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1. Introduction 

Numerical simulation plays a decisive role in the design of modern optical communication 
components. However, time efficient and user-friendly numerical techniques that perform 
simulations in that area are not easily available. In this chapter, an example concerning the 
use of a numerical simulation method, designated by transfer-matrix-method (TMM), is 
presented. Although the TMM is a numerical simulation tool especially adequate for the 
design of distributed feedback (DFB) laser structures in high bit rate optical communication 
systems (OCS), it represents a paradigmatic example of a numerical method related to 
heavy computational times. 
Nowadays, distributed-feedback lasers are indispensable in high-bit rate OCS (Bornholdt et 
al., 2008; Sato et al., 2005; Tang et al., 2006; Utake et al., 2009; Wedding & Pöhlmann, 2004; 
Wedding et al., 2003), where they should present single-longitudinal mode (SLM) operation 
over the largest range of current injection. In order to assure sufficient intensity modulation 
bandwidth in high-bit rate systems, the current injected into the laser cavity can assume 
high values, (Sato et al., 2005; Wedding & Pöhlmann, 2004; Wedding et al., 2003). On the 
other hand, to fulfill the SLM condition, high mode selectivity and almost uniform 
intracavity field distributions are demanded. In the context of OCS, DFB lasers with a 90º 
phase discontinuity near the centre of the cavity1 are commonly cited in the specialized 
literature, due to their high mode selectivity, small current bias and zero frequency detuning 
at threshold condition (Ghafouri-Shiraz, 2003). Their main drawback is related to the high 
non-uniformity of the field distribution along the cavity, which presents a strong peak near 
the centre. Above-threshold, this non-uniformity induces important variations of the carrier 
and refractive-index distributions arising from the spatial hole-burning (SHB) effect, with 
serious consequences in the laser behavior in the high power regime, namely: increased 
linewidth (Ghafouri-Shiraz, 2003), multi-mode emission (Morthier, 1997) and less flat laser 
frequency modulation response (Agrawall & Dutta, 1986). Therefore, a careful and suitable 
design of the laser emitter, with a rigorous assessment of the electric field distribution along 
the laser cavity, is crucial in order to reduce the impact of SHB in OCS. 
DFB structure analysis can be performed assuming the classical solution of the wave 
propagation inside periodic structures. The grating of the cavity is responsible for a 
                                                                 
1 Generally designated by quarterly wavelength-shifted (QWS) or λ/4 DFB lasers. 
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coupling between two counter-running waves, which is ruled by a pair of differential 
equations, usually designated by coupled-mode equations. These equations represent the 
essence of the theoretical analysis of longitudinal modes inside periodic laser structures, 
whose initial works are attributed to H. Kogelnik and C. Shank (Kogelnik & Shank, 1972). 
Resonant frequencies and threshold criteria for the oscillation modes have been determined 
for both index and gain periodicities. However, even in the simplest case - conventional 
anti-reflexive (AR) coated DFB lasers - the coupled-mode equations must be solved 
numerically. Since the number of boundary conditions to match is generally high, the 
procedure will quickly become a tremendous and fastidious task for most of DFB structures. 
Usually, DFB structures demand the use of simulation tools more flexible than the 
traditional numerical techniques based on analytical or semi-analytical methods. In this 
scenario TMM takes place as one of the most popular and useful numerical simulation tools. 
It is a method that can easily handle with complex periodic structures, both for static and 
dynamic regimes. The same generic algorithm may be used in a straightforward way for the 
analysis of any kind of multi-section laser structures, namely, multiple phase-shift (MPS)-
DFB (Tan et al., 1995), distributed-coupled coefficient (DCC)-DFB (Ghafouri-Shiraz, 2003 ; 
Boavida et al., 2011), corrugation pitch modulated (CPM)-DFB (Fessant, 1997), multi-
electrode DFB (Ghafouri-Shiraz, 2003), distributed Bragg reflector (DBR) (Lowery, 1991), 
vertical cavity (Yu, 2003), etc, as long as the perturbation included in the periodic chain may 
be described by a transfer matrix. A detailed description of those numerical techniques will 
be the scope of this work. However, as previously referred, matrix methods are usually very 
heavy in terms of processing times and so they should be optimized in order to improve 
their time computational efficiency. The search for adequate strategies aiming at an efficient 
convergence of the TMM, both for static and dynamic regimes, is crucial and it will be one of 
the leit-motiv of the present study. Accordingly, a convenient approach to TMM suggests an 
introduction to the coupled wave theory. 

2. The coupled wave theory 

In a homogeneous, source-free and lossless medium, any time harmonic electric field obeys 
the vector wave equation 

 2 2 2 0.0E k n E∇ + ⋅ ⋅ =  (1) 

In (1) the time dependence, t, of the electric field has been assumed to be e ,j tω  with ω the 

angular frequency, E  the complex amplitude of the electric field, n the refractive index and 

0k  the free space propagation constant. From Maxwell equations it is possible to show that 

in a semiconductor laser, which has an oscillating lateral and transversal confined electric 

field, the longitudinal wave propagation obeys the one-dimensional homogeneous wave 

equation 

 
( )

( ) ( )
2

2
2

0,
d E z

k z E z
dz

+ ⋅ =     (2) 

commonly referred as the scalar wave-equation. In (2) ( )k z  is the complex propagation 

constant related to ,E  given by 

 ( ) ( ) ( ) ,uk z z jg z= β +   (3) 
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where ( )zβ  is the phase propagation constant by unit length and ( )ug z is the amplitude 

gain by unit length associated with the propagation of the electric field along the cavity. In 

DFB lasers the corrugation-induced dielectric perturbation along the laser cavity (grating) 

leads to a periodic Bragg waveguide and, therefore, to the longitudinal dependence of the 

propagation constants. These are given by  

 ( )
( )

2
,

f
z

c zΛ

π
β   (4) 

where f is the frequency and ( )c zΛ  is the propagation velocity of E inside the Bragg 

waveguide, given by  

 ( )
( ) ( )

1
.c z

z z
Λ

µ ⋅ ε
  (5) 

In (5) µ  represents the magnetic permeability, usually given for non-magnetic materials by 

its value in free space 7 1
0 4 10 H m ,− −µ = π× ⋅  and ε  is material permittivity 

( 12 1
0 8.854 10 F m− −ε = × ⋅  for free space). Substituting (5) in (4), it yields 

 ( ) ( ) ( )
( )

( )0
0 0 0

0 0

2 2 ,
z

z f z z f k n z
ε ⋅µ

β = π ⋅ ε ⋅µ ≅ π ⋅ ε ⋅µ ≅ ⋅
ε ⋅µ

 (6) 

with the free-space phase propagation constant and the semiconductor refractive index 
given, respectively, by  

 ( )
( ) ( )0

0 0 0
00 0

2 ; .
z z

k f n z
µ ⋅ ε ε

π ⋅ µ ⋅ ε ≅ =
εµ ⋅ ε

  (7) 

Assuming that the corrugation has a period Λ, it is implicitly assumed that the refractive 

index and the amplitude gain are also periodic functions of the same period. Since the 

length of the laser cavity (commonly hundreds of micrometers) is much longer than Λ 

(generally, some nanometers), it is possible to represent the waveguide by a Fourier 

series. In this approach, the Bragg waveguide may be considered a first-order waveguide, 

leading to  

 ( ) ( )0 0cos 2 ; cos 2 .u u u

z z
n z n n g z g gΛ Λ Λ

   
≅ + Δ ⋅ π ⋅ + Ω ≅ + Δ ⋅ π ⋅ + Ω + θ   

Λ Λ   
 (8) 

In (8), where only the first two terms of the series have been considered, 0n  and 0ug  are the 

mean values of ( )n z and ( )ug z , respectively, and nΔ  and ugΔ  are their modulation 

amplitudes. ΛΩ  
is the phase of the periodic variations of the refractive index for z=0 and 

Λθ  is the relative phase deviation between the perturbations ( )n z and ( )ug z . Hereafter, 

0ug  will be designated by α . The period Λ imposes some restrictions to the values that 

( )zβ
 
can assume. In Fig. 1 it is schematically shown the propagation of the electric field in a 

periodic structure, assuming ( ) 11m .ug z −=
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Fig. 1. Electric field propagation in a periodic waveguide, assuming lateral and transversal 

confinements of ( ).E z  

For NΛ  periods, NΛ  reflected waves will be generated. Their positive interference demands 

that the phase difference between two reflected waves be a multiple of 2π. According to  

Fig. 1 this means that 

 ( ) ( ) ( ) ( )2 sin 2 :     1;2;3...  .z AB BC z m mΛβ ⋅ + = β ⋅  Λ ⋅ Φ  = π =   (9) 

Assuming ΛΦ =90º, for a first order corrugation it yields ( )zβ =π/Λ. Therefore, the 

propagation constant is independent of z, being known as the Bragg propagation constant 

/ .Λβ = π Λ  Physically, it represents a value in the vicinity of which the propagation constant 

must be included so that the electric field may propagate along the structure. Related to this 

value, it may be defined the structure wavelength struct 2 / 2 .Λλ π β = Λ This parameter may 

be related to an oscillator whose frequency is designated by the Bragg frequency, which is 

given by
 

 
struct 0

.
c

f
n

Λ
λ ⋅

  (10) 

In (10) c is the free-space velocity. For an oscillator in free-space of the same frequency, the 
wavelength is known as the Bragg wavelength, and it is given by 

 struct 0 02 .
c

n n
f

Λ
Λ

λ = λ ⋅ = Λ ⋅  (11) 

Assuming that ( ) ( ) 0,ug z z n nβ Δ  and ,ugΔ α
 
it

 
is possible, after some algebraic 

manipulation, to show that 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2 2 exp 2

2 exp 2

R S

S R

k z z j z z j z

z j z

← Λ Λ

← Λ Λ

≅ β + ⋅β ⋅α + ⋅β ⋅ κ ⋅ − ⋅β ⋅ + Ω  + 
+ ⋅β ⋅ κ ⋅  ⋅β ⋅ + Ω  

 (12) 

with R S←κ  and S R←κ  being the coupling coefficients related to the Bragg waveguide, which 

are given by 
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 ( ) ( )
0 0

exp ; exp
2 2

u u
R S S R

g gn n
j j j j← Λ ← Λ

Δ Δπ ⋅ Δ π ⋅ Δ
κ + ⋅ ⋅ − ⋅ θ κ + ⋅ ⋅ ⋅ θ

λ λ
   (13) 

with  

 0
0

2
.

k

π
λ   (14) 

Considering 0/R nκ π ⋅ Δ λ
 

and / 2I ugκ Δ , it is possible to write the coupling coefficients 

(13) as 

 ( ) ( )exp ; exp .R S R I S R R Ij j j j← Λ ← Λκ = κ + ⋅ κ ⋅ − ⋅ θ κ = κ + ⋅ κ ⋅ ⋅ θ  (15) 

From (15), it may be seen that the contributions for the coupling coefficients, related to the 

perturbations in the refractive index or in the gain per unit length, are included in Rκ  and 

Iκ , respectively. Using (12) in (2), it yields 

( )
( ) ( ) ( ) ( ) ( ) ( ){ } ( )

( ) ( ){ } ( )

2
2

2
2 2 exp 2

2 exp 2 0 .

R S

S R

d E z
z E z j z E z z j z E z

dz

z j z E z

← Λ Λ

← Λ Λ

+ β ⋅ + ⋅ β ⋅α ⋅ + β ⋅ κ ⋅ − β ⋅ + Ω  ⋅ + 

+ β ⋅ κ ⋅  β ⋅ + Ω  ⋅ = 

 (16) 

Equation (16) gives the electric field profile considering the global effects of the lateral and 
transversal confinements and the presence of a corrugation in the laser cavity.  

Without corrugation, which is the case of the Fabry-Pérot (FP) lasers, 

0.R S S R un g← ←κ = κ = Δ = Δ =  Therefore, from (16), results 

 ( )
( )

2
2

2
2 0.

d E z
j E z

dz
 + β + ⋅ β ⋅α ⋅ =   (17) 

Taking into account that in this case ( ) ( ) ,ug z z= α β = β  it yields 

 ( )22 2 22 2 .j j jβ + ⋅ β ⋅α ≅ β + ⋅ β ⋅α + α = β + α  (18) 

Being (17) a linear homogeneous ordinary differential equation with constant coefficients, 
the solution may be written as 

 
( ) ( ) ( ) ( ) ( )exp exp ,E z A z j z B z j z= ⋅ − ⋅β ⋅ + ⋅ ⋅β ⋅

 (19) 

where ( )A z and ( )B z
 
are arbitrary complex constants to be determined according to the 

boundary conditions imposed at the cavity ends. 
Let us now assume a DFB laser, that is, a laser with a corrugation inside the cavity, which is 
responsible for an amount of feedback distributed along the cavity. The solution is seen to 
be formally identical to the one obtained in (19) but with β replaced by β(z), which is in the 
vicinity of the Bragg propagation constant so that positive interference should happen. 
Therefore, it may be assumed that 

 ( ) ,z Λ Λβ −β β  (20) 
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with the detuning defined as 

 
( ) .z Λδ β −β

 (21) 

According to (20) and (21), (19) may be rewritten as 

 ( ) ( ) ( ) ( ) ( )exp exp ,E z R z j z S z j zΛ Λ= ⋅ − ⋅β ⋅ + ⋅ ⋅β ⋅  (22) 

where 

 ( ) ( ) ( ) ( ) ( ) ( )exp ; exp .R z A z j z S z B z j z⋅ − ⋅ δ ⋅ ⋅ ⋅ δ ⋅   (23) 

Equation (22) shows that ( )E z is the superposition of two counter-running waves, ( )R z and 

( )S z . Using (22) in (16), it is obtained after some algebraic manipulation  

  

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

exp ;

exp .

R S

S R

dR z
j R z j S z j

dz

dS z
j S z j R z j

dz

← Λ

← Λ

− + α − δ ⋅ = κ ⋅ − ⋅Ω

+ α − δ ⋅ = κ ⋅ ⋅Ω

 (24) 

Equations (24) are known as the coupled-wave equations. It should be emphasized that (24) is 

valid for periodic laser cavities as far as the included perturbations are weak. The physical 

meaning of the coupling coefficients R S←κ and S R←κ  
is clearly described by (24). They 

represent the amount of feedback per unit length in the propagation along the cavity. This 

means that there is a net energy transfer between the two counter-running waves associated 

to the electric field distribution. The coupling coefficient R S←κ  measures the coupling that 

( )S z  induces in ( )R z . It is known as the forward coupling coefficient. The coupling coefficient 

S R←κ measures the coupling that ( )R z  induces in ( )S z . It is known as the backward coupling 

coefficient. 
In the following, some applications of the coupled-wave theory in the analysis of the 
threshold regime related to simple laser structures will be considered. 

2.1 Threshold analysis of conventional DFB lasers with reflective facets 

Let us consider a conventional DFB laser structure, which is a DFB laser with a constant 

period grating defined by ( ) .zΛ = Λ The cavity ends (facets) will be defined by their 

reflectivities, 1̂r and 2̂ ,r at left and right facets, respectively. Without loss of generality, it will 

be considered hereafter θΛ=0. From (15) and (8), it yields 

 ( ) ( )

( ) ( )
0

;

cos ;

cos ,

R S S R R I

u u

j

n z n n z

g z g z

← ←

Λ

Λ

κ = κ = κ + ⋅ κ

≅ + Δ ⋅ Ψ  
≅ α + Δ ⋅ Ψ  

 (25) 

where ( ) 2z zΛ Λ ΛΨ β ⋅ + Ω
 
represents the corrugation phase at z coordinate.

 
 

Since the forward and backward coupling coefficients are equal, they will be referred as the 

coupling coefficient and represented by .κ  According to (24) the solution of the coupled-

wave equations may be written as 

www.intechopen.com



 
The Static and Dynamic Transfer-Matrix Methods in the Analysis of Distributed-Feedback Lasers 441 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 2

1 2

exp exp

exp exp .

R z R z z R z z

S z S z z S z z

= ⋅ γ ⋅ + ⋅ −γ ⋅

= ⋅ γ ⋅ + ⋅ −γ ⋅
 (26) 

From (22) and (26), it yields 

 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2

1 2

exp exp exp

exp exp exp .

E z R z z R z z j z

S z z S z z j z

Λ

Λ

 = ⋅ γ ⋅ + ⋅ −γ ⋅ ⋅ − β ⋅ + 
 + ⋅ γ ⋅ + ⋅ −γ ⋅ ⋅ β ⋅ 

 (27) 

In the previous equations, ( ) ( ) ( ) ( )1 2 1 2, , ,R z R z S z S z and ( )zγ  are complex values that are 

determined according to the boundary conditions imposed at the cavity facets. However, no 

matter the type of facets considered, it is possible to show that, in order that the solution (27) 

is non-trivial, the following condition should always be verified 

 ( )22 2 .jγ = α − δ + κ  (28) 

This condition is generally known as the dispersion equation. For a cavity with length L and 

reflecting facets with reflectivities 1r


 and 2r


, respectively, at left and right ends, the 

boundary conditions at the cavity ends impose that 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1

2 2 2 2 2

exp exp

exp exp .

R z j z r S z j z

S z j z r R z j z

Λ Λ

Λ Λ

⋅ − β ⋅ = ⋅ ⋅ β ⋅

⋅ β ⋅ = ⋅ ⋅ − β ⋅



  (29) 

From (29) and the dispersion equation (28) it is obtained, after some algebraic manipulations 

 
( )

( ) ( ) ( ) ( ) 0.5
1 2 1 2 1 2

sinh
ˆ ˆ ˆ ˆ ˆ ˆ1 cosh 1 ,

j L L
L r r r r L r r

D

− κ ⋅ ⋅ γ  γ = ⋅ + ⋅ − ⋅ ⋅ γ ± + ⋅ ⋅ ς   (30) 

with 

 

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

1

2

2 22
1 2 1 2

2 2
1 2 1 2

1 1 1 1

2 2 2 2

ˆ ˆ ˆ ˆsinh 1

ˆ ˆ ˆ ˆ1 4 cosh

ˆ exp 2 exp

ˆ exp 2 exp .

r r L r r

D r r r r L

r r j z r

r r j z r

Λ Λ Λ

Λ Λ Λ

ς − ⋅ γ + − ⋅

+ ⋅ − ⋅ ⋅ ⋅ γ

= ⋅  β ⋅ + Ω  = ⋅ Ψ 

= ⋅ − β ⋅ + Ω  = ⋅ Ψ 




 (31) 

In (31) 
1Λ

Ψ is the corrugation phase at the left facet (z=z1) and 
2Λ

Ψ  is the symmetric of the 

corrugation phase at the right facet (z=z2). Equation (30) represents the threshold condition 

for the conventional DFB laser. It depends on the coupling coefficient, the cavity length and 

the reflectivities at both cavity ends. Its solution allows the determination of the detuning, δ, 

and the gains associated with all modes, α, that are allowed to propagate inside the cavity. 

For most practical cases it recurs to numerical methods, taking into account that it may be 

rewritten in a more suitable form as 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2
1 2

1 2 1 2

ˆ ˆsinh 1 1

ˆ ˆ ˆ ˆ2 . 1 sinh cosh 0 .

L D L L r r

j L r r r r L L L

γ ⋅ + κ ⋅ ⋅ γ ⋅ − ⋅ − +

+ κ ⋅ + ⋅ − ⋅ ⋅ γ ⋅ γ ⋅ γ =
 (32) 

The solutions of (32) are seen to depend strongly on the conditions at the cavity ends, 

through the values assumed for their reflectivities, both in amplitude and phase. This may 

be problematic as far as the laser characterization is concerned, since due to fabrication 

limitations the values assumed for the phases in the facet reflectivities are known with a 

certain degree of uncertainty.  

To solve the complex equation (32), Newton-Raphson iteration techniques are generally 

used, provided the Cauchy-Riemann condition on complex analytical functions are satisfied. 

In the following paragraphs it is briefly presented a generalization of the usual Newton-

Raphson method for the solution of non-linear real equations. Let us then consider the 

following generic equation of an arbitrary complex function of a complex variable,  

 ( ) 0,W z =  (33) 

and let us assume that ( )W z is an analytical function, i.e., that it is possible to calculate 

( )/dW z dz  in the vicinity of z . The complex function is described as 

 
( ) ( ) ( ).W z U z jV z= +

 (34) 

In (34) ( )U z and ( )V z  are real functions that represent the real and imaginary parts of 

( )W z , respectively. Taking into account that ,z x jy= + the solution of (34) is equivalent to 

the solution of the following system of equations 

 ( ) ( ), 0 ; , 0 .U x y V x y= =  (35) 

The Taylor expansion of (35) in the vicinity of an approximate solution ( )0 0,x y yields to 

 ( ) ( )
( )

( )
( )

( )
0 0 0 0

1 1 0 0 1 0 1 0

, ,

, ,
, ,

x y x y

U x y U x y
U x y U x y x x y y

x y

∂ ∂
= + ⋅ − + ⋅ −

∂ ∂
 (36) 

 ( ) ( )
( )

( )
( )

( )
0 0 0 0

1 1 0 0 1 0 1 0

, ,

, ,
, , .

x y x y

V x y V x y
V x y V x y x x y y

x y

∂ ∂
= + ⋅ − + ⋅ −

∂ ∂
 (37) 

From (35), (36) and (37), it yields 

 ( ) ( )1 1 1 1, 0 ; , 0 ,U x y V x y≅ ≅  (38) 

where 1x and 1y  are in the vicinity of 0x  and 0y . Using (38) in (36) and (37), it is obtained 

( ) ( )
( )

( ) ( )

0 0 0 0 0 0 0 0

1 1 0 0 0 0

, , , ,

, , , ,
,

x y x y x y x y

U x y U x y U x y U x y
x y U x y x y

x y x y

 ∂ ∂ ∂ ∂ ⋅ + ⋅ = − + ⋅ + ⋅
 ∂ ∂ ∂ ∂
 

 (39) 
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( ) ( )
( )

( ) ( )

0 0 0 0 0 0 0 0

1 1 0 0 0 0

, , , ,

, , , ,
, .

x y x y x y x y

V x y V x y V x y V x y
x y V x y x y

x y x y

 ∂ ∂ ∂ ∂ ⋅ + ⋅ = − + ⋅ + ⋅
 ∂ ∂ ∂ ∂
 

 (40) 

The solutions 1x  and 1y  of the previous system of equations are  

 

( )
( )

( )
( )

0 0 0 0

0 0 0 0

, ,
1 0

, ,
, ,

Newt

x y x y

U x y V x y
V x y U x y

y y
x x

∂ ∂
⋅ − ⋅

∂ ∂
= +

Δ
 (41) 

 

( )
( )

( )
( )

0 0 0 0

0 0 0 0

, ,
1 0

, ,
, ,

,
Newt

x y x y

V x y U x y
U x y V x y

x x
y y

∂ ∂
⋅ − ⋅

∂ ∂
= +

Δ
 (42) 

where 

 

( ) ( ) ( ) ( )

0 0 0 0 0 0 0 0

Newt

, , , ,

, , , ,
.

x y x y x y x y

U x y V x y V x y U x y

x y x y

∂ ∂ ∂ ∂
Δ = ⋅ − ⋅

∂ ∂ ∂ ∂
 

Taking into account (34), it is straightforward that2 ( ) ( ),U x y W z = ℜ   
and 

( ) ( ), ,V x y W z = ℑ  which yields  

 

( ) ( ) ( )
.

dW z dU z dV z
j

dz dz dz
= +

 

(43)
 

From ,z x jy= + and (43) one obtains the following equations 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

,

U x y dU z dU z dW zz

x dz x dz dz

V x y dV z dV z dW zz

x dz x dz dz

 ∂ ∂
= ⋅ = = ℜ  

∂ ∂   
 ∂ ∂

= ⋅ = = ℑ 
∂ ∂   

 (44) 

 
( ) ( ) ( ) ( ) ( ) ( ), ,

; .
U x y V x ydU z dU z dV z dV zz z

j j
y dz y dz y dz y dz

∂ ∂∂ ∂
= ⋅ = = ⋅ =

∂ ∂ ∂ ∂
 (45) 

Replacing (45) in (43), it is obtained 

 
( ) ( ) ( ), ,

.
V x y U x ydW z

j
dz y y

∂ ∂
= −

∂ ∂
 (46) 

                                                                 
2 ℜ ⋅    and ℑ ⋅    are, respectively, the real and imaginary parts of the arguments. 
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From (46) and (44), it is easily shown that  

 
( ) ( ) ( ) ( ), ,

;  .
V x y U x ydW z dW z

y dz y dz

   ∂ ∂
= ℜ = −ℑ   

∂ ∂      
 (47) 

It should be noticed that from (45) and (47) it results 

 
( ) ( ) ( ) ( ), , , ,

;   .
U x y V x y U x y V x y

x y y x

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂
 (48) 

It is worth noticing that (48) corresponds to the Cauchy-Riemann condition, which states 

that, in fact, ( )W z is an analytical function.  

Given the initial guess ( )0 0,x y the numerical iteration process starts. A new value is 

obtained using (41) and (42) taking into account (44) and (47) and it is used as the initial 

condition for the next iteration until the difference for the previous guess is within a pre-

defined range (for example, less than 810− ). The method is very fast, while strongly 

dependent on the initial guess. Moreover, it assumes that the analytical description of the 

complex function ( )W z  is known. It can be a good option, whereas as the structure under 

analysis is of moderate complexity. Some examples are given below.  

2.2 Threshold analysis of anti-reflective (AR) coated conventional DFB lasers  
These lasers avoid the uncertainty related to the phase facets. Starting from (32) and 

assuming 1 2
ˆ ˆ 0,r r= =

 
it yields 

 
( ) ( )sinh .j L L Lγ = ±κ ⋅ ⋅ γ

 
(49)

 

There exist two pairs of possible solutions for each oscillation mode (mathematically those 
solutions correspond to complex conjugates). The solutions, gain and detuning related to the 
several modes that are allowed to propagate inside the cavity, are symmetrically placed 

related to the Bragg wavelength, where 0.Lδ =  Therefore, the laser spectrum is double 

degenerate. Since there is no solution with null detuning (Agrawall & Dutta, 1986), the SLM 
operation is prevented. In spite of being the less complex DFB structure, it is useless in the 
OCS domain.  
However, some remarks should be emphasized for this type of laser structures. For a given 
laser cavity, when the coupling coefficient increases, the normalized amplitude gain 
decreases or, equivalently, the threshold current will decrease. This is consistent with the 
fact that a larger coupling coefficient means a stronger optical feedback along the DFB laser 
structure. Alternatively, a reduction in the threshold gains can be obtained for a fixed 
coupling coefficient using a longer cavity length, since a larger single pass gain can be more 
easily achieved.  

2.3 Threshold analysis of AR-coated, single phase-shifted (1PS) DFB lasers  
As previously referred, a stable SLM operation is not guaranteed in conventional DFB 
lasers: neither in AR-coated DFB, since the laser spectra is double degenerate, nor in several 
reflective facets DFB lasers, due to the randomness of the corrugation phase at the laser 
facets. To overcome this drawback, some alterations should be included in the laser 
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corrugation. The most popular solution corresponds to the inclusion of a single phase-shift 
discontinuity in the corrugation.  
The laser characteristics are shown to be strongly dependent on the value assumed for the 
phase discontinuity and on its location inside the cavity (Ghafouri-Shiraz, 2003; Fernandes 
et al., 2009). It can be shown that one of the most advantageous situations corresponds to a 
phase-shift of 90º placed near the centre of the cavity. This structure is referred as quarterly-
wavelength-shifted (QWS) and it is related to important improvements in the main laser 
figures of merit near threshold regime defined for OCS.  
Based on the coupled-wave theory and after some tedious algebraic manipulations by 
matching all the boundary conditions (Ghafouri-Shiraz, 2003), the oscillating equation for an 
AR 1PS-DFB laser with a phase-shift discontinuity φ  placed at the cavity centre is found, 

being given by ( )( ) ( )( ) ( )
2

2ˆ ˆ1 exp /    exp exp 2L L j κ Γ − γ κ + Γ γ = φ   
with ˆ .jΓ = α − δ − γ

 
 

Laser structure Complex equation 

AR- DFB ( ) ( )sinhj L L Lγ = ±κ ⋅ ⋅ γ
 

DFB with reflexive facets 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2
1 2

2 2 2 2
1 2 1 2

ˆ ˆsinh 1 1 2.

ˆ ˆ ˆ ˆ. 1 sinh cosh 0

L D L L r r j

L r r r r L L L

γ ⋅ + κ ⋅ ⋅ γ ⋅ − ⋅ − +

⋅ κ ⋅ + ⋅ − ⋅ ⋅ γ ⋅ γ ⋅ γ =
 

AR-1PS DFB ( )( ) ( )( ) ( )
2

2ˆ ˆ1 exp /    exp exp 2L L j κΓ − γ κ + Γ γ = φ   

FP ( )1 2
ˆ ˆ exp 1r r jkL⋅ − =

Table 1. Transcendental equations associated to oscillation conditions in some very simple 
laser structures. 

Table 1 summarizes the equations assumed by the oscillation condition for the DFB lasers 

described in sections 2.1, 2.2 and 2.3. The first two cases correspond to conventional DFB 

lasers, i.e., those with perfect periodic corrugations. The first of them is AR-coated type, and 

it corresponds to (49); the second structure has finite reflectivity facets and it corresponds to 

(32). The third structure is an AR-coated DFB laser with a single phase-discontinuity φ
placed in the middle of the cavity. The last row corresponds to a different type of laser: the 

Fabry-Pérot cavity, the simplest type of optical oscillator. There is no corrugation ( 0κ = ) 

and the optical feedback that couples the two counter-running waves originates from the 

laser facets through their reflectivity values, 1̂r and 2̂ .r  

3. The static-TMM 

In section 2 the coupled wave theory has been applied to study the oscillation static 
conditions in several simple laser structures. Different eigen-value equations were obtained 
by matching different boundary conditions inside the laser cavity. From their solutions the 
oscillating modes in the cavity may be determined, from which the impacts due to laser 
parameters may be discussed.  
Non-conventional DFB lasers diodes have been successively proposed to be used in OCS 
as improved alternatives to the QWS-DFB laser diode. These lasers aim to avoid the 
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degradation of SLM operation with the current injection, by reducing the SHB effect 
(Agrawall & Dutta, 1986; Ghafouri-Shiraz, 2003; Morthier & Vankwikelberge, 1997). The 
SHB effect reduction can be achieved, for instance, by optimizing the coupling coefficient 
profile (Ghafouri-Shiraz, 2003) and/or modulating the corrugation pitch (Fessant, 1997) 
along the cavity length. However, the search for the improvement in the laser 
performance leads to the inclusion of additional boundary conditions that makes the static 
analysis of the modified laser structures based on the couple-wave theory tedious and 
inadequate, even for situations near the laser threshold regime, where non-linear effects 
are expected to be negligible.  
More flexible methods are then required. It is generally accepted that TMM represents an 
adequate alternative to evaluate the laser performance in modified laser structures, as long 
as the included modifications are described in a matricial form. The great flexibility of the 
method relies on the fact that, in those assumptions, the same algorithm may be 
straightforward applied to the analysis of several laser structures. 

3.1 The threshold regime 

Basically, to perform the static-TMM-based model for the laser threshold analysis, the cavity 

with length L is divided into M concatenated sections, each one being identified by the 

constancy of its structural parameters. These are, for the m-th section with length Lm: the 

corrugation period Λm, the amount of feedback per unit length mκ  and the phase of the 

section grating with respect to the left side of the section mΩ  (Fig. 2). 

Each section is described by two counter-propagating electrical field waves, given by their 

complex amplitudes ( )RE z  and ( )SE z , which allow the internal electrical field intensity 

E( , )t z  to be determined according to 

 ( ){ } ( ){ }( , ) ( ) ( ) exp ( ) exp .R SE t z E z E z j t E z j t   ∝ℜ + ⋅ ω = ℜ ⋅ ω     (50) 

 

 

Fig. 2. A schematic diagram for a one-dimensional DFB laser structure section, placed 

between 1andm mz z +  .  

From (22), it is obtained 

 ( ) ( )( ) ( ) ( ) exp( ) exp( ),R S m mE z E z E z R z j z S z j z= + = ⋅ − ⋅β ⋅ + ⋅ ⋅β ⋅  (51) 
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where 

 

( )

( )

1 2

1 2

exp( ) exp( )

exp( ) exp( ) ,

m m m m

m m m m

R z R z R z

S z S z S z

= ⋅ γ ⋅ + ⋅ −γ ⋅

= ⋅ γ ⋅ + ⋅ −γ ⋅

 (52) 

with  

 1 1 2 2exp( ) ; exp( )m m m m m m m mS j R R j S= ρ ⋅ ⋅Ω ⋅ = ρ ⋅ − ⋅Ω ⋅  (53) 

and 

 

( )2 2

1

;  

1 1
;

m
m m m

m m

m
m m

j
jmj

m

κ
ρ γ α − δ + κ

α − δ + γ

  π
δ δ + π − β 

Λ Λ Λ 

 

 

 (54) 

 
1

1
1

2 ; 2 .
m

m k
kk

L m M
−

=

 π
Ω = Ω + ≤ ≤ 

Λ 


 
(55) 

In (54) α and δ are, respectively, the gain and the detuning, taking the left section as a 

reference. Using (53) in (52) it yields 

 

( )
( )

1 2

1 2

exp( ) exp( ) exp( )
.

exp( ) exp( ) exp( )

m m m m m m

m m m m m m

R z R z S j z

S z R j z S z

 = ⋅ γ ⋅ + ρ ⋅ ⋅ − ⋅Ω ⋅ −γ ⋅


= ρ ⋅ ⋅ ⋅Ω ⋅ γ ⋅ + ⋅ −γ ⋅
 

(56)

 

Assuming a generic m cell, placed between mz z=  and 1 ,mz z += it is obtained from (56) 
 

  

( )
( )
( )
( )

1 2

1 2

1 1 1 1 1 1 2 1 1 1 1

1 1 1 1 1

exp( ) exp( ) exp( )

exp( ) exp( ) exp( )

exp( ) exp( ) exp( )

exp( ) exp(

m m m m m m m m m

m m m m m m m m m

m m m m m m m m m

m m m m m m

R z R z S j z

S z R j z S z

R z R z S j z

S z R j z

+ + + + + + + + +

+ + + + +

= ⋅ γ ⋅ + ρ ⋅ ⋅ − ⋅Ω ⋅ −γ ⋅

= ρ ⋅ ⋅ ⋅Ω ⋅ γ ⋅ + ⋅ −γ ⋅

= ⋅ γ ⋅ + ρ ⋅ ⋅ − ⋅Ω ⋅ −γ ⋅

= ρ ⋅ ⋅ ⋅Ω ⋅ γ ⋅ 1 2 1 1 1

.

) exp( )m m mS z+ + +






 + ⋅ −γ ⋅

 (57) 

After an algebraic manipulation of (57) it is possible to write ( )1mR z +  and ( )1mS z +  as 

functions of ( )mR z  and ( ).mS z  Finally, using (51) it is obtained  

 
( )
( )

( )
( )
( )

1
1

1

T ,R m R m
m m

S m S m

E z E z
z z

E z E z
+

+
+

   
= ⋅   

      
 (58) 

where the transfer matrix for the m-th section of the one-dimensional DFB laser structure, 

( )1T ,m mz z+  links the column matrices related to the complex electric fields of the wave 

solutions at mz  and 1.mz +  It is given by  
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  ( )
) )

11 12
1 ) )

21 22

T ,
m m

m m m m

t t
z z

t t
+

 
 
  

  (59) 

where ) ) )
11 12 21, ,m m mt t t and )

22
mt  are given, respectively, by 

 
( )

( ) ( )

( )
( ) ( )

( ) ( )

  12   1
) )

11 122 2

  1   1 2
) )

21 222   1 2   1

exp
  ;  

1 1

exp
  ;   ,

1 1
m m

m m m mm mm m m

m m m m

m m m mm m m m m

m m

j
t t

j
t t

−−

− −

− −

ρ ξ − ξ ⋅ − Ωξ − ρ ξ
−

− ρ ζ − ρ ζ

ρ ξ − ξ ⋅ Ω ξ − ρ ξ

− ρ ζ − ρ ζ

 

 

 (60) 

with ( )1exp m m mz zm + ξ γ −  and ( )1exp .m m mj z zm + ζ β − 
 
Equations (58) to (60) are a 

generalization of the TMM presented in (Ghafouri-Shiraz, 2003), in order to allow the 
inclusion of variations in the grating period of laser structures, such as the CPM-DFB lasers. 
The fields at both cavity ends are connected by the elementary matrix product 

 
( )
( )

[ ]
( )
( )
0

,
0

R R

S S

E L E

E L E

   
= ⋅   

      
corT

 

(61) 

where 

 [ ] ( )
1

cor 1T .m m
m M

z z+
=
∏Τ   (62) 

Assuming that the field discontinuity is usually small along the plane of the phase-shift, the 

inclusion of one phase-shift ϕ  placed at mz z=  (Fig. 3) may be described by the following 

set of equations 

  ( ) ( ) ( ) ( ) ( ) ( )exp ; exp .R m R m S m S mE z E z j E z E z j+ − + −= ⋅ ⋅ϕ = ⋅ − ⋅ϕ

 

(63) 

The associated matrix is then given by 

 
( )

( )
exp 0

.
0 exp

j

j

 ϕ
     − ϕ 

φM   (64) 

The matrix given by (64) should be included in the matrix product [ ]corT  given by (62) at 

the correspondent z position.  
Let us now consider the cavity facet description. The uncertainty in the corrugation length 

regarding the period of the corrugation is itself a quantification of the uncertainty in the 

phase-shift related to the facet reflectivity. The left and right facet reflectivities are given, 

respectively, by  

 ( ) ( )1 1 1 2 2 2
ˆ ˆexp ; exp .r r j r r j⋅ ⋅ ϕ ⋅ ⋅ ϕ 

 

(65) 
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Fig. 4 represents schematically the counter-running waves at the left facet. Let us consider, 

firstly, the situation corresponding to 1 2 0.ϕ = ϕ =  For the left facet ( )0 ,z = it yields 

 
( ) ( ) ( ) ( ) ( ) ( )1 1 1 10 0 0 ; 0 0 0 .R R S S S RE E t r E E E t r E+ − + − + −= ⋅ + ⋅ = ⋅ − ⋅

 

(66) 

In (66) t1 is the left facet transmitivity. The second equation of (66) may be rewritten as 
 

 

Fig. 3. A simplified schematic diagram of a phase-shift change ϕ at mz z=  in the DFB laser 

corrugation. 

 ( ) ( ) ( )1

1 1

1
0 0 0 .S S R

r
E E E

t t
+ − −= ⋅ + ⋅

 

(67) 

Substituting (67) in the first equation of (66), it is obtained 

 ( ) ( ) ( )
2
1 1

1
1 1

0 0 0 .R R S

r r
E E t E

t t
+ − − 
= ⋅ + + ⋅  

 
 

(68) 

Assuming (67), (68) and that 2 2
1 1 1,t r+ =  it results 

 
( )
( )

( )
( )

1

11

0 011
.

10 0

R R

S S

E Er

rtE E

+ −

+ −

       = ⋅ ⋅             

(69) 

Therefore, the matrix associated with the left facet, assuming 1 0,ϕ = is given by 

 
1

11

11
.

1

r

rt

   ⋅     1rM 

 

(70) 

In order to include the phase associated with the left reflectivity we should consider a 
matrix associated with the phase- shift similar to (64). This means that  

 
( )
( )

( )
( )

( ) ( )
( ) ( )

( )
( )

1

1

0 0 0exp exp
.

exp exp0 0 0

R R R

S S S

E E Ej r j

r j jE E E

+ − −

+ − −

      ϕ ⋅ ϕ        = ⋅ ⋅ = ⋅         ⋅ − ϕ − ϕ           
1φ rM M

 

(71) 
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In the oscillation condition the cavity incoming waves are null ( ) ( )( )0 0 ,R SE E L− += =  

leading to 
 

 

Fig. 4. A simplified schematic diagram of the two counter-running waves at left facet. 

 ( ) ( ) ( ) ( ) ( )1
1 1

1 1
0 exp 0 ; 0 exp ,R S SE r j E E j

t t
+ − += ⋅ ⋅ ϕ ⋅ = ⋅ − ϕ

 

(72) 

which originates 

 
( )
( )

( )1 1

0
ˆ exp 2 .

0

R

S

E
r r j

E

+

+
= = ⋅ ⋅ ⋅ ϕ

 

(73) 

From (65) and (73) it results that 12 .⋅ ϕ = ϕ  Therefore 

 

1

1

exp 0
2

.

0 exp
2

j

j

 ϕ 
       =     ϕ 

−  
  

1φ φM M
 

(74) 

Similarly, it could be shown that  

 

2

2

22 2

exp 0
1 21

; .
1

0 exp
2

j
r

rt
j

 ϕ 
  −       = ⋅ =      − ϕ   −  

  

2 2r φM M

 

(75) 

The matrix [ ]totΤ  for the overall cavity (corrugation+facets) will be then given by 

 
( )
( )

[ ]
( )
( )

[ ]
( )
( )2 2 1cor tot

0 0
,

0 0

R R R

S S S

E L E E

E L E E

+ − −

+ − −

     
            = ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅            
          

1r φ φ rM M Τ M M Τ

 

(76) 

where [ ] [ ]
2 2 1tot cor .       ⋅ ⋅ ⋅ ⋅       1r φ φ rΤ M M Τ M M  Notice, that in modified DFB structures 

with axial variations of the coupling coefficient ( )zκ , the minimum number of sections to be 

www.intechopen.com



 
The Static and Dynamic Transfer-Matrix Methods in the Analysis of Distributed-Feedback Lasers 451 

considered in the static-TMM should be compatible with the assumption of a constant value 

for the coupling coefficient in each section. The oscillation condition corresponds to the 

vanishing of the incoming waves ( ) ( )( )0 0 .R SE E L− += =  It is stated by the following 

requirement 

  ( )total
22 , 0,t α δ =  (77) 

where total
22t  is the 4th element of the matrix [ ]tot .Τ  The solutions are the mode gain, α , and 

the detuning, δ , for each mode that is allowed to propagate inside the cavity. For the main 

mode their values are, respectively, the threshold gain, ,thα  and the threshold detuning, 

.thδ  Considering a grating with a first-order Bragg diffraction, the mode gain and the 

detuning can be expressed, respectively, as (Ghafouri-Shiraz, 2003)  

 ( )
( )

( ) ( ) ( )
( )

loss
22

; ,
2

gng z
z z n z

z
Λ

Λ

π ⋅Γ − α π π
α = δ = − λ − λ −

λ λ ⋅λ Λ
 (78) 

where lossα  is the total loss, n is the effective index, λ is the lasing mode wavelength, gn  is 

the group effective index and g is the material gain, given by (Ghafouri-Shiraz, 2003)  

 ( ) ( ) ( )( ){ }
2

0 0 1 0 2 0 .g z A N z N A A N z N =  −  − λ − λ − −     (79) 

In (79), N is the carrier concentration, 0A  is the differential gain, 0N  is the carrier 

concentration at transparency ( )0 ,g = 0λ  
is the peak wavelength at transparency and 1A  

and 2A  are parameters used in the parabolic model assumed for the material gain. Using 

the first-order approximation for the effective index n, one obtains (Ghafouri-Shiraz, 2003) 

 ( ) ( )0 ,
n

n z n N z
N

∂
= + Γ

∂
 (80) 

where 0n is the effective index at zero carrier injection and /n N∂ ∂  is the differential index. 

The photon concentration (S) and N are coupled together through the steady-state carrier 

rate equation (Ghafouri-Shiraz, 2003) 

 ( ) ( ) ( )
( ) ( )

( )
2 3 ,

1

g

act g

v g z S zI
AN z BN z CN z

qV S z
= + + +

+ ε
 (81) 

where I is the injection current, q is the modulus of the electron charge, actV  is the volume of 

the active layer, A is the spontaneous emission rate, B is the radiative spontaneous emission 

coefficient, C is the Auger recombination coefficient, gε  is a non-linear coefficient that takes 

into account saturation effects and /g gv c n= is the group velocity. 
In a purely index-coupled DFB laser cavity, which is the case in the most of laser structures 
under analysis, the mutual interaction between the coupled waves can be neglected in the 
rate of total power change (Ghafouri-Shiraz, 2003; Kapon, et al., 1982). Therefore, the local 
photon density inside the cavity can be expressed as  

 ( )
( )

( ) ( )
2 20 2

0

2
,R S

n z ng
S z c E z E z

hc

ε λ  ≈ +  
 (82) 
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where h is the Planck’s constant, and 0c  a dimensionless coefficient that allows the 

determination of the total electric field at the above-threshold regime, taking into account 

that the normalization  

 ( ) ( )
2 2

0 0 1R SE E+ =  (83) 

has been imposed in the left cavity end. The boundary conditions at the left facet and (83) 

allow the calculation of the two counter-running waves, ( )RE z  and ( )SE z , at z=0. The use 

of the TMM allows the calculation of the longitudinal electric field profile. The output 

power at the right facet can therefore be determined as 

 ( ) ,g

dw hc
P v S L=

Γ λ
 (84) 

where d and w are the thickness and width of the active layer, respectively.  

From the solutions of the oscillation condition (77), thα and thδ are determined. Using (78) to 

(80), the carrier concentration at threshold ( ) ,thN  the effective index at threshold ( ) ,thn the 

threshold wavelength ( ) ,thλ  and 0λ  are successively evaluated. Threshold current ( )thI is 

then obtained from (81), assuming that S is negligible at threshold. Within this assumption, 

the z dependence is neglected in the first equation (78), (79) and (80). This is also true in the 

second equation (81), except for the CPM structures where a z dependence should be 

included in ( ).zΛ
 

The number M of cells needed to implement the TMM-threshold analysis of several laser 

structures is summarized in Table 2.  

 

Laser structure Number of cells M
Number of Phase-

Shifts 
Remarks 

FP 3 - 0 ;κ = Λ →∞
 

AR-Conventional DFB 1 - 1 2
ˆ ˆ 0r r= =

Conventional DFB with 
reflexive facets 

3
 1 2

ˆ ˆ, 0r r ≠

QWS 5 3 1 2
ˆ ˆ, 0r r ≠

 
MPS 2N+3 N 1 2

ˆ ˆ, 0r r ≠
 

CPM 5 - 1 2
ˆ ˆ, 0r r ≠

 
CPM Large number - 1 2

ˆ ˆ, 0r r ≠
 

N layer VCSEL N+2 - 1 2
ˆ ˆ, 0r r ≠

 

Table 2. Spatial discretization in static TMM for several semiconductor laser structures in the 
threshold regime. 

The first conventional DFB structure is a mirrorless (AR) DFB laser. One single cell is needed 

for the corrugation description. The first CPM-DFB structure is a symmetric structure with 

two corrugation periods oΛ and ,cΛ  
respectively, for the outer zones, closer to the facets, 
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and for the central zone. For the whole laser description five cells are needed: two cells for 

the facets, two cells for the outer zones in the corrugation and one cell for the central zone. 

The second CPM laser corresponds to a linear chirp corrugation, that is, a structure with a 

continuous change in the corrugation period. 

3.2 Above-threshold analysis 

In the above-threshold regime, ( )S z  assumes high enough values to induce important non-

uniformities in ( )N z
 
and ( )n z . Despite the SHB effect might be minimized by an adequate 

design of the DFB structure, the interdependence of ( ) ( ),S z N z  and ( )n z  can’t be neglected 

anymore. Therefore, in order to insure a correct evaluation of the above-threshold 

characteristics, each section shall be divided into several sub-sections. According to 

(Ghafouri-Shiraz, 2003), for a 500 µm cavity length, about 5000 cells should be considered in 

order to ensure a reasonable accuracy in the stationary analysis. 

The above-threshold calculations follow closely the method described in (Fessant, 1997; 

Ghafouri-Shiraz, 2003). However, in order to ensure a quick convergence in the evaluations 

of the laser characteristics, an adequate strategy is proposed. 

3.2.1 Lasing-mode analysis 
For each bias current I, the numerical above-threshold analysis concerning the lasing-mode 
is summarized as follows 

a. Successive ( )G G×  grids are created in the ( )0 ,c λ  plane. The i-th grid is centered at 

( )( ) ( )
0 ,

c

i i
cc λ and it is enclosed in the region defined by the limits 

min max

( ) ( ) ( )
min0 0, ,i i ic c λ and ( )

max.iλ

For the initial grid ( )1i =
3
 

 (1)
c thλ = λ  (85) 

( )
( ) ( )

( )(1)
0 2 2

/ 2 0

20 0 0
c

R S

hc I I q V v g n n hc I Ith act g th th g th thc
q V v g n nE E act g th th g th

 − ε λ  − = =
ε λ+

 (86) 

 
min max

(1) (1) (1) (1) (1) (1)
0 00 0 0 0

(1) (1) (1) (1) (1) (1)
maxmin

;

; .

c c

c c

c c c c c c= − Δ = + Δ

λ = λ − Δλ λ = λ + Δλ  
(87) 

For (1) (1)
0 010, /10

c
G c cΔ   and (1) 0.1 nmΔλ 

 
seem adequate for most of DFB laser 

structures. However, a readjustment of (1)
0cΔ  and (1)Δλ  may, occasionally, be necessary in 

order to prevent an eventual convergence towards a local minimum. This is a critical aspect of 

the proposed analysis, since an inadequate choice would prevent the numerical convergence. 

b. For each one of the 2G  pairs of the i-th grid, ( )(1) (1)
0 ,

k lc λ with ; 1... ,k l G=  equations (79-

82) are self-consistently solved in order to determine the material gain, the carrier 

                                                                 
3 In (86) it has been taken into account the normalization condition (83). 
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density, the photon density and the effective index for each one of the j-th sub-section, 

respectively, , ,j j jg N S  and ,jn
 
with 1 .j M≤ ≤  

c. Equations (78) are solved in order to determine the lasing-mode gain and detuning for 

the j-th sub-section, respectively, jα  and .jδ  The transfer matrix of the j-th sub-section 

, ( )1T /j jz z+  is then calculated. 

d. Using the TMM , the two counter-running waves at the output of the j-th sub-section, 

jRE  and ,
jSE  are obtained. For the M-th sub-section the discrepancy found between 

those values and the laser right facet boundary condition is represented by ( ).i
klε  This 

value is evaluated and stored for each pair ( )( ) ( )
0 ,

k

i i
lc λ  of the i-th grid. The error 

associated to the i-th grid is given by ( )( )( ) min .ii
klε = ε  

e. Whenever ( ) ( 1) ,i i−ε = ε  the central pair remains the same ( )( 1) ( ) ( 1) ( )
0 0 , ,

c c

i i i i
c cc c+ += λ = λ but 

new limits are required for the next grid description. The partitions should be reduced 

considering, for instance: ( 1) ( )
0 0 /10i ic c+Δ = Δ  and ( 1) ( ) /10.i i+Δλ = Δλ  Whenever 

( ) ( 1) ,i i−ε < ε  the pair associated with ( )( )m in i
klε  is chosen as the next central pair 

( )( 1) ( 1)
0 , ,

c

i i
cc + +λ  while 0c  and λ  partitions remain unchangeable. For ( 1)1, ii −= ε  is taken 

as the error associated with the central pair ( )(1) (1)
0 , .

c cc λ  

For each one of the 2G pairs ( )( 1) ( 1)
0 , ,

k

i i
lc + +λ  the steps a)-e) are repeated until ( 1)

min ,i+ε < ε

where minε  is a preset error value, for instance, less than 1410−  (Ghafouri-Shiraz, 2003). 

Since the gain jα  and the detuning jδ  are z-dependent, the lasing characteristics for each 

bias current are associated with their mean values along the cavity, given by 

 ( ) ( ) ( ) ( )
1 1

1 1
; .

M M

av j av j
j j

I I I I
M M= =

α = α δ = δ 
 

(88) 

Notice that the sequential analysis a) to e) assumes a one-mode propagation laser behavior. 
This procedure is itself a good assumption, since the present analysis focus on DFB 
structures that must guarantee SLM operation. Otherwise, different strategies should be 
adopted.  

Finally, when studying the influence of the bias current on the laser characteristics, a 

considerable CPU time reduction can be achieved if, for each subsequent current, instead of 

using (85), (1)
cλ  is taken as the solution found for the previous bias current. 

3.2.2 Side-mode analysis 

( ) ( ),S z N z
 
and ( )n z  profiles are settled for each bias current by the lasing-mode profiles 

obtained in section 3.2.1. At threshold, theses distributions are nearly uniform along the 

cavity, assuming average values, respectively, 0, thN  and .thn The gain mode and detuning 
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associated with the side-mode at threshold, respectively, sideα  and 1 ,δ  are settled. In the 

one-mode approximation, the use of (79) leads to 

 ( )
( )

1

1

2
,

2

B th g

R

g
av

n n

n Λ
Λ

πλ +
λ δ =

πλ
δ λ + π +

Λ
 

(89) 

where avΛ  is the average grating period given by 

 1 .

M

m m
m

av

L

L
=

⋅ Λ

Λ =


 (90) 

This assumption means that ( )1Rλ δ  would be the threshold wavelength if 1δ  would 

correspond to the lasing mode. On the other hand, regarding the side-mode gain, (78) 

imposes that 

 side 1 loss2 ,gα = Γ − α
 

(91) 

where 1g  is obtained from (82) , making ( ) thN z N=  and ( )1 side .λ = λ α  The parameter 

( )1 sideλ α  should be interpreted as the wavelength in the one-mode approach if sideα  would 

correspond to the threshold gain. It will be designated by the side-mode effective wavelength. 

Similarly, for the lasing mode, it is obtained 

 loss2 ,th thgα = Γ − α
 

(92) 

where ( )0 0 .th thg A N N= −  Then, from (91) and (92), it can be shown that 

 ( ) ( ) ( )
( )side

1 side side side
1

2
; .th

th I Ij
A

α −α
λ α = λ + λ α λ α =

Γ  
(93) 

A ( )G G× grid is created in the plane ( ), ,I Rλ λ  adopting a similar procedure as the one 

described in Section 3.2.1 for the plane ( )0 , .c λ  The initial grid is centered in ( )(1) (1), ,
c cI Rλ λ  

where (1)

cIλ  and (1)

cRλ  are given, respectively, by the second equation (93) and (89). The limits 

of the initial grid are defined by (1) (1)

c IIλ ± Δλ and (1) (1).
c RRλ ± Δλ  The values 

(1)10, 0.01 nmIG = Δλ  and (1) 0.1 nmRΔλ   seem reasonable for most of the structures but, 

as previously referred, a readjustment may once in a while be necessary to avoid the mode 

hopping. Usually (1)
IΔλ  is one order of magnitude lower than (1)

RΔλ  because the difference 

between the normalized gains for different modes is about one order of magnitude lower 
than the difference between their normalized detunings.  

Successive ( )G G×  grids are defined in the wavelength plane, centering the i-th grid in 

( )( ) ( ), ,
c c

i i
I Rλ λ  and enclosing it in the region defined by the limits ( ) ( )

c

i i
IIλ ± Δλ  and ( ) ( ).

c

i i
RRλ ± Δλ

www.intechopen.com



  
Numerical Simulations of Physical and Engineering Processes  456 

Then, for each bias current and pair ( ),k l  of the i-th grid, i.e. ( )( ) ( ), ,
k l

i i
I Iλ λ the mode gain and 

detuning for each one of the ( )1,....j j M=  sub-sections of the cavity are obtained as, 

respectively 

 

( ) ( ) ( ) ( )
2( ) ( ) ( ) ( )1

side side ( ) ( )

22
; .

2kl k kl lj j

l l

gi i i i
j j BI Ri i

jR R

nA
I n I

Λ

πΓ π π
α = α + λ δ = − λ − λ +

Λλ λ λ  
(95) 

In (95) ( )j Iα and ( )jn I  are, respectively, the lasing-mode gain and the refractive index 

associated with the j-th subsection for a biasing current I achieved in Section 3.2.1. Besides, 

jΛ  is the corrugation period of the j-th subsection. Similarly as in Section 3.2.1, steps c)-e) 

are the sequentially followed. However, the side-mode analysis is quicker than the lasing 
mode analysis since the step b) is not implemented. 

4. The dynamic TMM 

In its conventional form, the transfer matrix ( )1T m mz z+  of a given cell inside the laser 

cavity expresses the relationship described by (58). In this formulation, a steady-state 

operation has implicitly been assumed. It is now required to develop a time-dependent 

implementation of the TMM. As far as the dynamic-TMM is concerned, the increment of 

time requires updating the travelling-wave amplitudes as they pass through a section. The 

increment tΔ  is chosen so that the spatial step size, ,lΔ is given by the product of the time 

increment by the group velocity ( ).gl t vΔ = Δ ×  So, after one increment tΔ , the backward 

wave 1( , )S mE z t+  travels one section to the left, becoming ( , ),S mE z t t+ Δ and the forward 

wave ( , )R mE z t travels one section to the right, being then designated by 1( , ).R mE z t t+ + Δ  

Assuming that the transfer matrix remains unchanged during the time step, it yields after 

some simple manipulation of (58) (Lee et al., 1999) that 

 ( )

( ) ( ) ( ) ( ) ( )

( )
1 11 22 12 21 12

122 21

( , ) ( , )1
.

( , ) ( , )1

m m m m m
R m R m

m m
S m S m

E z t t t t t t t E z t

E z t t E z tt t

+

+

    + Δ −
 = ×   
 + Δ   −      

(96) 

Equation (96) forms the basis of the dynamic TMM, where it is assumed that the variations 

in ( )1T m mz z+ and in the wave amplitudes occur in a time scale negligible in comparison 

with the optical frequency. In a multi-electrode DFB model the local variations in carrier, 

photon and refractive index are taken into account by further dividing the separately 

pumped sections into subsections each one described by its own matrix ( )1T m mz z+  (Davis 

& O’Dowd, 1991, 1992). Obviously, accuracy increases with the number of cells, but it 

should always be kept in mind that the time computation increases almost quadratically 

with the number of cells: increasing M decreases the step size lΔ and, simultaneously, the 

time increment .tΔ
 
 

Dynamic-TMM analysis reinforces the relevance of the questions related to the need of 

decreasing the heavy simulation times arising from the intensive search for those laser 

parameters that complies with the boundary conditions of the problem under analysis. For 
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typical lengths of hundred of micrometers and data rate less than about 40 Gb/s, simulation 

analysis requires no more than 100M =  sections to guarantee enough method accuracy (Jia, 

X. et al., 2007). The model solves self-consistently the carrier and photon rate equations 

similarly as described in Section 3.1. 

5. Simulation results and discussions 

As an application example of the TMM it has been chosen a multiple phase-shift DFB laser 
structure especially designed to provide SLM operation. 

5.1 The laser structure 

The laser structure is represented in Fig. 5. It is a multi-section AR-coated DFB laser with 

uniform grating period ( )mΛ = Λ  and uniform coupling coefficient ( ).mκ = κ  Three PS 

discontinuities ( )iϕ are located along the DFB laser structure. Their positions are represented 

by a normalized parameter given by 

 PSP 1,2,3,i
iz

L
i= =

 
(97) 

where iz  is the iϕ  position. 

 

 

Fig. 5. A simplified schematic diagram of the 3PS-DFB laser structure with non-equal and 
non-identical 3PS. 

A purely index-coupled laser structure assures that κ  is real. For the structure, it has been 

assumed 500 m,L= µ  1227,039 nm, 0 radΛ= Ω = and 2PSP 0.5.=  Two important laser 

figures of merit in the area of OCS are the normalized mode selectivity σ  and the flatness of 

the electric field distribution along the cavity ℑ , which are given by  

 
( )

2

0

    ;

1
,

th

L

av

L L

z dz
L

σ=α ⋅ −α ⋅

ℑ =  Ι − Ι    
(98) 

where ( )zΙ is the normalized electric field intensity at an arbitrary position z, which is given 

by 

 ( )
( ) ( )

( ) ( )

2 2

2 2
0 0

R S

R S

E z E z
z

E E

+
Ι =

+  
(99) 
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and avΙ  is its average value along the cavity. Notice that according to the normalization 

condition (83), ( )zΙ  is numerically equal to ( ) ( )
2 2

.R SE z E z+  For laser structures with 

500 mL= µ  it is generally accepted (Ghafouri-Shiraz, 2003) that a stable SLM operation 

requires 0.25σ≥ and 0.05.ℑ≤ The laser structural and material parameters used in the 

simulations are summarized in Table 3. 

 
Laser parameter Value Laser parameter Value 

Material Parameters Structural parameters 

Spontaneous emission rate, A  8 12.5 10 s−×  Active layer width, w  1.5 mµ  

Bimolecular recombination 

coefficient, B  
16 3 11.0 10 m s− −×

Active layer thickness, 

d  
0.12 mµ  

Auger recombination 

coefficient, C  
41 6 13.0 10 m s− −× Cavity length, L  500 mµ  

Differential gain, 0A  20 22.7 10 m−×  
Optical confinement 
factor, Γ   

0.35  

Gain curvature, 1A  19 31.5 10 m−×
Grating period, Λ

 
227.039 nm

 

Differential peak wavelength, 

2A  
32 42.7 10 m−×

 

  

Internal loss, lossα  3 14.0 10 m−×   

Effective index at zero 

injection, 0n  
3.41351524

 

  

Carrier density at 

transparency, 0N  
24 31.23 10 m−×  

  

Differential index, /dn dN  26 31.8 10 m−− ×   

Group velocity, gv  7 18.33 10 m×s−×   

Nonlinear gain coefficient, gε  23 31.5 10 m−×   

Table 3. Summary of laser parameters. 

5.2 The structure optimization (threshold situation) 

The objective is twofold: to maximize σ  and to minimize ℑ  at threshold. For this purpose, 

it will be varied, simultaneously and independently, the following set of variables (decision 

variables): 2 1 1 3, , PSP , , PSPLκ ϕ ϕ and 3.ϕ The procedure initializes with the boundary 

values that insure a stable SLM operation according to the selection criteria previously 

referred, i.e., min 0.25σ= σ =
 
and max 0.05.ℑ= ℑ =  After each step, these values are adjusted 

by fixing tighter limits, i.e., higher σ and smaller .ℑ  The starting point is a AR QWS-DFB 

laser structure4 ( )1 2 30,   90º ,   0ϕ = ϕ = ϕ =  with 2.Lκ =  In the specialized literature these 

                                                                 
4 This phase change corresponds to a quarter wavelength shift and so, the name single λ/4-shifted DFB 
also used. 
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lasers are often associated with high mode selectivity, zero frequency and small current 

density at threshold. Nevertheless, the highly non-uniform electric field distribution induces 

local carrier depletion near the centre of the cavity that is responsible for the degradation of 

the laser performance in the high power regime. In the procedure adopted hereby it will 

always be assumed that 1 2PSP PSP≤ and 2 3PSP PSP .≤  The step-by-step procedure can be 

summarized as follows  

Step 1. One PS, ( )1 ,ϕ  is added in the first half of the cavity. The optimization of 

( )1 1PSP ,σ ϕ  and ( )1 1PSP ,ℑ ϕ  is performed by varying simultaneously and 

independently both arguments in their ranges: 10 PSP 0.5≤ ≤  and 10º 180º.≤ ϕ ≤  It 

will be assumed as selection criteria that ( )1 1 minPSP ,σ ϕ ≥ σ and 

( )1 1 maxPSP , .ℑ ϕ ≤ ℑ  This procedure will lead to the definition of a region in the

( )1 1PSP , ϕ plane from which a solution is chosen and new boundaries ( )min max,σ ℑ

are settled; 

Step 2. For the new boundaries, another PS,
 
( )3 ,ϕ  is placed in the second half of the cavity. 

A similar procedure as the one described in step 1 is adopted, now for ( )3 3PSP ,σ ϕ  

and ( )3 3PSP , ,ℑ ϕ assuming 30.5 PSP 1≤ ≤  and 30º 180º.≤ ϕ ≤   

Steps 1 and 2 are sequentially repeated until no improvements on σ  and ℑ are achieved. 

The optima values for the set ( )1 1 3 3PSP , ,PSP ,ϕ ϕ are found, assuming 2Lκ = and 2   90º.ϕ =

New optima boundaries ( )min max,σ ℑ are settled. 

Step 3. An optimization of ( )2,Lσ κ ϕ  and ( )2,Lℑ κ ϕ  is performed by varying 

simultaneously and independently both arguments in their ranges: 1 3L≤ κ ≤  and 

20º 180º.≤ ϕ ≤  It will be assumed as selection criteria that ( )2 min,Lσ κ ϕ ≥ σ and 

( )2 max, .Lℑ κ ϕ ≤ ℑ   

Steps 1, 2 and 3 are repeated until no improvements on σ  and ℑ are achieved. This means 

that the best 3PS-DFB laser structure ( )1 1 2 2 3 3PSP , ,PSP 0.5,   90º ,PSP , , Lϕ = ϕ = ϕ κ is obtained, 

as far as σ and ℑ are concerned. In all steps, and whenever necessary, an argument based 

on the smallest threshold gain is used in order to decide the best solution. 

Fig.6 and Fig.7 show, respectively, the contour maps for ( )3 3PSP ,σ ϕ  and ( )3 3PSP , ,ℑ ϕ

when the arguments vary along their entire range, assuming 

1 1 2 2PSP 0.127, 110.7º , PSP 0.5, 60º= ϕ = = ϕ = and 1.7.Lκ =  
 

 

 

Fig. 6. Contour maps of the mode selectivity in the ( )3 3PSP , ϕ  plane. Values for 0.64σ≥ are 

represented by solid lines. 
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Fig. 7. Contour maps of the flatness in the ( )3 3PSP , ϕ  plane. Values for 0.012ℑ≤ are 

represented by solid lines. 

Solid lines enclose all combinations ( )3 3PSP , ϕ that ensure ( )2, 0.64Lσ κ ϕ ≥
 

and 

( )2, 0.012,Lℑ κ ϕ ≤  since min 0.64σ =  and max 0.012ℑ =  have been settled in the previous 

iteration. Within all the possibilities, the chosen solution, ( ) ,×  is ( )3 3PSP 0.64, 100º ,= ϕ =

which corresponds to min 0.78σ =  and max 0.010.ℑ =  At the end of the optimization process, 

the final solution has been found: 1PSP 0.127,=
 1 2110.7º , PSP 0.5,ϕ = =

 2 60º ,ϕ =
 

3 2PSP 0.64, 100º= ϕ = and 1.7.Lκ =  Besides, the optimized laser structure presents 

  1.18,thα = which corresponds to 23.4mA.thI =  This value is similar to those reported in 

(Ghafouri-Shiraz, 2003) for the QWS-DFB and the symmetric 3PS-DFB lasers, respectively, 

  19.8mAthI =  and 21.8mA.thI =
 

Table 4 summarizes the results for ,σ ℑ
 

and thLα  achieved for three different laser 

structures: the optimized 3PS-DFB (asymmetric), the QWS-DFB and the symmetric 3PS-DFB 

referred in (Ghafouri-Shiraz, 2003). All lasers are AR-type because the random corrugation 

phases at the laser facets will cause extra difficulty in controlling the laser characteristics.  
 

Laser structure σ  ℑ  thLα  

Asymmetric 3PS-DFB (optimized) 
 

1 1

2 2

3 3

PSP  0.127; 110.7º

PSP  0.500;  60º

PSP  0.640;  100º

= ϕ =

= ϕ =

= ϕ =

 
0.78 

 

 
0.010 

 
1.18 

QWS-DFB 0.73 0.30 0.70 

3PS-DFB (Ghafouri-Shiraz, 2003) 
 

1 1

2 2

3 3

PSP  0.25; 60º

PSP  0.50;  60º

PSP  0.75;  60º

= ϕ =

= ϕ =

= ϕ =

 
0.34 

 

 
0.012 

 
0.78 

Table 4. Figures of merit for the symmetric, asymmetric 3PS-DFB and QWS-DFB laser 
structures. 
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As far as the flatness is concerned, the 3PS-DFB laser structures are clearly advantageous. 
This is not surprising, since the inclusion of several PS along the laser cavity flattens the 
field distribution. However, it is worth noticing that the asymmetric 3PS-DFB structure 
reaches higher mode selectivity than the other two laser structures. 
A threshold analysis has been presented. Nevertheless, one should always bear in mind that 
the results for a structure presenting an adequate performance at threshold are not 
conclusive. An above-threshold analysis is essential in order to assess the rate at which the 
SHB effect deteriorates the laser features with the increasing current.  

5.3 The above-threshold analysis 
We shall begin with the stationary analysis, but, as we shall refer later, the transient aspects 
may be determinant, which in fact imposes the need of a dynamic analysis in order to 
describe adequately the laser performance in the domain of high currents. Both analysis will 
lead to heavier simulations than the threshold analysis, since the number of cells needed for 
a correct evaluation of the carrier and photon profiles is deeply increased. 

5.3.1 The static-TMM results 
Fig.8 shows the photon distribution in the asymmetric structure for different bias currents. It 
shows the gradual increase of the photon number in the whole structure, due to the 
stimulated emission. The 3PS-DFB lasers include local maxima other than the central one, 
leading to flatter distributions than those obtained for the QWS structure. Moreover, both 
3PS-DFB lasers show smaller differences between the central photon density and the 
escaping photon densities at the facets, thus benefitting the laser performance as far as the 
emitted power is concerned, as it shall be seen later in the light-current stationary 
characteristics of these structures (Fig. 12).  
Fig.9 shows the laser mode selectivity vs. current injection. Similar mode discriminations at 
threshold for the asymmetric 3PS and the QWS at threshold can be seen. Nevertheless, the 
mode selectivity has a severe reduction with increasing bias current for the QWS case, 
showing that the laser is strongly affected by the SHB effect. For the symmetric 3PS-DFB laser, 
it is apparent that the stability related to flatter photon profiles was obtained at an expense of a 
great reduction in the mode selectivity, while the situation is reverted at high values of biasing 
currents. Undoubtedly, the best option is the asymmetric 3PS optimized structure. 
 

 

Fig. 8. ( )S z  in the optimized asymmetric 3PS-DFB laser structure under different biasing 

currents. 
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Fig. 9. Mode selectivity vs. current injection for the 3 structures under analysis. 

Fig.10 focuses on the evolution of the flatness with current injection for the two 3PS-DFB 

lasers, showing a monotonically decreasing function for both structures. It should be 

emphasized that the flatness lies in the range defined by the selection criteria for both lasers, 

which is not definitely the case for the QWS-DFB, since this structure presents high-non 

uniformities in the photon profile (   0.3ℑ=  at threshold, and 0.079ℑ =  for 5 ).thI I= ×
 
Notice 

that the QWS-DFB laser flatness falls outside the axis limits. 
 

 

Fig. 10. Flatness vs. current injection for the three laser structures under analysis. 

A comparative analysis of the three laser structures may be observed in Fig.11 to Fig.14, as 

far as the emitted power and wavelength are concerned. In the current range 1 /  5,thI I≤ ≤  

relative variations in the emitted wavelengths ( )/  thΔλ λ  of 4 39.4 10 %, 1.5 10 %− −× ×  and 
35.5 10 %−× are observed for the asymmetric, the symmetric and the QWS lasers, respectively 

(Fig.11). Under similar normalized current injections the asymmetric structure shows larger 

values for the optical output power, measured at the right facet (Fig.12). This may be 

explained by the increase of the escaping photon density at right facet related to the induced 
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asymmetry. A similar consequence would be attained using different facet reflectivities at 

the laser cavity ends (Boavida, et al., 2011). 
 

 

Fig. 11. Lasing wavelength vs current injection for the 3 laser structures under analysis. 

 

 

Fig. 12. Emitted power vs current injection for the 3 laser structures under analysis. 

The measurement of the laser spectral characteristics is a way of checking its single-mode 

stability. Fig.13 shows the normalized spontaneous emission power for 1.5 thI I= × and 

5 ,thI I= × for the asymmetric laser. High values are obtained for the side-mode-suppression 

ratio (SMSR) for both currents. Besides, it is worth noticing that the “blue-shift” in 

wavelengths is negligible. The inset of Fig. 10 shows the ( )α δ  plot for the modes in the 

cavity at threshold. The figure points out two possible side-modes that are very close in 

frequency (encircled by a dashed line), which originates the broadening of the spectrum 

around 1546.4 nm. Another relevant aspect lies with the fact that, near 1547.7 nm, the 

spectral amplitude of the dominant mode remains at a high value when the current injection 

increases, showing no severe mode competition in the high power regime. 
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Fig. 13. Above-threshold normalized spontaneous emission spectra under two different 
biasing current for the asymmetric 3PS-DFB laser structure. 

 

 

Fig. 14. Side-mode-suppression ratio vs current injection for the 3 laser structures under 
analysis. 

This is pin-pointed in Fig.14, where the SMSR of the asymmetric structure is maintained 
throughout the range of biasing currents under analysis. This is not the case with the two 
other structures, the SMSR becoming lower than the required 30dB for the SLM operation 
(Morthier & Vankwikelberge, 1997) over the most part of the current range. As we shall see 
in next section this will be enhanced in the results obtained from the dynamic-TMM. 

5.3.2 The dynamic-TMM results 

Fig. 15 illustrates the transient response (emitted power) of the asymmetric 3PS-DFB laser 

when I is a step-function of 2 .thI×  There is a delay of about 0.25 ns in the output S(t) 

dynamics and a frequency of the relaxation oscillations of about 4 GHz, which agrees with 

the result obtained from the approximate expression (Agrawall & Dutta, 1986) 
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This parameter is usually known as the -3dB modulation bandwidth. Using the dynamic-TMM 
for step-like biasing currents, the stationary values can be interpreted as the asymptotic 
values of the time evolutions.  
 

 

Fig. 15. Transient response of the asymmetric 3PS-DFB laser when the final current is 

2 46.8 mA.thI× ≅  

Fig. 16 compares the light-current characteristics obtained from the static-TMM with those 
extracted from the time evolutions obtained using the dynamic-TMM for the three lasers 
under analysis. Small deviations between the results obtained with the two TMM models 
are visible for the asymmetric 3PS-DFB laser, especially for high bias current values. This is 
due to the great difference in the number of sections that are present in the two models: 5000 
cells in the static-TMM and only 100 cells in the dynamic-TMM. This may be especially 
important for the asymmetric structure, since using less than 1000 cells we cannot accurately 
define the first PS position in the asymmetric 3PS-DFB laser (PSP1=0.127). However, it must 
always be kept in mind that 

• As referred in Section 4 the time of computation increases almost quadratically with the 
number M of cells; 

• In order to obtain the stationary situation, time evolutions during 1-2 carrier lifetimes 

(τn) should be considered, where  

 
( )

12 ;n th thA B N C N
−

τ ≅ + ⋅ + ⋅

 
(101) 

• For high currents, the lasing output of unstable lasers experiences transient oscillations 
that originates from the beating frequency of multiple mode lasing. 

This last aspect is referred in (Jia et al., 2007) for the QWS-DFB laser in the transient 

response to a step-like biasing current whose final state value is 90 mA.I = The 

oscillations in the emitted power arise from beating frequency of multiple mode lasing. 

The random feature of spontaneous emission is determinant in the transient response of 

the lasers, especially when the SMSR and the mode selectivity are small, which is the case 

for the QWS-DFB at high biasing currents. Its influence may be taken into account 
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including Langevin noise sources as additional terms in the rate equations (Coldren & 

Corzine, 1995). These sources are assumed to be white noise and are small enough to 

make use of the differential rate equations. The influence of spontaneous emission may be 

included in the TMM considering extra photon fluxes emerging from each cell to seed the 

growth of the travelling waves (Davis & Dowd, 1992). Their influence is negligible in DFB 

lasers that guarantee sufficiently high SMSR in the high power regime. Therefore, since 

the side-mode is almost completely suppressed in the asymmetric 3PS-DFB, a good 

dynamic SLM operation is ensured. 
  

 

Fig. 16. Light-current stationary characteristics for lasers under analysis obtained using the 
static and the dynamic TMM. 

6. Conclusion  

The TMM is described both for static and dynamic analysis. The advantages of the TMM are 
numerous. Namely: it is not necessary to solve the coupled-mode equations, but instead we 
need to describe any perturbation in the wave propagation inside the laser cavity by the 
appropriate transfer matrix. This means that the same model works for several laser 
structures: FP, DFB, DBR (Kim & Jeong, 2003) or any combination of these; external 
feedback is easily included; weak or strong coupling can be treated. The model can handle 
laser amplifiers as well.  
The static-TMM has been used for the optimization of a multiple-phase-shifted DFB laser. 
Above-threshold analysis using both the static-TMM and the dynamic-TMM have 
demonstrated that indeed the main laser figures of merit of the 3PS-DFB optimized structure 
exceeded those for the commonly referred QWS-DFB or for other similar multiple-phase-
shifted DFB structures presented elsewhere. We may conclude that the TMM, both in its  
static and dynamic versions, represents itself a powerful tool to be used in the important 
domain of OCS for the optimization of laser structures especially designed to provide SLM 
operation.  
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