lines). 

3.3.2 VRAP study 
VRAP buoys were deployed in the centre of the VR2 receiver arrays (Figure 6) in a 300 m 
equilateral triangle. This configuration allowed for optimal buoy performance. Each buoy 
was anchored to the seabed with two 50 kg weights. The hydrophone cable was run down 
the hollow-core polypropylene rope used to attach the buoy to the weights. The 
omnidirectional hydrophone was positioned approximately 5  m above the seabed. 

www.intechopen.com



 
Modern Telemetry 

 

428 

 

Fig. 6. The positions of the triangular VRAP arrays (2005 & 2006) within the VR2 receiver 
arrays. 

3.3.3 Transmitter attachment 
A total of 45 squid and eight predators were tagged over the four experiments. The 
predators tagged included three ragged tooth sharks (Carcharias taurus), three shorttail 
stingrays (Dasyatis brevicaudata) and two smooth hound sharks (Mustelus mustelus). Details 
of the acoustic transmitters used are given in Table 1. For those animals that were tagged 
with transmitters without pressure sensors, only presence-absence data were collected. 
Transmitters with pressure sensors provided both depth and presence-absence data. 
 

Year 
Transmitter 

type 
Min off-
time (s)

Max off-
time (s) 

Pressure 
sensor 

Number of 
animals tagged 

Male Female 

2003 V8SC-2H-R256 10 35 No 4 (L. reynaudii) 2 2 

2004 

V9P-6L-S256 30 90 Yes 12 (L. reynaudii) 6 6 
V16-5H-R04K 35 109 No 3 (C. taurus) Unknown 
V16-5H-R04K 35 109 No 1 (D. brevicaudata) Unknown 
V16-5H-R04K 35 109 No 1 (M. mustelus) Unknown 

2005 
V9P-6L-S256 30 90 Yes 23 (L. reynaudii) 13 10 
V9P-2H-S256 20 60 Yes 1 (D. brevicaudata)  1 
V9P-2H-S256 20 60 Yes 1 (M. mustelus)  1 

2006 
V9P-6L-S256 30 90 Yes 6 (L. reynaudii) 4 2 
V9P-2H-S256 20 60 Yes 1 (D. brevicaudata)  1 

Table 1. Details of acoustic transmitters used in the VR2 and VRAP studies 

Squid were caught, using jigs (Figure 7), and  tagged with V9 acoustic transmitters (Figure 8a). 
The modification of transmitters for attachment and the tagging process have been described 
in detail in Downey et al. (2010). Two-18-guage hypodermic needles were glued to the surface 
of each transmitter, to allow for attachment to the squid (Figure 8a). The length of the needles 
was dependent on the sex and size of the animal tagged. Hypodermic needles with a length of 
17 mm were used for males and needles with a length of 14 mm for the smaller “sneaker” 
males and females. Each year squid were caught within the hexagonal array of VR2 receivers. 
Once the animals were removed from the water and their sex determined they were placed on 
a damp cloth (Figure 9a). Using an applicator specifically designed for this purpose (Figure 
8b), a transmitter with the appropriate needles length was inserted into the mantle cavity 
(Figure 9a). A protective sheath covered the hypodermic needles during insertion (Figure 8b).  
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Fig. 7. A chokka squid, Loligo reynaudii, caught on a jig 

 

 

Fig. 8. Tagging instrumentation (taken directly from Downey et al. (2010)): (a) the 
attachment of hypodermic needles to an acoustic transmitter, (b) the specially designed tag 
applicator used to tag L. reynaudii, and (c) the placement of the acoustic transmitter within 
the mantle of the squid, on the ventral side, to avoid piercing organs with the hypodermic 
needles 
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The applicator was initially held sideways and once inserted was turned 90° and the protective 
sheath removed (Figure 8b). After pushing the hypodermic needles through the mantle 
(Figure 9b), nylon washers were pushed onto the ends of the needles (Figures 8c and 9c) 
followed by copper crimps (Figures 8c and 9d and e). The tagged squid was then placed in a 
bin containing seawater or held alongside the boat (Figure 9f), depending on sea conditions, to 
recover. Once normal fin-beating had resumed, the animal was released within the array of 
VR2 receivers.  
 

 

Fig. 9. Attaching a transmitter to a squid (taken directly from Downey et al. (2010)): (a) a 
transmitter is inserted beneath the mantle using the applicator; (b) the apparatus is turned 
through 90°, the protective applicator sheath removed, and the hypodermic needles pushed 
through the mantle. (c) Nylon washers are pushed onto the ends of the hypodermic needles 
and (d) a metal cylinder slipped over each hypodermic needle, (e) the metal cylinders are 
crimped using long-nose pliers, and (f) the squid are held submerged alongside the boat 
until strong swimming ability is displayed (fin beating). Only then is the animal released on 
the capture site 

Predators were tagged with V16 pingers (2004) and V9 sensor acoustic transmitters (2005 & 
2006). The transmitters were modified for attachment by gluing a stainless steel trace (Figure 
10) to the surface of the transmitter. Predators were either tagged by divers who used a 
Hawaiian sling (modified spear), to embed the stainless steel trace into the muscle alongside 
the fin, by wrapping the transmitter in bait and feeding it to the predator, or by surgical 
implantation. By using the feeding technique, the likelihood of transmitter loss due to 
merely falling off was avoided, however transmitters can be regurgitated. Surgical 
implantation, although more invasive, removes the possibility of transmitter loss. 

3.3.4 VR2 data analysis 
To correct time-drift of individual VR2 receiver clocks, VR2 data files were time-corrected 
using a program created by Dale Webber of Vemco. The VR2 data was analysed separately 
for each year. To measure spawning intensity the number of hours each squid was present 
on the spawning site, expressed as a percentage of the total number of hours of passive 
tracking, was plotted. The presence-absence of individual squid was determined by plotting 
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transmitter detections at the spawning site, bottom temperature, and wind data against date 
and time. To determine significant differences in mean depth by day vs. night for male, 
female, and all squid combined, as well as mean depth for males vs. females by day and 
night, duplicate data, i.e. single detections recorded by more than one VR2 receiver, were 
removed and the total number of successfully detected transmissions for each sex per day 
and night calculated. The data for each sex were separated into depth categories, and the 
percentage of detections recorded in each depth category by day and night plotted. Two-
sample, two-tailed t-tests were used to identify significant differences. To analyse diurnal 
patterns at the spawning sites, the percentage of transmissions successfully detected per 
hour in a typical 24-h period were plotted, separately for males and females, using the data 
from which duplicates had been removed. The plots generated and the results of this 
analysis are given in Downey et al., (2010). 
 

 

Fig. 10. A V16 pinger with a stainless steel trace attached to allow for external attachment. 

The analysis of the VR2 data showed three general presence–absence behaviours to be 
found at chokka squid spawning sites (Downey et al., 2010). They are, as given in Downey 
et al., (2010): (i) arrival at dawn and departure after dusk, (ii) a continuous and 
uninterrupted presence for a number of days, and (iii) a presence interrupted by frequent 
but short periods of absence. These authors also concluded that , in contrast to the findings 
of earlier studies, a core aggregation of squid occasionally remains on active spawning sites 
at night. At dawn, more squid arrive at the spawning site and the size of the aggregation 
increases, resulting in a dense aggregation by day. Shortly after dusk, spawning pairs break 
apart, and some squid leave the spawning site. Those squid remaining at a spawning site at 
night search for prey throughout the water column and in the benthos, whereas lone 
females deposit egg strands. The authors also found that movement between the spawning 
sites continues at night. Their VR2 study confirmed previous observations that the initial 
formation of spawning aggregations, before the deposition of the first egg strand, is 
triggered by upwelling. 
To investigate presence-absence of predators on the monitored spawning sites, the VR2 data 
was analysed per year. Signal detections from all tagged squid (grouped), the tagged 
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predators (individually) and surface and bottom temperatures were plotted. The position of 
predators in the water column, in relation to squid, was analyzed by plotting all squid depth 
data (grouped), predator depth data (individually) and surface and bottom temperatures. 
Plots were generated only for those days predators were present. 
The results of the predator study are as yet unpublished. This study, however, showed 
predators moved to and from the spawning sites a number of times, despite the continual 
presence of squid. The presence of predators on the spawning sites appeared to be strongly 
linked to surface temperature. When temperatures were stable at ~18 °C, predators 
remained on the spawning sites for long periods. When surface temperatures increased, 
predators either moved to the surface and left the spawning site shortly thereafter or 
immediately moved off. 

3.3.5 VRAP data analysis 
Invalid positional fixes were identified by their large distance from previous and successive 
fixes, whereas these were close in proximity. For each squid monitored by the VRAP system 
daily plots, separating day vs. night movement, were generated using Arcview GIS 
software. This allowed analysis of horizontal movement at the individual level as well as the 
identification of patterns in movement. Similarly depth over time was plotted for each 
individual. Depth data recorded by the VRAP system was not analyzed in great detail as the 
analysis of the VR2 receiver depth data was fairly comprehensive. The distance between two 
consecutive points, when the time between consecutive detections was less than 10 minutes, 
was used to calculate swimming speed. The distance (d) between two consecutive locations 
was calculated in Microsoft Excel using Equasion 1: 

d=acos(cos(radians(90-Latitude1)).cos(radians(90-Latitude2))+ 
 sin(radians(90-Latitude1)).sin(radians(90-Latitude2)).  (1) 

cos(radians(Longitude1-Longitude2))).R       

The value 6371 km was used for the radius of the earth (R). This formulae made use of 
latitudes and longitudes in decimal degrees. Swimming speed was calculated by dividing 
the distance between two consecutive detections by the number of seconds taken to move 
between the two points (m.s-1). Average swimming speeds were then calculated. As these 
results are as yet unpublished and data is still being analysed, only the initial analysis and 
findings are reported here. 
At night males appeared to move around the spawning site, covering a larger surface 
area, compared to females. This was possibly due to the males’ main nocturnal activity 
being feeding, whereas females often continue to deposit eggs, using stored 
spermatophores for fertilization. On occasion however, males would also spend a number 
of hours in one specific area of the site, possibly resting. Both sexes spent time 
concentrated in one area for a number of hours during the day. Average swimming speed 
for males at night was calculated as 0.25 m.s-1, compared to 0.22 m.s-1 for females. These 
slight differences are possibly a result of the different nocturnal activities. Average 
swimming speed for males during the day (0.21 m.s-1) was slower than that calculated for 
females (0.24 m.s-1). The 1993/1994 telemetry studies (Sauer et al., 1997) also reported 
males to swim more slowly than females when part of a spawning aggregation. The 
swimming speeds reported by these authors were however, slower than those observed in 
this study (0.18 m.s-1 for females and 0.14 m.s-1 for males). No predators were detected by 
the VRAP system. 
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4. Active tracking telemetry system 

Active or manual tracking involves monitoring the movement of acoustically tagged 
animals from a vessel. South African researchers made use of the VR100 system for active 
tracking. 

4.1 VR100 receiver 
The manual tracking study discussed here made use of a VH110 directional hydrophone 
and a VR100 receiver. This general purpose, splash-resistant receiver is designed for 
tracking animals from vessels. The hydrophone is held in the water, either manually or by 
attachment to the side of the boat. The hydrophone detects transmitter signals and the 
VR100 records the ID Code, date, time, other received information (depth/temperature) and 
GPS location of the detections. This information can then be downloaded to a computer for 
viewing or analysis. 

4.2 Active tracking studies 
As part of a project investigating deep spawning (71-130 m) in Loligo reynaudii, a 
phenomenon researchers as yet know very little about, the movement of squid on the deep 
spawning grounds was monitored using the above-mentioned manual tracking system. As 
it is difficult to find and identify active spawning aggregations deeper than 60 m, using the 
two fixed telemetry systems previously described would not be feasible. This study was 
conducted during the November 2010 squid fishery closed season. 

4.2.1 Tagging of animals 
Using the jigging fishing method (Figure 7), squid at depths >60 m can only be caught at 
night, using powerful lights to attract them to the surface. For the manual tracking study, 
squid were caught from an 8 m inflatable boat anchored next to a chokka boat. The two 
boats were close enough for the chokka boat lights to attract squid to the area around the 
smaller boat. Two squid were caught in this manner, on separate nights, and tagged with 
V9TP-6L continuous sensor transmitters. Details of the transmitters used are given in Table 
2. Animals were tracked (Figure 11) from the time of tagging to shortly after sunrise. The 
tagging method and instrumentation used was the same as that described for the VR2 and 
VRAP studies. 
 

Year 
Transmitter 

type 

Min 
period 
(ms) 

Max 
period 
(ms) 

Pressure 
sensor 

Temperature 
sensor 

Frequency 
(kHz) 

Sex 

2010 

V9TP-6L 450 1050 Yes Yes 63 Male 

V9TP-6L 450 1050 Yes Yes 75 
Sneaker 

male 

Table 2. Details of acoustic transmitters used in the VR100 tracking study 

4.2.2 VR100 data analysis 
The VR100 data was manually examined, using Microsoft Excel, for erroneous depth and/or 
temperature data. Erroneous data were identified by their large difference from previous 
and successive values, whereas these were similar. Those data entries containing errors 
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were removed before plotting. Depth and temperature data were plotted against date and 
time, allowing for analysis of the vertical movement of squid on the deep spawning 
grounds. Depending on the strength of received signals, a strong signal indicating the 
tagged animal to be in close proximity, VR100 GPS coordinates were integrated into 
Arcview GIS. This allowed for an analysis of the horizontal movement of tagged squid on 
the deep spawning grounds. 
As this is an ongoing study, only initial findings are discussed here. The large male 
remained in the upper 40 m of water from the time of release until just before sunrise. As the 
sky turned pink in the east (dawn) the squid quickly moved to the bottom, where it 
remained until tracking was terminated. Similarly the sneaker male remained at depths 40 
to 80 m from the time of release until dawn when it too moved to the bottom, remaining 
there until the termination of tracking. Both animals remained on the midshelf, directly off 
Cape St Francis point (Figure 1), with the large male covering an area ~ 3.311 km2 and the 
sneaker male an area of ~ 1.29 km2. Both animals moved continuously until settling on the 
bottom at sunrise, where they remained fairly still. During these movements the tagged 
squid were exposed to water temperatures of 15 to 19 °C, and 11 °C when settling on or near 
the bottom.  
 

 

Fig. 11. Active tracking using a VH110 directional hydrophone, held in the water, and a 
VR100 receiver 
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5. Comparison of the various telemetry systems 

Each of the systems described here (VR2 receiver arrays, VRAP system and VR100 manual 
tracking system) have various advantages and disadvantages. VR2 receiver arrays are ideal 
for studying movement and behaviour on a spawning site (Downey et al. 2010), homing 
behaviour (Mitamura et al., 2005), movement in a river (Carr et al., 1997) or straight (Welch 
et al., 2004) and movement within a marine reserve (Egli & Babcock, 2004), to name a few 
examples. These receivers allow researchers to monitor a large area (depending on the 
number of receivers used) continuously and for long periods of time. Depending on the 
study area, the geometry of the array can be selected to maximize coverage in critical sites, 
providing information on the entering and exiting of a specific area (Egli & Babcock, 2004). 
Range tests can be used to determine the maximum and minimum receiver ranges at a 
specific location and using specific transmitters (Singh et al., 2009). Placing the VR2 receivers 
in such a way that the receiver ranges of individual VR2s overlap, maximises the likelihood 
of a tagged animal being detected when in the area. VR2 receivers can be used to determine 
direction of animal movement to a certain degree, depending on the design of the array and 
the study site itself. These receivers are however, more often used to collect presence-
absence data and it is not known where in the array the animal is situated. As the VR2 
receiver is programmed to work on a single frequency, there is a limit to the number of 
transmitters that can be introduced into the system at one time. As previously mentioned 
and as described by Singh et al., (2009), transmitters send out a series of pulses known as a 
‘pulse train’. Only when all the pings are recognised in sequence by the receiver, is the pulse 
recorded as a signal detection. The overlapping of ‘pulse trains’ from two or more 
transmitters results in no signals being detected. As the number of transmitters in a system 
increases, so it is possible for the number of successful detections to decrease. However, as 
the data can only be downloaded once the receiver is retrieved, it is not possible to discern 
how many transmitters are present in the area using the VR2 receivers. It is therefore 
necessary to use a VR100 to monitor ‘system saturation’ (Singh et al., 2009) before 
introducing more tagged animals into the system. Another method to reduce the number of 
signal collisions is to programme transmitters with longer off times. However, the speed 
with which the study species moves needs to be taken into consideration, to prevent an 
animal moving through an array too quickly to be detected. 
The VRAP system differs from the VR2 receiver array in that data recorded is transmitted to 
a land-based station and the movement of tagged animals in the study area can be observed 
in real-time. In addition, the direction of movement and location of a tagged animal within 
the array can be monitored and recorded. One major disadvantage of the VRAP system 
when compared to the VR2 receiver array is the size of the area that can be monitored. In the 
study discussed here, the 300 m equilateral triangular configuration resulted in the buoy 
triangle covering an area of ~ 400 m2. As previously mentioned, accuracy decreases outside 
of the buoy triangle. In addition, when a transmitter is directly behind a buoy, no position 
can be calculated (Aitken et al., 2005). Shadow zones (areas along parabolas behind each 
buoy) also exist. Two positions are calculated for transmitters in this area. The VRAP 
software assumes the calculated position closest to the last valid position fix is correct and 
this value is plotted. As for the VR2 receiver arrays, it is also possible for ‘system saturation’ 
to result in a decreased number of successfully detected signals. As the VRAP system is 
used to monitor tagged individuals in real-time however, the number of tagged animals 
present within the area can be observed before introducing more tagged individuals. The 
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VRAP system has been used to study the search behaviour of fish towards bait (Vabø et al., 
2004) and food (Løkkeborg et al., 2000), activity patterns, home-range size and habitat 
utilization (Jadot et al., 2006) and behaviour and energetics (Aitken et al., 2005). 
Manual tracking is more labour-intensive and manpower-demanding (Jadot et al., 2006) 
than the passive or fixed telemetry systems, which require more logistical support (boats, 
divers etc.). Tagged animals can be tracked for a number of hours, possibly days, unlike the 
VR2 and VRAP systems which can track animals for weeks or even months. It is only 
possible to track one animal at a time however, the animal can be followed and tracked 
wherever in the area it moves. Manual tracking has been used to study daily movements, 
habitat use and submergence intervals in turtles (Brill et al., 1995), estuarine movement 
patterns (Almeida, 1996), movement patterns and trajectories of crabs (Carr et al., 2004) and 
the behaviour and mortality of caught-and–released bonefish (Cooke & Phillip, 2004), to 
name a few examples. 
A number of studies have made use of multiple telemetry systems, for example Jadot et al. 
(2006) and Acolas et al. (2004) both made use of the VRAP and manual tracking systems. 
Comparing the different telemetry systems available to researchers can aid in determining 
which system will be most favourable for a particular study. However, as each system has 
its limitations, using two or even three simultaneously would be the most beneficial. For 
example the use of the VR2 receiver arrays and VRAP system simultaneously in this study 
has enabled the study of not only presence-absence related topics but also movement and 
swimming speed on the spawning sites.  
To conclude, a number of telemetry systems are available to researchers. The type of system, 
transmitters and hydrophones used are dependent not only the species studied but also the 
key questions or focus areas of the study. Our research has shown that not only can a 
number of telemetry systems be used simultaneously to great benefit, but telemetry systems 
can also be used to monitor species interactions as well as environmental effects on 
behaviour. 
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