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1. Introduction  

Zernike polynomials (ZPs) form a complete orthogonal basis on a circle of unit radius. This 
is useful in optics, since a great majority of lenses and optical instruments have circular 
shape and/or circular pupil. The ZP expansion is typically used to describe either optical 
surfaces or distances between surfaces, such as optical path differences (OPD), wavefront 
phase or wave aberration. Therefore, applications include optical computing, design and 
optimization of optical elements, optical testing (Navarro & Moreno-Barriuso, 1999), 
wavefront sensing (Noll, 1978)(Cubalchini, 1979), adaptive optics (Alda & Boreman, 1993), 
wavefront shaping (Love, 1997) (Vargas-Martin et al., 1998), interferometry (Kim, 
1982)(Fisher et al., 1993)(van Brug, 1997)(Chen & Dong, 2002), surface metrology 
topography (Nam & Rubinstein, 2008), corneal topography (Schwiegerling et al., 
1995)(Fazekas et al., 2009), atmospheric optics (Noll, 1977) (Roggemann, 1996), etc. This brief 
overview shows that the modal description provided by ZPs was highly successful in a 
wide variety of applications. In fact, ZPs are embedded in many technologies such as optical 
design software, large telescopes, ophthalmology, communications , etc. 
The modal representation of a function (wavefront, OPD, surface, etc.) over a circle in terms 
of ZPs is: 

    
,

, ,m m
n n

n m

W c Z      (1) 

where m
nc  are the coefficients of the expansion;  ,    are polar coordinates with origin at 

the pupil centre. The radial coordinate is normalized to the physical (real) radius of the 

circle r R  , since the ZPs are orthogonal only within a circle of unit radius. The 
usefulness and importance of ZPs is associated to two main properties, completeness and 
orthogonality (Mahajan, 2007). However, in real applications one is constrained to work 
with discrete (sampled) arrays of data rather than with continuous functions, and then the 
discrete (sampled) Zernike polynomials loose these two essential properties, namely 
orthogonality and completeness (Wang & Silva, 1980)(Navarro et al., 2009). For this reason 
different authors have proposed alternative basis functions, such as Fourier series, splines or 
Chebyshev-polynomials (Ares & Royo, 2006)(Soumelidis, 2005).  
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The estimation of the coefficients of the Zernike expansion is still an open problem, which 
has attracted the interest of many researchers. In particular, different studies had shown the 
decisive influence of the type of sampling pattern on the quality of the reconstructions 
(Voitsekhovich, 2001)(Diaz-Santana et al., 2005)(Pap & Shipp, 2005). For instance, orthogonal 
discrete ZPs were introduced for wavefront fitting (Malacara et al., 1990) (Fisher et al., 1993); 
random patterns provided enhanced performance (Soloviev & Vdovin, 2005); and Albrecht 
grids have the property of keeping the orthoganilty of ZPs (Rios et al., 1997). Nevertheless, 
apart of the lack of completeness and orthogonality of discrete ZPs, there is an additional 
issue, which affect several important applications, such as optical design (ray tracing), 
wavefront sensing and surface metrology. In all these applications the modal description of 
the wavefront is not reconstructed from wavefront samples but from (measure or 
computation of) wavefront slopes (Southwell, 1980) (Bará, 2003) (Liang et al., 1994) 
(Solomon, 1998) (Primot, 2003). The third problem arises because in order to reconstruct the 
wavefront, one fit the data (slopes) to the slopes, i.e. partial derivatives, of ZPs, and these 
partial derivatives are not orthogonal even for the ideal continuous polynomials. 
In summary, there are three different problems that one has to face when implementing 
practical applications (either numerical or experimental): (1) Lack of completeness of ZPs; 
(2) Lack of orthogonality of ZPs and (3) Lack of orthogonality of ZP derivatives. To 
overcome these limitations, the general standard procedure is to apply a strong 
oversampling (redundancy) and reconstruct the wavefront by standard least squares fit.  
The advantage of a strong redundancy is to minimize the reconstruction noise, but it has 
two main disadvantages. When one reconstructs fewer modes than measures, then there is a 
high probability of having cross coupling and aliasing in the modal wavefront estimation 
(Herrmann, 1981). In addition, oversampling necesarily implies that the wavefront 
reconstruction is not invertible. This means that it is not possible to recover the initial 
measures (or samples) from the reconstructed wavefront. This complicates or can even 
preclude some applications involving iterative processes, inverse problems, etc.   

Our goal in this work was to study these three problems and provide practical solutions, 

which are tested and validated through realistic numerical simulations. Our approach was 

to start studying and eventually solve the problem of completeness (both for ZPs and ZPs 

derivatives), because if we can guarantee completeness, then it is straightforward to apply 

Gram-Schmidt (or related method) to obtain an orthonormal basis over the sampled circular 

pupil (Upton et al., 2004). Furthermore, completeness in the discrete domain, means that 

Eq.1 can be expressed as a matrix-vector product, where the matrix is square and has an 

inverse. This means that we have the same number of samples and coefficients and that we 

should be able to pass one set to the other and viceversa. However, orthogonality becomes 

important, especially for large matrices, because in that case the inverse transform (matrix) 

is equal to its transpose, which guarantees numerical stability of matrix inversion. Our 

approach to guarantee completeness is based on the intuitive idea of avoiding any 

redundancy in the sampling pattern. This means that the coordinates of the sampling points 

never repeat:  that is i k    and i k   ,i k  in the sampling grid. We confirmed 

empirically, with different sampling patterns (regular, random and randomly perturbed 

regular), that these non-redundant sampling schemes keep completeness of both ZPs and 

ZP derivatives. This permits to work with invertible square matrices, which can be 

orthogonalized through the classic QR factorization. In the following Sections, we first 

overview the basic theory (Section 2); then we obtain the orthogonal modes for both the 
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discrete Zernike and the Zernike derivatives transforms for different sampling patterns 

(Section 3); in Section 4 we describe the implementation and results of realistic computer 

simulations; and the main conclusions are given in Section 5.      

2. Theory 

Zernike polynomials are separable into radial polynomial and an angular frequency.  
According to the ANSI Z80.28 standard the general expression is:  

    
 

cos for 0
,
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where the radial polynomial is: 

  
( ) 2

2

0

( 1) ( )!

! 0.5( ) ! 0.5( ) !

n m s
m n s
n

s

n s
R

s n m s n m s






 
  

         
  (3) 

and orthonormality is guaranteed by the normalization factor N:  
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where m0 is the Kronecker delta function. The radial order n is integer positive, and the 

angular frequency m can only take values -n, -n + 2, -n + 4, ... n. For practical 

implementation, sampled signals and discrete polynomials, we shall use vector-matrix 

formulation, and hence it is useful to merge n and m indexes into a single one 

  2 2j n n m     (ANSI Z80.28 standard).  

2.1 Critical sampling and invertible transform 

The classical problem to represent a function as an expansion such as that of Eq. 1 is to 

obtain the coefficients  m
n jc c . The orthogonality of ZPs implies that we can compute the 

coefficients as the projections (inner product) of the function W on each basis function: 

    
1 2

0 0

, ,m m
n nc W Z d d



          (5) 

but this expression can be hardly applied when we only have a discrete set of samples of W, 
and the discrete polynomials are not orthogonal.  

The discrete version of Eq. 1 is w = Zc. Now, w is a column vector whose components are 

the I samples of  ,W   ; c is another column vector formed by J expansion coefficients 
m

j nc c ; and Z is a matrix, ,i jZ , whose columns are sampled Zernike polynomials. Matrix Z 

is rectangular, but for a given sampling pattern, the number of coefficients (modes) has to be 

less or equal to the number of samples (J ≤ I). The case J = I corresponds to critical sampling. 

To obtain the coefficients one can solve w = Zc  for c, but for doing that Z must have an 

inverse so that one can apply  c = Z-1w. The inverse Z-1 exists only if (1) it is square (critical 
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sampling) and (2) its determinant   0Det Z . In other words the rank of this IxJ matrix has 

to be  Rank I J Z . As we will see below,  Rank IZ for most common sampling 

patterns, and Z-1 does not exist. The standard way to overcome this problem is to apply a 

strong oversampling to the wavefront W and estimate a number of coefficients much lower 

than the number of samples  (J<< I). Provided that,  Rank JZ , then the coefficients can be 

estimated computing the Moore-Penrose pseudoinverse of Z:  

   1T T
c Z Z Z w


 (6) 

This is a standard (linear) least squares fit. The tilde means estimated, since the wavefront 
expansion is approximated. This estimation is optimal under a least squares criterion 
(minimum RMS error). However it may not be exact due to mode coupling and aliasing 
(Herrmann, 1980) (Herrmann, 1981) and always requires a highly redundant sampling. As a 
consequence, Eq. 6 is not invertible, in the sense that one recovers estimates ˆ w Zc


rather 

than the true original samples w. In Section 3 we show that non redundant patterns keep 
completeness of the ZPs basis, which permits to work with critical sampling, and guarantee 
the existence of both direct and inverse transfoms:. 

 w = Zc  and   c = Z-1w (7) 

2.2 Critical sampling of Zernike polynomial derivatives 

There is a variety of applications where the measurements (samples) are slopes or gradient 
of the surface (surface metrology) or wavefront (numerical ray tracing or wavefront sensing) 
(Wyant & Creath, 1992) (Welsh et al., 1995). In the last case, the original samples at 
points  ,i i  , i = 1,… I are transverse aberrations, proportional to the wavefront slopes, 
components of the wavefront gradient:  

    , ,i i i ix y f R W       (8) 

where R is the total pupil radius and f’ is the focal length of the lens (or microlens array) of 
the measuring instrument (Navarro & Moreno-Barriuso, 1999). To recover the wavefront W 
one has to integrate the gradient, and to this end it is convenient to apply some expansion of 
W in terms of some derivable basis functions. For circular pupils, Zernike polynomials (ZPs) 
seem an appropriate basis even though ZP derivatives are not orthogonal. In terms of ZPs 
derivatives, we can express the gradient of W as a column vector, and using the expansion 
of Eq. 1 we arrive to the expression of a normalized i-th measure vector mi, formed by the 
normalized measurements along the x and y axes:   
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where j
XiZ , j

YiZ  are the partial derivatives of the j-th ZP at point i. It is important to note 
that we exclude the constant piston term j = 0 since the partial derivatives are zero.For the 
complete set of samples in vector-matrix notation we obtain: 

 
Y

 
   

XZ
m c Dc

Z
 (9b) 
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This expression m = Dc is similar to the discrete version of Eq. 1 (w = Zc) before, but now 

the columns of matrix D are concatenated partial derivatives of ZPs. This means that D has 

double 2I rows. As in the preceding Subsection, the usual strategy is to apply a strong 

oversampling, J << I, and then compute the least squares solution, i.e. the pseudo inverse, so 

that the coefficients are estimated as   1
 T Tc D D D m


. Again, in case that we could 

guarantee completeness, it would be possible to apply critical sampling, so that D is square J 

= 2I; as before, completeness means that Det(D) ≠ 0  or equivalently   2Rank I J D . 
It is worth remarking that critical sampling in this case means to recover double number 
of modes than sampling points, J=2I, simply applying c = D-1m. This possibility is 
plausible since we have two measures (two partial derivatives in mi) at each point, 
provided that there is no redundancy (Navarro et al., 2011). This would be similar to the 
Hermite interpolation, where one has the function and its first derivative at each point 
and recovers J=2I coefficients. Regarding completeness, the intuitive hypothesis is that if 
the original basis Z is complete, and able to represent any continuous (derivable) function 
W within a circular support, then we would expect that the set formed by their derivatives 
D should provide a complete representation for the  derivatives (gradient) of W.  As 
shown in the next Section, this hypothesis was verified empirically for a variety of 
families of non redundant sampling patterns. 

2.3 Orthogonalization 
As we said above, our main empirical finding was that different types of non redundant 

sampling patterns on the circle keep completeness of both the discrete ZPs and discrete 

(sampled) derivatives. However, orthogonality is lost in both cases after sampling. One  

of the most important problems caused by the lack of orthogonality is a bad condition 

number of matrix Z (or D), which makes the inversion (Z-1 or D-1) to be numerically instable 

(Navarro et al., 2011) (Zou & Rolland, 2006). The consequence is noise amplification when 

one tries to estimate the coefficients, using either c = Z-1w or c = D-1m. The condition 

number (CN), ratio between the highest and lowest singular value of the matrix, is the main 

metric for the expected numerical instability, and also provides an initial prediction of  

the level of expected noise amplification when passing from the measures (samples) to  

the coefficients. The ideal value is CN = 1 since then the noise amplification factor is 1 as 

well; that is no amplification. Orthogonality implies that the inverse matrix equals its 

transpose. As matrix transpose is a trivial transform, thus for orthogonal matrices CN =1. If 

that is not the case, CN tends to increase with the size of the matrix. For the typical sizes 

used in practical applications it can take huge values (from 102 up to 105 in the cases 

analyzed in the next Section), which means that the numerical implementation with real 

data will be ineffective. 

The Gram-Schmidt orthogonalization (and further enhanced versions) method permits us to 

decompose the initial matrix into a product Z = QR (also known as QR factorization), where 

Q is the matrix formed with the new orthonormal basis vectors, so that 1 T Q Q ; and R is 

an upper triangular matrix passing from the Q to the Z basis. (Of course we can apply D = 

QdRd as well). If the initial matrix was square and   0Det Z  (complete basis), then we can 

express both the Q direct and inverse transform (the Discrete Zernike Transform):   

  qw Qc  and   T
qc Q w  (10a) 
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and similarly for the Zernike derivatives: 

   d dm Q c  and   T
d dc Q m  (10b) 

Nothe that Q and Qd are new basis, and the new coefficients will be different. To pass from 

former to the new basis we simply apply R : qc Rc  and d dc R c respectively. Also, we can 

pass from Qd to Q:  1
d d qc R R c and vice versa. This is a crucial point because the condition 

number of matrix R is the same as that of the initial basis Z. If we want to recover the 

original coefficients c, then we have to invert R:  1 qc R c and then we will have the 

deleterious effects of noise amplification again. In other words, orthogonalization makes 

sense only if the new Q basis has a clear physical meaning and the coefficients of the 

transform cq are useful to us. In the case of Z and Q, the physical meaning of R is to pass 

from the continuous to the discrete domain. When we adopt the Q basis we are giving up 

knowing the wavefront outside the sampling points. That is, we can recover the exact values 

of the samples from the coefficients cq, but we can not interpolate between them. In order to 

interpolate, to know the continuous wavefront, then we have to apply R-1 with the potential 

danger of noise amplification. In other words, we get an important gain: an exact and fully 

invertible transform, with a maximum number of coefficients (critical sampling), which in 

turns minimizes the effects of spectral overlapping and avoids noise amplification. The cost 

is the constraint to work within the discrete domain, without trying to reconstruct a 

continuous version of the wavefront. This (somehow optional) cost is fully assumable in 

most applications where the final interpolation is not necessary. In fact this is totally 

equivalent to the discrete Fourier transform (DFF) in signal processing, where one always 

work within the discrete domain.   
In the case of the Zernike derivatives basis, the physical meaning of Rd is different because 
now, that basis change implies two transforms: passing from the continuous to the discrete 
domain, but also differentiating to pass from the wavefront to the derivatives. This means 
that the range of applications of the Qd basis is lower. It can be highly useful to have a 
complete orthogonal basis for spot diagrams, but Qd is not a particularly useful basis for 
wavefront sensing or applications where the main goal is to integrate.          
Finally, we want to remark that the DZT basis Q is going to change not only with the 
number of samples I, but also with the sampling scheme. For each sampling scheme, we will 
have a different Z matrix and hence a different basis change operator R and sampling-
distinctive direct Q and inverse QT discrete Zernike transform DZT.  

3. Construction of orthogonal basis 

In this Section we apply the above theory to construct the complete basis and to obtain 
orthogonal modes. 

3.1 Complete sampling patterns 

Our starting point is to analyze the rank of matrix Z (and D) for different regular sampling 

patterns chosen among the most used in the literature (redundant) and types of non 

redundant patterns proposed here. The rank measures the dimension of the subspace 

covered by the basis functions, so that the case  Rank IZ means that the basis is complete. 

The rank was computed always for critical sampling (square matrix) and for different 

numbers of sampling points.  
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3.1.1 Non redundant sampling patterns: Random, perturbed and regular  
Random patterns (i) were generated as follows. Each sampling point is obtained by adding a 
random displacement to the coordinates of the previous sampling element. These 
displacements have a Gaussian distribution with zero mean and standard deviation equal to 
the diameter of the sampling element. Non-overlapping between samples and total 
inclusion of the sampling element into the measured pupil were imposed. Several masks 
were generated and compared in terms of the condition number of the Z matrix obtained for 
each of them, in order to choose the best realization. 

The perturbed regular sampling patterns (ii) were implemented by adding small random 

Cartesian displacements ( ,x y  ) to the sampling points of regular grids. These 

perturbations have a Gaussian distribution with zero mean, and their magnitude is 

determined by the standard deviation. We have performed simulations with perturbations 

ranging from 10-8 to 10-2 in pupil radius (R) units. To be effective we found that  has to be 

equal or grater than 10-3 R.  

Finally, we designed regular (deterministic) non redundant sampling patterns (iii). Regular 

sampling patterns are commonly obtained by convolution of the function to be sampled 

with a Dirac comb. Let us start with the angular coordinate. To sample the interval [0, max ] 

with I equally spaced samples, the interval will be   max 1I    .  Now, we could apply 

a similar sampling to . If the comb is 2D (2-dimensional) we obtain a pure polar sampling, 

which is redundant in both coordinates. A way to avoid redundancy is to apply 1D Dirac 

combs to both coordinates; or in other words to make  proportional to   and set 

max 2 CN   . In this way we obtain a rolled 1D pattern, which is a spiral with NC cycles 

covering a circular area with radius max max   . To completely avoid redundancy, we have 

to be careful with the periodicity of the angular variable, i.e. we need to guarantee that the 

number of samples per cycle 2NSPC     is non integer. The difference between polar 

and spiral patterns is that the former is a purely 2-dimensional whereas the spiral is 

obtained by rolling a 1D pattern. Despite their different nature, both can adequately cover a 

circular domain.  The linear spiral, however, has the problem that the density of samples per 

unit of area is high at the centre and decreases towards the edge. One way to avoid that 

problem is to use an array of spirals to form an helical pattern (Mayall & Vasilevskis, 1960). 

Here, however, the goal was to avoid redundancy, and we implemented different spirals 

controlling the density of samples. The general expression for the radial coordinate was 

  max
p     , which ensures that 1  . For p = 2 we obtain the Fermat or parabolic 

spiral, in which the density of samples is nearly constant when the angle is sampled 

uniformly. We also tried other values of p. In particular for p = 4 the density of samples 

shows a quadratic increase of density towards the periphery, which improves the 

orthogonality, and hence the condition number for inverting the transform. 
For the Fermat spiral, constant density of samples occurs, in a first approximation, when the 
total number of cycles is proportional to the square root of the number of samples 

cN I  . Usually Nc is chosen to be integer, but in some cases this could result in a 

redundant sampling. If that happens (see below) we add 1/2 to break periodicity: Thus, we 

have different cases  intcN I   or  int 0.5cN I   where “int” means nearest 

integer. In terms of the number of cycles  2 1cN I    . By definition, the radial 

coordinate  is never repeated, and with the additional condition that the sampling is not 

www.intechopen.com



 
 Numerical Simulations of Physical and Engineering Processes 

 

228 

periodic in 2  (i.e. the number of samples per cycle is not integer, 

 2 1 cNSPC I N i      ), then we avoid any redundancy in both radial and angular 

coordinates. The examples implemented here correspond to maximum orders of ZPs  n = 7 
and n = 12, and represent the two possible cases of Nc integer or non integer. In the first case 

we have J  =  I  = 36; then Nc = 3, 0.5386   radians and NSPC = 11.667. Since this is not an 

integer number, the sampling is non redundant. In the second example, N = 12 and I  = J = 

91. If we choose an integer value Nc = 5, 0.349   but then we will have NSPC = 18 and the 

sampling would be periodic in ; i.e. redundant.  We can avoid that redundancy by adding 

0.5 cycles so that Nc = 5.5, then 0.384   radians and NSPC = 16.36. 

Finally, the last sample of the spiral has to strictly meet the condition  < 1 to avoid partial 
occlusion of the marginal samples by the pupil. One possible criterion is to keep the area 
covered by this last sample equal to the average. As an approximation, here we impose the 
radial distance of the last sample to the pupil edge to be equal to half the width of the last 

cycle:  1 1 2I I I NSPC     ; solving for 2 3 1 3I I NSPC    ; and  in terms of Nc: 

 2 3 1 3 1I c cN N    . (In the examples 36I  = 0.9388 for I = 36 and 91I = 0.9682 

respectively.) Now, the sampling grid is fully determined by  1i k i       with i= 1, 

2,...I  and i I i I     . Therefore, given a maximum order N of Zernike polynomials, we 

want as many samples as Zernike modes,  1 3 2I J N N     ; then assign a number of 

cycles (first option Nc integer when NSPC is non integer; or add 0.5 to avoid periodicity if 
NSPC integer). Finally choose a value for k to have the spiral sampling completely determined. 

The above computation of the number of cicles Nc and last value of  corresponds to the 
Fermat spiral, p =2, but the same analysis can be applied for different spirals. We found that 
p =2 was optimal to get homogeneous density, but p = 4  was optimal in terms of minimum 
condition number. 
Figure 1 shows some of the sampling patterns analyzed here, for the case of I = 91 samples 
(order n = 12), hexagonal (H91), hexagonal perturbed (HR91), hexapolar (HP91), random 
(R91), spiral (S91) and spiral with quadratic density (SQ91). The ranks obtained for the 
different patterns are summarized in Table 1. Three (left) columns correspond to three 
standard (redundant) patterns (square, hexagonal and hexapolar), and three (right) columns to 
the non-redundant patterns proposed here (hexagonal perturbed, random and spirals).  Only 
random and spiral patterns permit to set an arbitrary number of samples which provides total 
flexibility to match the number of samples to any (maximum) order n of Zernike polynomials. 
This is the reason why some rows in Table 1 are incomplete. The 2D regular patterns 
considered here are centred at the origin (i.e. they include the central sample) and they can 
only match determined orders, except for the case n=7 (I=36), where we had to remove the 
central sample, otherwise we had 37 samples. This Table shows that non-redundant patterns 
(except for the case perturbed hexapolar not included in Table) provide maximum rank 
(completeness), whereas regular 2D patterns yield lower ranks. Among them, square and 
hexagonal seem equivalent, but the hexapolar shows the lowest value for 36 samples. 
In summary, the completeness of sampled Zernike polynomial basis is strongly dependent 
on sampling pattern. The above results support the relationship between redundancy, low 
efficiency of sampling and lack of completeness. Taking into account the symmetry of ZPs 
where radial and angular parts are separable, polar (or hexapolar) sampling schemes are 
expected to have the highest redundancy in the Z matrix, which is confirmed by the lower 
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values both in rank and condition number of Z. Non-polar sampling (square, hexagonal) has 
an intermediate level of redundancy, which can be improved by introducing small 
perturbations to the regular sampling grid. On the other hand either fully random or spiral 
patterns seem to guarantee completeness. The later has the advantage of being deterministic 
and regular. Nevertheless, completeness does not ensure an accurate inversion in practice. 
 

 

Fig. 1. Examples of sampling patterns with 91 points providing singular Z (hexagonal and 
hexapolar) and invertible (hexagonal perturbed, random and spirals). 

The same non redundant sampling patterns, which guarantee completeness of the ZPs, 

namely random, perturbed regular, and spirals (especially Fermat and quadratic ones), do also 

guarantee completeness of the D basis (Navarro et al., 2011). In other words, the 2 sampled 

partial derivatives of ZPs form a complete basis for the set of measurements m. The size of the 

matrix is 2IxJ with 2I = J. For the particular case of I = 91 and critical sampling, J = 182 and D is 

a 182x182 square matrix. The rank was always maximum, 182 for this case and for all non-

redundant samplings. Surprisingly, the rank was much lower (by a factor of two 

approximately) and always lower than I for the rest of redundant sampling patterns: for 

example the rank was 89 < I for the hexagonal case. This suggests the possibility of 

implementing wavefront sensing with critical sampling to recover 2J modes of the wavefront.   

 

 Square Hexagonal Hexapolar Random Perturbed Spirals 

I=36 (n=7) 34 34 30 36 36 36 
I=91 (n=12) - 87 88 91 (H) 91 91 
I=120 (n=14) 112 - - 120 (Sq) 120 120 

Table 1. Rank of matrix Z for different sampling schemes (rows) and number of samples 
(columns). Square (Sq), Hexagonal (H).   

S91H91 HP91

HR91 SQ91R91
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The main limitation is that the condition number of Z (and D) strongly increases with matrix 
size. For I=36, CN is between 103 and 102 for the complete sampling patterns, and increases up 
to 105 for S1, 104 for random and keeps above 102  for quadratic spiral S2, all the cases with 
I=91. The high CN (obtained for the S1 and random sampling grids) mean that the estimation 
of Z-1 (or D-1) could be highly noisy, getting worse in general as the number of samples 
increases. In fact, when I is of the order of 102 or higher, matrix inversion will be numerically 
instable, so that completeness alone is insufficient for effective practical implementation. In 
this context, orthogonalization is the way to optimize CN and matrix inversion. 

3.2 Orthogonal modes 
In the next paragraph we analyze the resulting orthonormal basis functions after applying 
the QR factorization. The Zernike modes are highly significant in optics since each mode 
corresponds to a type of aberration: piston (n=0, m=0), tilt (n=1, m= ±1), defocus (n=1, m=0), 
and so on. Each mode corresponds to a Zernike polynomial defined on a continuous circle 
of unit radius. Sampled polynomials do not form an orthogonal basis anymore, but if we 
apply a complete (non redundant) critical sampling scheme and apply orthogonalization, 
then the resulting columns of matrix Q will be the new Zernike modes in the discrete 
domain (see figure 2). 
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Fig. 2. a (left). Modes (m ≥ 0) of the DZT for different sampling schemes: random (R), 
perturbed hexagonal (H) and spiral (S). The three upper rows correspond to I = 36 samples 
and the three lower rows to I = 91. Bottom row represents the continuous (I = ∞) Zernike 
modes. 
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Fig. 2. b (right). 

3.2.1 Discrete wavefront modes  

Figure 2 compares the resulting discrete modes of the orthonormal DZT for the three types 

of non redundant sampling patterns: random, R, perturbed hexagonal (with perturbation  

 = 10-3) H and Fermat spiral, S. The three upper rows correspond to 36 (n ≤ 7) samples, and 

the lower rows to 91 (n ≤ 12) samples. The bottom row (∞ number of samples) shows the 

original continuous Zernike polynomials. (For the case H36 the central sample was 

removed, otherwise we would have 37 sampling points). On ly modes with non-negative 

angular frequency (m ≥ 0) are shown up to radial order n=7. If we compare the discrete and 

continuous (bottom row) modes we can see clear differences. Many times we observe 

change of polarity (sign reversals) of different modes, depending on the sampling pattern 

and number of samples. For instance, tilt, 1
1Q  shows a sign reversal for random and spiral 

patterns for the low sampling rate (36), but for 91 samples there are no reversals (except for 

the hexagonal one). In general, similarities between discrete and continuous modes increase 

with the number of samples (as expected). The differences tend to increase with the order of 

polynomials. This is patent for the highest order modes n=7 in the upper rows. 

These discrete Zernike modes do change with the sampling pattern, which has physical 

consequences. For example, the spherical aberration of a standard (continuous) lens ( 0
4Z , 

bottom row in Fig. 2) is different from that of a segmented mirror. If one has a mirror with 

36 hexagonal facets the spherical aberration looks different: 0
4Q for H36. The same applies 
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for defocus, astigmatism and the rest of aberration modes. In fact, the aberration modes 

change both with the sampling type and the sampling rate, especially the highest orders. In 

other words, the Q basis may have a real physical meaning as wave aberration modes of 

segmented (or faceted) optical systems, such as compound eyes, large telescopes, lenslet 

arrays, spatial light modulators, etc. 

3.2.2 Discrete modes of wavefront gradient 
The same analysis can be applied to the partial derivatives (gradient) of the wavefront to 
obtain the complete orthogonal basis Qd. As we said before, the physical nature of the 
gradient modes is totally different, as the gradient is proportional to the transverse 
aberrations. These are the coordinates x’i, y’ i of the impact of rays, normal to the wavefront. 
For this reason, Qd contains the modes of the spot diagrams, which are the initial set of raw 
data in many optical computations (ray tracing) and measurements (wavefront sensing, etc.) 
Spot diagrams are essentially discrete in nature as they contain a finite number of spots. As 
before, we can obtain the modes for any non redundant pattern, but as we explain below, 
we obtained a much higher performance (lower CN) for the quadratic spiral (or spiral 2), 

with p = 4, so that the density of samples increases towards the periphery with 2. Figure 3 
shows the spot diagram modes for that spiral sampling and I = 91. The three columns 
represent the initial basis D (left); the same basis, but after normalizing the ZP derivatives 
(center), as an intermediate stage in the orthonormalization process, Dn; and the final 
orthonormal modes,  Qd (right). The axis of the plots were adjusted for visualization, being 
an scaling factor  of 102 between the axis used for representing D and those used fot Dn  and 
Qd. The plot of the column of D corresponding to the pair (8,8) is incomplete, some of the 
impact rays were not represented because they are out of range, causing the difference in the 
aspect with the plot of Dn. 

4. Implementation and results of computer simulations 

We implemented the above sampling patterns and basis functions and conducted different 
realistic computer simulations to test the possibilities of practical application. 

4.1 Wavefronts 
In the simulations we used ocular wavefront aberration data taken from an experimental 
data set used in a recent study (Arines et al., 2009). We implemented the different sampling 
patterns proposed so far, always with I = 91 samples. Two types of initial wavefronts having 
either 91 or 182 Zernike modes (non cero coefficients) were tested. Coefficients for higher 
orders were assumed to be zero. Different levels of noise (0%, 1%, 3% and 5%) were added 
to the initial samples. The metric used was always RMS errors (differences) or values. First 
of all, we compared standard least squares estimation (Eq. 6) and the inverse DZT (QT) (Eq. 
10a) to estimate the continuous and discrete coefficients (first and second rows in Table 2). 
From them, we reconstructed the wavefront (3rd and 4th rows). For the sake of simplicity, 
we only show results for regular (unperturbed) hexagonal (H), random (R) and spiral (S) 

patterns. The original RMS wavefront was 2.5 m.  

The results by standard least squares (  Zc c


, first row,) are bad for the hexagonal pattern, 

even for the ideal case (left columns). The result is better for complete sampling schemes (R 
and S), but even then, the results are strongly affected by aliasing due to the presence of  
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Fig. 3. Initial (D), normalized (Dn) and orthonormal  modes (Qd) of wavefront gradient (spot 
diagram) for the quadratic spiral of 91 samples. Pair numbers are the (n,m) index of ZPs. 

higher order modes (i.e. undersampling; central columns). The right column shows huge 

errors in the presence of noise. Therefore, the standard method of Eq. 6 can not be applied 

with critical sampling in practice. This is the reason why standard modal estimation 

requires redundancy with I >> J. Using the DZT (and the non redundant schemes R and S), 

the results (second row in Table 2) are greatly improved (the errors are now residual, of the 
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order of 10-14 m). Note that now we applied matrix R to the continuous original coefficients 

to compute the RMS error in the discrete Q basis. Using the DZT, the error also increases 

with the presence of higher order modes and noise, but improves by one (182 modes, central 

columns) or three (noise, right columns) orders of magnitude compared to the standard 

method. If we now reconstruct the wavefront from the estimated coefficients, we observe 

that the standard method (third row in Table 2) is affected by both aliasing and noise, but 

the DZT, Q transform (bottom row in Table 2) is basically unaffected, and hence the initial 

measurements are recovered with high fidelity.  

 

 91 modes; 0% noise 182 modes; 0% noise 91 modes; 3% noise 

RMS error H R S H R S H R S 

 Zc c


 2.717 4.3x10-6 1.6x10-6 2.53 0.066 0.003 1.6x104 2.0 x103 1.2 x103 

 QRc c


  3.1x10-14 1.1x10-14  3.8x10-4 3.8x10-4  0.61 0.64 

 Zw Zc


 2.4x10-8 2.0x10-10 1.3x10-10 4.5x10-5 1.5x10-10 1.3x10-10 0.13 2.7x10-7 9.5x10-8 

 Qw Qc


  2.1x10-14 1.1x10-14  1.5x10-14 1.4x10-14  1.8x10-14 1.4x10-14 

Table 2. RMS errors obtained with standard (Z) and discrete (Q) Zernike basis for 
coefficients (c) and in wavefront (w) for hexagonal (H), random (R) and Fermat spiral (S) 
sampling patterns. All values are in micrometers.  

4.2 Wavefront reconstruction from wavefront slopes  
The problem of wavefront reconstruction from its slopes is totally different, since here the 
reconstruction requires to integrate the gradient. If we apply Qd

T we are not integrating, and 
therefore to recover the wavefront coefficients, we have to apply either Rd

-1 or D-1 directly. 
This means that we have especial care with the condition number of these matrices to avoid 
excesive noise amplification. We studied the problem of potential noise amplification in two 
ways. First, we obtained the singular value decomposition of matrix D as a metric to predict 
the amplification of noise. The condition numbers obtained for the square 182x182 D 
matrices (I = 91) improve progressively: ∞ for H (hexagonal); 4.3x107 for P (perturbed H); 
1.6x107 for S1 (homogeneous sampling spiral); 4x106 for R (random); and 1.7105 for S2 
(quadratic sampling spiral). This has important consequences. In the presence of noise, noise 
amplification will preclude to work with critical sampling, but on the other hand we should 
expect that spiral S2 is going to provide better reconstructions.  

To have a more realistic estimation of the performance, including the effects of noise 

amplification, we conducted a series of computer simulations. Now the task is to reconstruct 

different number of modes, starting from J = 1 (maximum redundancy) and progressively 

increasing up to the critical value J = 2I (zero redundancy). Now we will use standard least 

squares (   1
 T Tc D D D m


), except for the last case (critical sampling) where D is square.  

We applied the QR factorization to D to improve its condition number (typically by a factor 

of 2.) Our criterion for the best reconstruction is that of minimum RMS reconstruction error. 

We used the same data set as before, but now we always considered wavefronts with 182 

Zernike modes. This means that now we only have the effect of noise, while we assume that 

the number of modes 182 is large enough to avoid aliasing (spectral overlapping.) Now the 
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initial wavefront has an RMS value of 0.54 m  For each condition, 30 different 

measurements m were simulated using the expression k k m Dc n  for the k-th realization, 

where nk is a column vector containing (Gaussian zero-mean) random noise. Then we 

computed the mean and standard deviation (error bars) over the 30 realizations. The noise 

variance was adjusted to simulate different levels of signal-to-noise ratio (SNR) from 1 to ∞ 

(zero noise). We computed the SNR as 
k

SNR  mm  the ratio between the average 

absolute measurements value among all the noise-free measurements, and the mean 

standard deviation of the noise (where k referes to the different realizations). 

The results for the different sampling patterns are plotted in Figure 4, for the case of SNR = 30. 

That SNR is within the range of typical values in ocular aberrometers (Rodriguez et al., 2006). 

The vertical axis represents the RMS difference between the original (ideal) wavefront and that 

reconstructed from the noisy measurements; and the horizontal axis represents the number of 

modes J considered in the matrix D. As we can see, all the sampling patterns show a similar 

performance for J ≤ 62, but for J > 62 the noise amplification increases rapidly for the 

redundant H pattern. This particular line ends when we reach the maximum rank of D. For 

the non redundant sampling patterns (R, P, S1 and S2) the effect of noise amplification 

becomes patent for higher values of J; as J increases S2 shows the best behaviour. For this 

sampling pattern, and SNR = 30, the optimal performance is obtained for J   122, significantly 

greater than I = 91. This optimal number of modes (best reconstruction) is roughly double than 

62 obtained for standard redundant patterns. For the ideal noise free case (SNR =∞) the best 

reconstruction corresponds to  J Rank D . This is J = 89 for standard (hexagonal) and  J = 182 

for non redundant sampling patterns respectively. The results for different SNR= 1, 10, 30, 100 

and ∞, confirm the same type of behaviour as in Fig. 4. As the SNR increases, then the absolute 

minimum is lower and moves to the right (the optimum value of J increases) and conversely. 

Random and spiral curves are better in all cases and tend to show a rather flat valley 

indicating that the optimal value of number of modes, J is not critical. This behaviour is 

opposite to standard and perturbed sampling grids where the minimum is much more 

marked. This means that the number of modes is critical and that the least squares fit is less 

robust. Finally, the quadratic spiral S2 always provides the best reconstruction.  
 

 

Fig. 4. RMS error of the reconstructed wavefront for different sampling patterns. 
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5. Conclusion 

 In conclusion, the non redundant sampling grids proposed above are found to keep 
completeness of discrete Zernike polynomials within the circle. This has important 
consequences both in theoretical and practical aspects. Now it is feasible to implement direct 
and inverse discrete Zernike transforms (DZT) for these sampling patterns. Furthermore, we 
found that when the discrete ZPs basis is complete, then the basis formed by their (equally 
sampled) gradients is complete as well. This is true for all non redundant grids tested so far, 
but spiral 2, with a quadratic increase of sampling density from the centre to the periphery, 
seems to be especially well adapted to the symmetry of ZPs. In fact, it provides the lowest 
CN. On the other hand, orthogonality is lost either by sampling or by differentiation in all 
cases studied. We can recover this property and construct an orthogonal basis Q, through 
QR factorization, but at the cost of loosing some information contained in R. In the case of 
the DZT, the Q basis implies to work in the discrete domain. Thus, we lose the interpolation 
ability of continuous polynomials. In the case of gradients, we loose the information both for 
interpolation and for integration. It is possible to apply R-1 but then there is the concern of 
noise amplification. 
There are many practical implications of completeness. For standard redundant sampling 
grids, and realistic values of the SNR of the input data, the optimal number of modes 
providing the best reconstruction is about J = I/2. In wavefront sensing or ray tracing, where 
one has two measures at each point, J can be somewhat higher (0.6 or 0.7 times I). Our 
results suggest that by using non redundant sampling patterns, one can reconstruct double 
number of modes. This has a double effect in improving the reconstruction by decreasing 
the reconstruction error due to noise, but also due to potential spectral overlapping. 
Furthermore, both completeness and lower redundancy can help to save costs in many 
applications, ranging from numerical ray tracing to modal wavefront control by deformable 
mirrors (adaptive optics). In the first case one can save computing time, and in the second 
case one can save mechanical actuators. 
We believe that the discrete orthogonal modes of Figures 2 and 3, for discrete wavefronts 
and for spot diagrams, respectively, have a clear physical meaning for optical systems, 
measurements or computations which are discrete intrinsically. Fig. 2 shows examples of 
wave aberration modes in segmented optics (arrays of facets, mirrors, microlenses, etc.) with 
determined geometries (hexagonal, random, or spiral). It is clear that these aberration modes 
change both with the array geometry and with the number of facets (samples), especially 
higher orders. The physical meaning of the modes of spot diagrams (Fig. 3) is even more 
obvious, since ray tracing or wavefront gradient measurements are essentially discrete.         
Regarding practical applications, sampling grids with inhomogeneous densities, such as 
quadratic spiral, or random (irregular) are difficult to implement in conventional monolithic 
microlens arrays used in Hartmann-Shack sensors, segmented mirrors, etc. However there 
are highly flexible and re-configurable (almost in real time) devices such as liquid crystal 
spatial light modulators (Arines et al. 2007) or laser ray-tracing methods (Navarro & 
Moreno-Barriuso, 1999) which can easily implement almost any possible sampling grid. 
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Numerical Simulations of Physical and Engineering Process is an edited book divided into two parts. Part I

devoted to Physical Processes contains 14 chapters, whereas Part II titled Engineering Processes has 13

contributions. The book handles the recent research devoted to numerical simulations of physical and

engineering systems. It can be treated as a bridge linking various numerical approaches of two closely inter-

related branches of science, i.e. physics and engineering. Since the numerical simulations play a key role in

both theoretical and application oriented research, professional reference books are highly needed by pure

research scientists, applied mathematicians, engineers as well post-graduate students. In other words, it is

expected that the book will serve as an effective tool in training the mentioned groups of researchers and

beyond.
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