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1. Introduction

Only relatively recently have we begun to understand how defibrillation shocks work on

the mechanistic level (Cheng et al., 1999; Trayanova & Skouibine, 1998). Virtual electrode

polarization has offered a plausible mechanism for explaining far field effects of defibrillation

shocks. However, this body of work has not considered the role of the specialized cardiac

conduction system, the Purkinje System (PS), in the defibrillation process.

Despite its crucial role in activation, relatively little is known about the role of the PS in

defibrillation. This is due to several factors which make recording from it challenging: The

PS is a fine structure lying on the endocardium which makes it difficult to see and impale

with microelectrodes. While Langendorf preparations allow easy access to the epicardium for

optical recordings, the PS lies on the endocardium and is, therefore, much harder to access

while maintaining the integrity of the ventricles. Depending on species, the PS penetrates

various depths into the myocardium, masking midmyocardial activation. Plunge electrodes

are one option for recording from the midmyocardium, but amplifier saturation immediately

following large shocks would lose important information. Since the PS fibres are fine,

the signals produced by them are very small and get easily swamped by signals from the

myocardium. This is true for both electrical and optical recordings. Computer modelling,

therefore, offers an attractive platform for studying the role of the PS in defibrillation, since

the electrical activity everywhere in the system is known and can be visualized.

2. Description of the Purkinje System

The specialized conduction system begins at the atrioventricular node with the bundle of His.

The His bundle runs through the ventricular septum, and bifurcates into the left and right

Tawara branches, which further subdivide into major fascicles and later form a network on

the endocardial surface. There are three major fascicles in the left ventricle, and two in the

right.

A large portion of the conduction system is located within the ventricular cavities and is

termed free running. Fibres that run within the ventricular walls are very difficult to visualize,

requiring histological examination. Referring to the PS network as a tree is incorrect since,

unlike true tree structures, fibres follow paths which join back together and at the final level,

 

The Role of the Purkinje System in Defibrillation 

Edward J Vigmond1, Patrick M. Boyle1 and Makarand Deo2 

1University of Calgary 
2University of Michigan 

1Canada 
2U.S.A. 

2

www.intechopen.com



2 Will-be-set-by-IN-TECH

forming more of a mesh-like topology. This may give redundancy to the network so that a

part of the PS may fail without comprising sinus activation.

Segments of the PS run as bundles wrapped in collagen sheaths. This is easily seen in the

bundle of His, which is a large trunk of many fibres. At branch points of thicker fibre bundles,

individual fibres do not bifurcate. However, in the distal PS, where a network segment may be

formed from a few fibres, individual fibres may branch. Longitudinal coupling is very strong,

while lateral connections are sparser.

The PS is electrically isolated from the myocardium except for the termini of the network,

where Purkinje-Myocyte Junctions (PMJs) are formed. While the PS can be selectively

stained and visualized on the endocardium, determining PMJ locations is difficult. PMJs

may be located well within the ventricular wall, which means that histological examination is

necessary. Currently, the number of functional PMJs is not well characterized. Although the

density of the PS on the endocardium appears high, the number of penetrating segments is

unknown, as is the number of PMJs that successfully transmit pulses (Morley et al., 2005).

There are significant species differences in the degree of transmural penetration of terminal

PS fibres. Species can roughly be grouped into three categories (Canale et al., 1986): Group

1 comprises the ungulates which have deeply penetrating fibres, reaching almost to the

epicardium. Group 2 includes primates and carnivores which have PS termini that penetrate

about 1/3 of the way through the wall. Group 3 contains rodents with very little penetration

of the PS into the myocardial wall. This factor may be especially important for interpreting

experimental results between species.

3. Modeling methods

Modelling the reaction of the of the ventricles and PS to defibrillation shocks is a

computationally demanding task since the timestep during the defibrillation pulse must be

very small. This is because high field strengths induce rapid changes in model parameters,

and numerical instabilities may develop Vigmond et al. (2008). Lastly, ionic models are

developed under normal physiological conditions. Defibrillation shocks are outside the

bounds of the models developed so additional measures need be taken such as adding an

ionic current to properly account for high voltage responses Ashihara & Trayanova (2004).

The bidomain equations are the most complete macroscopic description of cardiac tissue,

even being predictive of polarization patterns(Sepulveda et al., 1989) induced by extracellular

stimulation. They can be cast into a elliptical and parabolic equation:

∇ · (σi + σe)∇φe = −∇ · σi∇Vm − Ie (1)

∇ · σi∇Vm = −∇ · σi∇φe + βIm (2)

where subscripts i and e denote intra- or extracellular quantities respectively, φ is potential,

σ̄ is the conductivity tensor, Ie is an applied extracellular stimulus current, β is the surface

to volume ratio, and Im is the transmembrane current. Another set of ordinary differential

equations is required to model the flow of the ions across the cell membrane and is

embedded in Im. These equations can be solved using an operator splitting method where

extracellular potential (Eqn. 1), ionic currents, and the transmembrane voltage (Eq. 2 are

solved sequentially (Vigmond et al., 2008).

12 Cardiac Defibrillation – Mechanisms, Challenges and Implications
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The system is solved by using the finite element method. In our simulations, rabbit ventricular

geometry (Vetter & McCulloch, 1998) was discretized at approximately 350 µm resolution

resulting in about 550,000 nodes comprising the myocardium and another 300,000 nodes

comprising the cavities and a surrounding bath. The PS was modelled as a network of one

dimensional cubic Hermite finite elements added within the myocardial mesh (Vigmond &

Clements, 2007). Two methods have been used to generate PSs for computer modelling

studies: One approach is more generic and does not rely on mapping a particular PS.

The endocardia of the two ventricles are unrolled and the PS drawn on according to basic

physiological principles outlined in the preceding section (Vigmond & Clements, 2007). A

fractal method could be used to further increase the endocardial mesh density (Ijiri et al.,

2008). The second approach uses high resolution imaging to reconstruct the free running PS

(see Fig. 1). This may further be augmented by staining the PS to reveal the endocardial

mesh. With either method, the insertion of the PS into the myocardium must follow a

rule-based method since the PS cannot be imaged within the myocardium, but requires

careful histological examination, electron microscopy or genetic tagging (Miquerol et al.,

2004). to reveal its transmural course (Ono et al., 2009). Furthermore, while the endocardial

network appears dense, the number of functional PMJs is far less (Morley et al., 2005).

The one-dimensional cubic Hermite finite elements are only electrically connected to the

myocardium at end points through gap junctions. Due to their higher polynomial order, cubic

Hermite elements possess the property that they can enforce current continuity at junctions,

as well as at PMJs. Discretization of the PS was at the cellular length level with discrete gap

junctions.

Since the discretization of the finite element model is much coarser than the actual physical

PMJ structure, a phenomenological approach is followed whereby a single PS terminus

stimulates a volume of myocardium. The current flowing from the PS into a myocardial node

is given by

iPMJ =
1

RPMJ
(VPS

m − V
myo
m ) (3)

and iPMJ is treated as an intracellular stimulus by the myocardium.

From the PS perspective, the currents are handled as explicit boundary conditions:

iL =
1

K RPMJ
∑

j

(VPS
m − V

myo
m,j )iL = (4)

where j is the set of myocardial nodes coupled to a PS terminus, and K is a scaling factor

which accounts for the current amplification by transitional cells which occurs at scales finer

than that discretized. By setting RPMJ and K, it is possible to recreate asymmetric propagation

across the PMJ with an anterograde transmission delay on the order of 5 ms and retrograde

transmission delay on the order of 1 ms as observed experimentally Huelsing et al. (1998);

Wiedmann et al. (1996).

4. Role in fibrillation

It is important to first understand the role of the PS in fibrillation. It has been implicated

as a major player in the initiation and maintenance of fibrillation. First, the PS can be a

13The Role of the Purkinje System in Defibrillation
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source of focal firing. Chemical ablation of the PS by Lugol’s solution, to selectively remove

the endocardial layer and the PS embedded within it, has been shown to greatly diminish

repetitive endocardial focal discharges and eliminate sustained VF (Wu et al., 2009). Part

of this comes from the intrinsic nature of the Purkinje cells, which are resistant to ischemia

because of large glycogen stores (Streit, 1987). This is especially important in long duration

VF, at which point much of the myocardium has been compromised.

Second, the PS can provide alternative pathways for reentrant pathways. This is supported

by experiments wherein chemical ablation of the PS has also been shown to reduce the

inducibility of ventricles to VF(Armiger & Knell, 1988; Dosdall et al., 2008) In agreement,

computer simulations have also shown an increase in VF vulnerability to large shocks when

a PS is present (Deo et al., 2009). Several factors were identified which were responsible for

the arrhythmogenic influence of the PS: 1) The presence of a PS produces more activations,

which directly lead to reentrant activity. 2) The frequency of scroll waves is increased since

the PS accelerates conduction. This acceleration may be visible as a breakthrough occurring

ahead of the wavefront, or it may not be visible since the breakthroughs become coincident

with the wavefront. This latter synchronization of activity starts to occur after several cycles.

3) Refractory tissue forms small islands around the PMJs, which induce more wavebreaks

when a wavefront tries to propagate through the region. Finally, 4) the PS can provide escape

pathways for wavefronts which would otherwise die by running into refractory tissue.

The PS affects fibrillation in many ways. Exposure to a large shock may disrupt pathways

through the PS to terminate reentry, or ectopically firing PS cells may be reset. Disruption

by an external shock may, therefore, influence reentrant activity but exactly how these factors

relate remains to be elucidated.

5. Response to electric fields

The response of myocardial tissue to a strong electric shock depends on the orientation of

the cells with respect to the electric field and how conductivity changes with respect to the

direction of the electric field. This is seen in the expression for the generalized activating

function, S (Sobie et al., 1997):

S = Gi : ∇(∇φe) + (∇ · Gi) · ∇φ (5)

where the colon signifies the matrix inner product. Looking at the two terms, activation can

result from a gradient in the electric field, or from the irrotational portion of the conductivity

field. Conductivity must be defined as a spatially-dependent tensor since its directional

properties are determined by cellular orientation, which varies throughout the heart. This

directional dependence arises from gap junction connectivity, which allows current to most

easily flow longitudinally and experiences the highest resistance flowing across laminar sheets

(Legrice et al., 1997).

The PS is essentially a network of one dimensional cables which repeatedly bifurcate and

unify. In addition to the complex topology, the PS fibres undergo sudden changes in

direction, as well as have termini which abruptly end. These properties all get reflected

in the conductivity tensor. The complicated path of the fibres ensures that at least part

of the PS is aligned in such a way as to be excited by the applied electric field. The end

of the fibre is an abrupt discontinuity to zero conductivity outside of the fibre. Terminal

14 Cardiac Defibrillation – Mechanisms, Challenges and Implications
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fibre segments which are aligned with the electric field will, therefore, have transmembrane

potentials induced. Ends which face the cathode will be depolarized while ends facing the

anode will be hyperpolarized.

The effect of field stimulation is shown in Fig. 1, where an MRI-derived isolated rabbit PS

is exposed to shocks. The normal activation pattern is shown for reference, where it can be

seen that it takes more than 30 ms for the entire network to be excited. When a shock is

applied, many regions are excited simultaneously, not just one. This greatly abbreviates the

excitation time of the tree and consequently, will result in near synchronous activation of the

myocardium.

Fig. 1. Response of MRI-derived rabbit Purkinje System to electric fields. A: Normal
activation starting at the proximal His bundle. B: 2.5 ms 125 mA point current source in the
right ventricle C: 3 ms uniform 5 V/cm field oriented along the major axis of the heart. Color
indicates transmembrane voltage. Times are given relative to stimulus onset.

Even on the cellular level, the PS reacts differently to high voltage shocks compared to

ventricular myocytes. Using a papillary muscle preparation, Li et al. (1993) found that above

a field strength of 20 V/cm, shocks induced a baseline shift and high frequency bursting in PS

cells. In contrast, the ventricular myocytes entered a refractory state immediately after large

shocks.

Thus, the PS is easily excited by electric field. Due to its one-dimensional nature and complex

fibre trajectories, some part of it is always in a position to be excited by the field. This leads to

rapid activation of the PS and, hence, of the myocardium connected through the PMJs. This

15The Role of the Purkinje System in Defibrillation
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Fig. 2. Response of the quiescent ventricles and PS to a 2.5 V/cm shock. Field orientation is
along the long axis, as shown in A. When the PS is present, additional far-field activations
can be seen on the endocardial surface.

will tend to be antiarrhythmic since the excitable gaps, which allow activity to keep exciting

recovered tissue, will be more quickly consumed.

6. Quiescent ventricle studies

Simulations of the application of defibrillation-strength shocks to the quiescent ventricles with

and without PS allow for the contribution of the PS to be identified. When stimulation is

applied, large polarization gradients form in segments of the PS that are parallel to the electric

field. The myocardium is also subject to excitation by direct and virtual electrode stimuli,

but activation patterns in the two tissues do not necessarily coincide since PS fibres do not

always run in the same direction as underlying ventricles cells. Furthermore, current flow

in PS fibres is physically constrained and excitation spreads rapidly through the network, so

even very weak shocks produce rapid excitation of the entire network. Thus, under the right

circumstances, the contribution of the PS to the response of the quiescent ventricles can be

remarkable.

Consider Fig. 2, where a 2.5 V/cm field is applied along the long axis of the heart (from apex

to base). Far-field excitations on the endocardial surface due to anterograde transmission

of shock-induced activity in the PS is clearly visible (A); the presence of these effects is due

to rapid propagation in the PS (B) and the relative lack of myocardial excitation from the

field, which can be seen explicitly in the ventricles-only response (C). Consequently, the total

ventricular activation time (tact) is dramatically abbreviated.

16 Cardiac Defibrillation – Mechanisms, Challenges and Implications
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X Y Z
PS+ PS− % ↓ PS+ PS− % ↓ PS+ PS− % ↓

–2.5 V/cm 55.7 100.1 44.3 29.3 29.8 1.6 28.4 29.1 2.2
+2.5 V/cm 41.1 63.1 34.8 26.1 26.9 3.2 28.2 29.4 4.1

–5 V/cm 43.1 67.0 35.6 28.3 28.4 0.1 28.2 28.3 0.3
+5 V/cm 33.6 57.3 41.4 24.6 24.8 1.0 27.5 27.7 0.7

–7.5 V/cm 37.3 42.4 12.1 28.2 28.2 0.2 28.5 28.3 0.5
+7.5 V/cm 30.7 38.3 19.9 22.6 23.2 2.2 27.6 27.7 0.3
–10 V/cm 30.0 36.1 17.0 28.4 28.3 0.3 28.1 28.0 0.5
+10 V/cm 30.1 34.5 12.6 22.4 22.4 0.0 27.8 27.9 0.2

Table 1. Total activation time (tact) with and without PS. tact was measured between the
beginning of the shock and complete ventricular activation for four shock strengths in six
directions, as described in the text.

In terms of tact, the contribution of the PS to the response of the quiescent ventricles is only

significant in cases where myocardial tissue in the vicinity of Purkinje-myocardial junctions

(PMJs) is not excited by the shock. For the simulations discussed here, three orthogonal

orientations were tested–along the long axis (X), across the septum (Y), and along the septum.

As shown in the tabulated results for all simulations (Tab. 1), significant tact abbreviation was

only observed for shocks in the X direction.

Fig. 3. Local activation times for different field orientations, 2.5V/cm shock. Early
activations due to PS activation make the biggest difference for shocks in the X direction,
where myocardium near the PS is not significantly activated by the field. For shocks in the Y
and Z differences, the PS causes some regions to activate much earlier (i.e. LV endocardial
free-wall for Y), but overall activation time is not significantly abbreviated.

Interestingly, while the PS did not have a significant effect on tact for shocks in the Y and

Z directions, it did sometimes alter the pattern of local activation. For example, as shown in

17The Role of the Purkinje System in Defibrillation
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Fig. 3, a weak shock in the Y direction resulted in much earlier activation of the LV endocardial

free-wall due to PS excitations. Although tact did not differ between simulations with and

without the PS in this case, the modified order of activation could have consequences on

subsequent beats due to gradients in refractoriness that might arise from local heterogeneity.

Fig. 4. Local activation times for different field strengths along the long axis. As shock
strength increases, the role of the PS in the response of the quiescent ventricles is diminished,
since the field causes excitation in a larger amount of myocardium. For the strongest shock
(10 V/cm) only a few regions near PMJs, particularly in the septal region, contribute to tact

abbreviation. Stronger shocks abbreviate the activation delay between coupled PS and
ventricular cells.

Increasing shock strength resulted in larger regions of myocardial polarization from the field,

which effectively reduced the importance of the PS contribution in the response; this accounts

for the diminishing returns in tact abbreviation for shocks in the X direction, which is obvious

in Tab. 1. As shown in Fig. 4, for the strongest shocks along the long axis simulated in this

study, the primary source of tact abbreviation was early activation of the septum, which is not

easily excited by such shocks.

Interestingly, increased shock strength seemed to hasten the local effects of PS on

endocardium. For example, in Fig. 4A, consider the dark regions on the endocardial surfaces,

which are associated with early activation due to PS excitation. As the strength of stimulation

increases (left to right), these regions become darker and larger, suggesting an abbreviation of

anterograde transmission delay, perhaps due to the larger gradients in polarization. These

observations were confirmed by inspecting voltages at the junctional voltage level (not

shown), where the delay between coupled PS and ventricular cell upstroke was found to be

almost uniformly shorter for larger shocks.

7. Isoelectric window

In general, shocks above a certain minimal strength result in sustained reentry; however,

there is also a threshold for a maximum strength above which reentry is not induced. This

Upper Limit of Vulnerability (ULV) is an important measure since it tends to correspond to

18 Cardiac Defibrillation – Mechanisms, Challenges and Implications
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the Defibrillation Threshold (DFT)–the minimum shock strength necessary to halt ventricular

fibrillation(Chen, Shibata, Dixon, Martin & Ideker, 1986). The ULV is particularly valuable

as an easier to find surrogate measurement for DFT. Thus, insights on the ULV will provide

insight on the DFT, which is of direct clinical importance.

Following failed defibrillation shocks near the ULV, there is a period of time during which new

activity is not seen on the epicardium.(Chen, Shibata, Dixon, Wolf, Danieley, Sweeney, Smith

& Ideker, 1986) This Isoelectric Window (IW) can be considerable, on the order of tens of

milliseconds. It ends when activations break through on the epicardium and reentry resumes.

Many long-standing questions surround this phenomenon: What is the nature of concealed

activity during the IW? What is the mechanism that allows it to remain hidden for such a long

time? Some researchers have argued that the PS plays an important role;(Dosdall et al., 2010)

others have proposed the tunnel propagation theory, which suggests that cardiac surfaces are

driven into refractory states and post-shock activity is confined to a thin transmural space

with no excitable path to the epicardium.(Ashihara et al., 2008; Constantino et al., 2010) Some

time later, the surface tissue recovers from refractoriness and activations break through. While

the computer simulations carried out to construct this hypothesis were carefully constructed,

it must be noted that they did not include a model of the PS.

For the purpose of comparison, we performed a set of simulations with the PS. A cross-shock

protocol was applied with the second shock near the ULV to identify possible contributions of

the PS during the IW. First, the ventricles were excited, either by transmembrane stimulation

at the apex or by His bundle current injection. The former emulates experimental preparations

while the latter results in a more physiological excitation pattern. During ventricular

repolarization, a shock with appropriate strength and timing to induce arrhythmia was

delivered by parallel plates, with the extracellular electric field oriented along the short axis

of the heart.

7.1 Effects of varying coupling intervals and shock strengths on IW

Fig. 5 shows IW duration within the window of vulnerability for various combinations

of shock timing–i.e. the coupling interval (CI)–and strength. For the AP+PS pre-shock

configuration (A), the average IW decreased from 36 to 21 ms as CI increased from 145 to

155 ms. Similar IW gradients were seen for decreasing CI within the AP-PS (B) and His (C)

configurations, from 49 to 34 ms and from 37 to 19 ms, respectively.

A similar trend was observed for increasing shock strength. In the AP+PS and His

cases, where IW duration was determined by the time between the shock and the first

PS-to-myocardial activation, the average IW decreased with increasing shock strength. For

AP+PS, shocks ranging from 3.3 to 9 V/cm produced average IWs between 33 and 23 ms; for

increasing shock strengths within the His configuration, IWs decreased from 31 to 20 ms. In

the AP-PS configuration, where IW duration was determined by the spread of shock-induced

activations in the apical region, average IW was reduced from 47 to 34 ms as shock strength

increased from weakest to strongest. In the AP+PS and His cases, the PS was actively involved

in the generation of first post-shock activity, so it was unsurprising that the IW was shorter

than in AP-PS, where the PS was absent. This observation supports the hypothesis that the PS

plays an important role in the immediate response to defibrillation shocks.

19The Role of the Purkinje System in Defibrillation
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(a) (b) (c)

Fig. 5. IW duration for various combinations of shock strength and timing for three reentry
induction protocols: (A) apical pacing with the PS (AP+PS), (B) apical pacing without the PS
(AP-PS), and (C) His pacing. In general, longer CIs lead to shorter IWs.

7.2 First post-shock activation and the IW period

Activations were always observed in the PS immediately following the shock. During AP+PS

runs, the first post-shock myocardial activation emanated from the PS 11 ms after the shock.

After 15 ms, significant endocardial activation had occurred, as shown in Fig. 6(a). This

is shorter than clinically-observed IWs due to the significant delay during which excitation

propagates from the site of transmission to the epicardium. Fig. 6(b) shows the appearance

of PS activations on the epicardium 23 ms after the shock; in most shocks applied to models

with the PS during the vulnerable period, this pattern of excitation led to the first epicardial

breakthrough. Note that the epicardial activation site is immediately opposite the endocardial

PS insertion point. Mechanistically, the first PS activation initiated an endocardial rotor, which

led to an epicardial activation (black arrow in Fig. 6); the underlying pattern of transmural

activation is clearly shown.

As discussed earlier in this chapter, the distinct physiology and geometry of the PS lead

to different polarization patterns than in the myocardium; in these simulations, the earliest

post-shock activation was always observed within the PS. Excitation spread rapidly through

the network and coupled myocardial tissue was activated by anterograde transmission. Thus,

the first post-shock ventricular activation always emanated from the PS. In simulations

without the PS, large gradients were induced near the apical region, leading to post-shock

wavefronts.

Most experimental studies that reported an IW after defibrillation-level shocks mapped only

epicardial or endocardial surfaces. Recently, Dosdall et al. (Dosdall et al., 2007) observed

epicardial and subepicardial activations in pigs soon after shocks. Since the PS in pigs

exhibits full transmural insertion (Chattipakorn et al., 2003), it is plausible that these mapped

activations were first post-shock excitations provided by the PS. Furthermore, the earliest

myocardial activations recorded were preceded by Purkinje potentials, which is in agreement

with our findings. To the best of our knowledge, this is the first attempt to map PS activations

following defibrillation. While limited spatial resolution prevented the authors from stating a

clear conclusion, the results suggest that our simulation results are a step in the right direction.

Other studies have observed endocardial or intramural activations that broke through to the

epicardium 42 ms post-shock in sheep hearts (Evans & Gray, 2004). Given the fact that the

PS terminates in the subendocardium in sheep,(Ansari et al., 1999) these observations are also

20 Cardiac Defibrillation – Mechanisms, Challenges and Implications
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(a)

(b)

Fig. 6. Earliest postshock activation. (a) The first activation emanating from the PS 15 ms
after the shock is clearly seen in the endocardial cross-section. (b) After 23 ms, the PS
activation provides a focal breakthrough on the epicardium. Note the breakthrough site
(arrow) is situated opposite the PS insertion point. Transmural depolarization due to the
earliest postshock activation is evident. The right panel of (a) shows the LV endocardial free
wall while the right panel of (b) shows a cross-section perpendicular to the septum with the
posterior surface hidden.

consistent with our findings. Our study involves a smaller heart size, which explains the

reduced IW durations compared to experimental values discussed here.

In our simulations, the PS was always strongly excited by the shock. In some

cases, we observed midwall excitations similar to those observed in tunnel propagation

studies.(Ashihara et al., 2008; Constantino et al., 2010) These were isolated by surface

refractoriness, with excitable tissue confined to intramural paths. However, activations that

originated in the PS broke through more quickly than purely myocardial midwall excitations,

as shown in Fig. 7. Rapid conduction in the PS ensured that this happened consistently.

To further test our hypothesis that the PS was the source of epicardial breakthroughs following

the IW, we changed the transmural insertion depth of PS endpoints. Figure 8 shows that the

IW duration is dramatically reduced when the PS penetrates to the subepicardial layer. This

is consistent with the PS being the primary source of post-shock epicardial activations due to

rapid field-induced activations: deeper penetration brings PS fibres closer to the epicardium,

so it makes sense that the IW is shorter. We observed that IW duration varied from 12 ms

(full insertion) to 30 ms (no insertion). Epicardial breakthrough sites remained the same in

all simulations for a given insertion depth; these sites were consistently situated opposite PS

21The Role of the Purkinje System in Defibrillation
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(a) (b) (c) (d) (e)

Fig. 7. Transmural postshock activations in the septum (top) and LV free wall (bottom).
White arrows indicate the propagation pathways of transmural wavefronts; black arrows
indicate epicardial breakthrough sites (a)-(d) or PS-induced propagating activity (e). In (a)
and (b), the response to a 10 ms shock is shown in the absence of the PS. Activations originate
in the septum and propagate through the free wall. In (c) and (d), similar activations are seen
following a 5 ms shock using the AP+PS configuration. Wavefronts originating from PS
transmission arrive at the epicardium before shock-induced myocardial wavefronts. (e)
shows the response to an even shorter shock (3 ms) for the same configuration. Dashed lines
represent cross-section planes relative to the top and bottom views. Vm is shown with the
same color scheme used in Fig. 1.

insertion points. While IW abbreviation was indisputable for the fully-penetrating PS, it was

less clear for cases where the PS terminated in the midwall. Notably, these cases were subject

to a higher degree of variability from sample to sample, which could be the result of surface

polarization blocking PS activity.

In our model, rapid conduction through the PS was the source of the epicardial breakthrough

terminating the IW. However, there are several limitations and differences with Trayanova’s

work. We only considered monophasic defibrillation shocks while her group considered

biphasic shocks which would lead to different postshock surface states. Our modelling of the

PS cell response to large shocks may not be accurate. This is true for all ionic models where

behavior outside of the physiological voltage range is not well characterized. If PS conduction

became compromised due to a field induced conduction block, or refractory myocardium

prevented anterograde transmission across the PMJs, then the tunnel propagation mechanism

could account for the IW. In reality, it is likely that both mechanisms play a role, depending

on circumstances.

8. Defibrillation

A limited set of computer simulations has been performed with ventricles including a model

of the PS(Deo et al., 2009). With an 8 V/cm defibrillation shock, ventricles with a PS were

successfully defibrillated while those without a PS were not. The most obvious difference
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Fig. 8. Effect of PS insertion depth on IW duration. The IW was longest for surface-bound PS
and shortest in the case of fibre endpoints that penetrated to the sub-epicardial layer. Error
bars correspond to maximum deviation from mean values (n = 6).

between the two situations was the more rapid and widespread activation of the epicardium

which eliminated excitable gaps. Without the PS, an excitable gap persisted under the anode,

allowing reentry to be reinduced. Thus, the PS aided in defibrillation. Experimentally,

application of Lugol’s solution to the endocardium results in a doubling of DFT(Damiano

et al., 1986), suggesting that the PS facilitates defibrillation at lower field strengths.

9. Summary

Based on experimental findings, which are supported by our modelling studies, we conclude

that the PS plays a major role in defibrillation. Due to its cable-like nature and complicated

geometry, it is excited in many places by an applied electric field, which leads to rapid

activation of the entire network. Any excitable gaps are quickly consumed and reentry cannot

be reestablishing. This effect is less prominent as shock strength is increased since more

myocardium is directly excited by the shock. The complex postshock propagation pattern

present with a PS may also play a role in rapid ventricular activation to stop fibrillation.
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