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1. Introduction

Atmospheric optical communication has been receiving considerable attention recently for
use in high data rate wireless links (Juarez et al., 2006; Zhu & Kahn, 2002). Considering
their narrow beamwidths and lack of licensing requirements as compared to microwave
systems, atmospheric optical systems are appropriate candidates for secure, high data rate,
cost-effective, wide bandwidth communications. Furthermore, atmospheric free space optical
(FSO) communications are less susceptible to the radio interference than radio-wireless
communications. Thus, FSO communication systems represent a promising alternative to
solve the last mile problem, above all in densely populated urban areas. Then, applications
that could benefit from optical communication systems are those that have platforms with
limited weight and space, require very high data links and must operate in an environment
where fiber optic links are not practical. Also, there has been a lot of interest over the years in
the possibility of using optical transmitters for satellite communications (Nugent et al., 2009).
This chapter is focused on how to model the propagation of laser beams through the
atmosphere. In particular, it is concerned with line-of-sight propagation problems, i.e., the
receiver is in full view of the transmitter. This concern is referred to situations where if
there were no atmosphere and the waves were propagating in a vacuum, then the level
of irradiance that a receiver would observe from the transmitter would be constant in
time, with a value determined by the transmitter geometry plus vacuum diffraction effects.
Nevertheless, propagation through the turbulent atmosphere involves situations where a
laser beam is propagating through the clear atmosphere but where very small changes in the
refractive index are present too. These small changes in refractive index, which are typically
on the order of 107, are related primarily to the small variations in temperature (on the
order of 0.1-1°C), which are produced by the turbulent motion of the atmosphere. Clearly,
fluctuations in pressure of the atmosphere also induces in refractive index irregularities.
Thus, the introduction of the atmosphere between source and receiver, and its inherent
random refractive index variations, can lead to power losses at the receiver and eventually it
produces spatial and temporal fluctuations in the received irradiance, i.e. turbulence-induced
signal power fading (Andrews & Phillips, 1998); but this random variations in atmospheric
refractive index along the optical path also produces fluctuations in other wave parameters
such as phase, angle of arrival and frequency. Such fluctuations can produce an increase in the
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link error probability limiting the performance of communication systems. In this particular
scenario, the turbulence-induced fading is called scintillation.

The goal of this chapter is to present an efficient computer simulation technique to derive these
irradiance fluctuations for a propagating optical wave in a weakly inhomogeneous medium
under the assumption that small-scale fluctuations are modulated by large-scale irradiance
fluctuations of the wave.

2. Turbulence cascade theory

Temperature, pressure and humidity fluctuations, which are close related to wind velocity
fluctuations, are primarily the cause of refractive index fluctuations transported by the
turbulent motion of the atmosphere. In fact, all these effects let the formation of unstable air
masses that, eventually, can be decomposed into turbulent eddies of different sizes, initiating
the turbulent process. This atmospheric turbulent process can be physically described by
Kolmogorov cascade theory (Andrews & Phillips, 1998; Brookner, 1970; Frisch, 1995; Tatarskii,
1971). Thus, turbulent air motion represents a set of eddies of various scales sizes. Large
eddies become unstable due to very high Reynolds number and break apart (Frisch, 1995), so
their energy is redistributed without loss to eddies of decreasing size until the kinetic energy
of the flow is finally dissipated into heat by viscosity. The scale sizes of these eddies extend
from a largest scale size Ly to a smallest scale size [y. Briefly, the largest scale size, Ly, is
smaller than those at which turbulent energy is injected into a region. It defines an effective
outer scale of turbulence which near the ground is roughly comparable with the height of the
observation point above ground. On the contrary, the smallest scale size, [y, denotes the inner
scale of turbulence, the scale where the Reynolds number approaches unity and the energy is
dissipated into heat. It is assumed that each eddy is homogeneous, although with a different
index of refraction. These atmospheric index-of-refraction variations produce fluctuations in
the irradiance of the transmitted optical beam, what is known as atmospheric scintillation.

It is widely accepted two further assumptions: the assumption of local homogeneity and the
assumption of local isotropy. The first of them, the local homogeneity assumption, implies
that the velocity difference statistics depend only on the displacement vector, r. Hence, we
may write the random variation of the refractive index as (Clifford & Strohbehn, 1970):

n(r) = o+ (1), M

where r is the displacement vector, ng = 1 is the ensemble average of n (its free space value),
whereas 11 (r) < 1 is a measure of the fluctuation of the refractive index from its free space
value.

The second assumption is the supposition of local isotropy, which implies that only the
magnitude of r is important. On the other hand, for locally homogeneous and isotropic
turbulence, a method of analysis involving structure functions is successful in meeting such
problem (Strohbehn, 1968). Hence, we can define the structure function for the refractive
index fluctuations, Dy (r), as:

2
Dy(r) = E[(n(r1) —n(r1+7))"] =2[Bu(0) — Bu(r)], )
where E|-] is the ensemble average operator, B, (7) is the covariance function of the refractive

index and r = |r|. By applying the Fourier transform to B, (), we can obtain the spatial power
spectrum of refractive index, ®,(x). Then, we consider now that the outer scale, Ly, and the
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inner scale, [y, of turbulence satisfy the following conditions (Tatarskii, 1971) :

Lo> y/(AL), and [y < y/(AL), [m], 3)

where A is the optical wavelength in meters and L is the transmission range, also expressed in
meters. Hence, the result is the easiest of the expressions to describe @, («), given by

@, (k) = 0.0383C2x 1173, 1 crved (4)
Lo lo
that it is usually named as Kolmogorov spectrum (Andrews & Phillips, 1998). This power
spectrum of refractive index represents the energy distribution of turbulent eddies
transported by the turbulent motion. In the last expression, x is the spatial wave number
and C?2 is the refractive-index structure parameter, which is altitude-dependent.

3. Wave propagation in random media

There is an extensive literature on the subject of the theory of line-of-sight propagation
through the atmosphere (Andrews & Phillips, 1998; Andrewsetal.,, 2000; Fante, 1975;
Ishimaru, 1997; Strohbehn, 1978; Tatarskii, 1971). One of the most important works was
developed by Tatarskii (Tatarskii, 1971). He supposed a plane wave that is incident upon the
random medium (the atmosphere in this particular case). It is assumed that the atmosphere
has zero conductivity and unit magnetic permeability and that the electromagnetic field has a
sinusoidal time dependence (a monochromatic wave). Under these circumstances, Maxwell’s
equations take the form:

V-H=0, )

V x E = jkH, (6)
V x H = —jkn’E, 7)
V- (n’E) = 0; 8)

where j = V=1, k = 27t/ ) is the wave number of the electromagnetic wave with A being the
optical wavelength; whereas n(r) is the atmospheric index of refraction whose time variations
have been suppressed and being a random function of position, r. The V operator is the
well-known vector derivative (0/0x,9/9dy,9/9z). The quantities E and H are the vector
amplitudes of the electric and magnetic fields and are a function of position alone. The
assumed sinusoidal time dependence is contained in the wave number, k.
Thus, if we take the curl of Eq. (6) and, after substituting Eq. (7), then the following expression
is obtained:

— V2E + V(V-E) = K*n’E, 9)

where the V2 operator is the Laplacian (82 /0x% 4+ 9%/ Byz +0%/ 822).
Equation (8) is expanded and solved for V - E, and the result inserted into Eq. (9) so that we
can obtain the final form of the vector wave equation:

V2E +k*n?(1r)E+2V (E - Vlogn(r)) =0, (10)

where r = (x,y,z) denotes a point in space. In Eq. (10) we have substituted the gradient
of the natural logarithm for Vn/n. Equation (10) can be simplified by imposing certain
characteristics of the propagation wave. In particular, since the wavelength A for optical
radiation is much smaller than the smallest scale of turbulence, [, (Strohbehn, 1968) the
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maximum scattering angle is roughly A/ly ~ 10~* rad. As a consequence, the last term on
the left-hand side of Eq. (10) is negligible. Such a term is related to the change in polarization
of the wave as it propagates (Strohbehn, 1971; Strohbehn & Clifford, 1967). This conclusion
permit us to drop the last term, and Eq. (10) then simplifies to

V2E + k*n?(r)E = 0. (11)

Because Eq. (11) is easily decomposed into three scalar equations, one for each component
of the electric field, E, we may solve one scalar equation and ignore the vector character of
the wave until the final solution. Therefore if we let U(r) denote one of the scalar components
that is transverse to the direction of propagation along the positive x-axis (Andrews & Phillips,
1998), then Eq. (11) may be replaced by the scalar stochastic differential equation

V2U + Kn?(r)U = 0. (12)

The index of refraction, n(r) = mng + ni(r), fluctuates about the average value
ng = E[n(r)] =1, whereas ni(r) < 1 is the fluctuation of the refractive index from its free
space value. Thus

V2U + k*(ng + ny(r))*U = 0. (13)

For weak fluctuation, it is necessary to obtain an approximate solution of Eq. (13) for small
n1. This can be done in two ways: one is to expand U in a series:

U=u+u +U+.., (14)
and the other is to expand the exponent of U in a series:

U=exp(Po+ 1+ ¢ +...) = exp (9). (15)

In Eq. (14), Uy is the unperturbed portion of the field in the absence of turbulence and the
remaining terms represent first-order, second-order, etc., perturbations caused by the presence
of random inhomogeneities. It is generally assumed that |U(r)| < |Uy(r)| < |Up(r)|. In this
sense, in Eq. (15), 11, i, are the first-order and second-order complex phase perturbations,
respectively, whereas 1 is the phase of the optical wave in free space.

The expansion of Eq. (14) is the Born approximation, and has the important inconvenient that
the complex Gaussian model for the field as predicted by this model does not compare well
with experimental data. The other expansion given by Eq. (15) is called the Rytov solution.
This technique is widely used in line-of-sight propagation problems because it simplifies the
procedure of obtaining both amplitude and phase fluctuations and because its exponential
representation is thought to represent a propagation wave better than the algebraic series
representation of the Born method. From the Rytov solution, the wave equation becomes:

V2 + (V) + k2 (ng + n1(r))* = 0. (16)

This is a nonlinear first order differential equation for Vi and is known as the Riccati equation.
Consider now a first order perturbation, then

p(Lx) = ¢o(L,x) + 91 (L,x); (17a)
n(r) =no+ny(x); no = 1. (17b)
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Operating, assuming that |V < |Vio|, due to n1(r) < 1, neglecting n?(r) in comparison
to 2n1(r), and equating the terms with the same order of perturbation, then the following
expressions are obtained:

V2o + (Vipo)? + k*n3(r) = 0; (18a)
V21 + 2V Vipy + 2k2n; (r) = 0. (18b)

The first one is the differential equation for Vi in the absence of the fluctuation whereas
turbulent atmosphere induced perturbation are found in the second expression. The
resolution of Eq. (18) is detailed in (Fante, 1975; Ishimaru, 1997). For the particular case of
a monochromatic optical plane wave propagating along the positive x-axis, i.e., Uy(L,r) =
exp (jkx), this solution can be written as:

2 k Y L— /
p(tn = o [[] @R TE) y (19

=

where the position (L,r) denotes a position in the receiver plane (at x = L) whereas (x/,1’)
represents any position at an arbitrary plane along the propagation path. The mathematical
development needed to solve Eq. (19) can be consulted in (Andrews & Phillips, 1998;
Ishimaru, 1997). Furthermore, the statistical nature of {1 (L, r) can be deduced in an easy way.
Equation (19) has the physical interpretation that the first-order Rytov perturbation, ¢ (L, r) is
a sum of spherical waves generated at various points t’ throughout the scattering volume V,
the strength of each sum wave being proportional to the product of the unperturbed field term
Up and the refractive-index perturbation, 11, at the point r' (Andrews & Phillips, 1998). Thus it
is possible to apply the central limit theorem. According to such a theorem, the distribution of
a random variable which is a sum of N independent random variables approaches normal as
N — oo regardless of the distribution of each random variable. Application of the central limit
theorem to this integral equation leads to the prediction of a normal probability distribution
for ¢. Since we can substitute ¥ = x + jS, where x and S are called the log-amplitude and
phase, respectively, of the field, then application of the central limit theorem also leads to the
prediction of a Gaussian (normal) probability distribution for both x and S, at least up to first
order corrections (7 and Sq).

Accordingly, under this first-order Rytov approximation, the field of a propagating optical
wave at distance L from the source is represented by:

U = exp () = Up(L, 1) exp (7). (20)

Hence, the irradiance of the random field shown in Eq. (20) takes the form:

I =|Uy(L,x)[*exp (1 + ¢;) = Ipexp (2x1), [w/m?] (21)

where, from now onwards, we denote x; as ) for simplicity in the notation. Hence,
I = Ipexp (2x), [w/m?]. (22)

In Eq. (21), operator * denotes the complex conjugate, |U| is the amplitude of the unperturbed
field and Ij is the level of irradiance fluctuation in the absence of air turbulence that ensures
that the fading does not attenuate or amplify the average power, i.e., E[I] = |Up|?. This may be
thought of as a conservation of energy consideration and requires the choice of E[x]| = —0)2(,

as was explained in (Fried, 1967; Strohbehn, 1978), where E|x] is the ensemble average of
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log-amplitude, whereas 0?2 is its variance depending on the structure parameter, C2. With all
of these expressions, we have modeled the irradiance of the random field, I, in the space at a
single instant in time. Now, because the state of the atmospheric turbulence varies with time,
the intensity fluctuations will also be temporally correlated. Then, Eq. (22) can be expressed
as:

I = as:(t) - Ip, (23)

whereas as:(t) = exp (2x(t)) is the temporal behavior of the scintillation sequence and
represents the effect of the intensity fluctuations on the transmitted signal. In Section 5.1.1, the
space-to-time statistical conversion needed to derive Eq. (23) will be conveniently explained
by assuming the well-known Taylor’s hypothesis of frozen turbulence (Tatarskii, 1971; Taylor,
1938). The generation of this scintillation sequence is treated in detail further in this chapter.
As analyzed before, and by the central limit theorem, the marginal distribution of the
log-amplitude, ), is Gaussian. Thus,

1/2 2

1 (x — Elx]) }
= — =0 24
fx(x) (MU)%) exp { 202 (24)

Hence, from the Jacobian statistical transformation (Papoulis, 1991),

p
fin =2, 5)
Er

the probability density function of the intensity, I, can be identified to have a lognormal
distribution typical of weak turbulence regime. Then:

10 =(5) (5 )mexp[—w. (26)

2 2
27'((7X 80’X

Theoretical and experimental studies of irradiance fluctuations generally center around the
scintillation index. It was evaluated in (Mercier, 1962) and it is defined as the normalized
variance of irradiance fluctuations:
E[I?
2= El ]2 —1. (27)
(EL1])

With this parameter it is possible to define the weak turbulence regimes as those regimes for
which the scintillation index given in Eq. (27) is less than unity. From the following property
given in (Fried, 1966)

Elexp (a-2)] = exp |aE[g] + ,@E[(s — El])?] |, 28)

obeyed by any independent Gaussian random variable, g, with a being a constant, we can
employ Eq. (28) to obtain the first and second order moments (mean value and variance,
respectively) of the irradiance fluctuation. So,

E[I(r,L)] = E[Io(r, L) exp[(2x(x,L)] = Ip(r, L) exp(2E[x(r,L) —}—2(7%]), (29)
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where, as mentioned before, 0)2( is the variance of log-amplitude of the scintillation. From

energy-conservation consideration (Fried, 1967; Strohbehn, 1978), E [l (r, L)] = Ip(r,L). Then,
inserting this result into Eq. (29), we obtain:

E[x(r,L)] = —03. (30)
By repeating the same process to the root mean square of the irradiance, I, then:
2
E[I*(r,L)] = E[(Io(r, L) exp[(2x(r, L))"] = I5(r, L) exp(40%). (31)
If we insert Egs. (29)-(31) into Eq. (27), the scintillation index is finally derived as:
E[I?]
o2 = Ell1
(E[1])

depending on (T)zc. It can be seen (Andrews & Phillips, 1998; Andrews et al., 2001), that the
derived expression for the scintillation index is proportional to the Rytov variance for a plane
wave given by:

—1=exp(402) — 1 =407

2 if of <1, (32)

o = 1.23C2k7/6L11/6, (33)

where, again, Cc2 (m~2/3) is the index of refraction structure parameter, k = 27w /A (m~1)
is the optical wave number, A (m) is the wavelength, and L (m) is the propagation path
length between transmitter and receiver. The Rytov variance represents the scintillation index
of an unbounded plane wave in weak fluctuations based on a Kolmogorov spectrum as
the shown in Eq. (4), but is otherwise considered a measure of optical turbulence strength
(Andrews et al., 2001).

4. Generation of scintillation sequences

Any kind of mechanism to model the behavior of the turbulent atmosphere as a time-varying
channel is necessary. Let the transmitted instantaneous optical power signal defined by

Zaz peak Pn t_ lTb) ieZ (34)

where the random variable a; takes the values of 0 for the bit “0” (off pulse) and 1 for the
bit “1” (on pulse), Pyeq the peak optical power transmitted each bit period, Tj,, with active
pulse; and p(t) is the pulse shape having normalized amplitude. In this manner, the received
signal will consist, in a generic channel, of two terms: the first one is the line-of-sight (LOS)
contribution, and the second one is due to energy which is scattered to the receiver. This fact
will be thought as a multipath channel. Every contribution (the LOS component and each
multipath contribution) will travel through different paths in the atmosphere, each of them
with a different propagation delay, 7, (f). Thus, the expression for the received signal can be

written as:

where ag, (1) is the time-varying sc1nt111at10n sequence representing the effect of the intensity
fluctuations on the nth-multipath component. As discussed in (Fante, 1975; Ishimaru,
1997; Kennedy, 1968), dispersion and beam spreading due to turbulent atmosphere can be
neglected. Only for the very short pulses less than 100 ps proposed for high-data rate
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communications systems, or in extreme scenarios such as the one detailed in (Ruike et al.,
2007), where sand and dust particles are likely present, pulse spreading owing to turbulent
atmosphere must be included. For this latter case, physically, two possible causes exist for
this pulse spreading: scattering (dispersion) and pulse wander (fluctuations in arrival time),
although it is found that, under the condition of weak scattering, pulse wandering dominates
the contribution to the overall broadening of the pulse (Jurado-Navas et al., 2009; Young et al.,
1998).

Nonetheless, a general scenario where dispersion and beam spreading can be neglected is
assumed in this chapter. Hence, the channel impulse response, /(1y;t), can be obtained by
substituting s(f) = (t) into Eq. (35). Then,

h(Tait) =) e, (1)0(t — Tu(t)). (36)

Some channel models assume a continuum of multipath delays, in which case the sum in Eq.
(36) becomes an integral which simplifies to a time-varying complex amplitude associated
with each multipath delay, 7, as indicated in (Goldsmith, 2005):

hwt) = [ ase(@0o(r - e = ase(T) (37)

by using the definition of the Dirac delta function, 6(t). Note that h(7;t) has two time
parameters: the time ¢t when the impulse response is observed at the receiver, and the time
t — T when the impulse is launched into the channel relative to the observation time, t. Hence,
h(7;t) is the response of the system to a unit impulse applied at time .

An important characteristic of a multipath channel is the time delay spread, T}, it causes
to the received signal. This delay spread equals the time delay between the arrival of the
first received signal component (LOS or multipath) and the last received signal component
associated with a single transmitted pulse. In these atmospheric optical communication
systems, the delay spread is small compared to the inverse of the signal bandwidth, as
commented above, then there is little time spreading in the received signal. Of course, the
propagation delay associated with the i-th multipath component is 7; < T, ¥ i so that
s(t — 1;) ~ s(t) ¥ i, and then, Eq. (35) can be expressed as:

y(t) =s(t) ) ase, (1) (38)

As the propagation delay is very small, then the corresponding multipath scintillation
sequences will be received in the same bit interval and having the same magnitude. Finally,

y(#) = s(Basc(b). (39)

Then, the received light intensity is compounded of the transmitted instantaneous optical
power signal, s(t), initially transmitted, and affected in a multiplicative manner by the
scintillation sequence, as(t). This latter one represents the intensity fluctuations due to the
effect of the atmospheric turbulence on the transmitted signal, s(¢).

Finally, a characteristic of as(t) is its time-varying nature. This time variation arises from
the turbulent motion of the atmosphere described by Kolmogorov cascade theory (Tatarskii,
1971). The component of the wind velocity transverse to the propagation direction, u |,
characterizes the average fade duration.
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A atsc(t) n(t)

s(t) I y(t)

X >(=1 >

Fig. 1. Scheme model of the turbulent atmospheric optical model.

Obviously, the lognormal atmospheric channel model employed in the previous section
and represented by Eqgs. (22)-(23) is consistent with Eq. (39) derived here. Hence, the
atmospheric channel model must be consisted of a multiplicative noise model that enhances
the effect of the atmospheric turbulence on the propagation of the transmitted optical signal.
Clearly, accordingly to Eqgs. (22)-(23) and Eq. (39), an appropriate channel model for
describing these effects is shown in Fig. 1. This scalar model assumes the transmitted
field to be linearly polarized (no polarization modulation). This fact is realistic because the
depolarization effects of the atmospheric turbulence are negligible (Strohbehn, 1968; 1971;
Strohbehn & Clifford, 1967) and because it is reasonable to assume that the relevant noise has
statistically independent polarization components (Kennedy, 1968).

In Fig. 1 the real process s(t) represents the instantaneous optical power transmitted, and
given by Eq. (34). The additive white Gaussian noise is represented by 7 (t) and it is assumed
to include any shot noise caused by ambient light that may be much stronger than the
desired signal as well as any front-end receiver thermal noise in the electronics following
the photodetector. On the other hand, the factor A involves any weather-induced attenuation
caused by rain, snow, and fog that can also degrade the performance of atmospheric optical
communication systems in the way shown in (Al Naboulsi & Sizun, 2004; Muhammad et al.,
2005), but it is not considered in this chapter (A = 1). Finally, the process asc(t) = exp (2x(t))
denotes the temporal behavior of the scintillation sequence and represents the effect of the
intensity fluctuations on the transmitted signal, in the same way as Eq. (39) or Eq. (23).

5. Turbulent atmospheric channel model

The goal of this section is to obtain the time-varying scintillation sequence, denoted as asc(f)
in Fig. 1, that represents the fluctuations of the intensity on the transmitted signal owing to the
adverse effect of the turbulent atmosphere. To achieve this purpose, we start with the channel
model proposed in (Jurado-Navas et al., 2007). Thus, to generate the as.(t) coefficients, a
scheme based on Clarke’s method (Rappaport, 1996) is implemented.

In brief, Clarke’s model is based on a low-pass filtering of a random Gaussian signal, z(t), as
it is shown in Fig. 2. Hence, the output signal, x(f), keeps on being statistically Gaussian,
but shaped in its power spectral density by the Hy.(f) filter. The output signal, x(t), is the
log-amplitude perturbation of the transmitted optical wave, as explained in previous sections.
Next, x(t) is passed through a nonlinear device which converts its probability distribution
from Gaussian to lognormal, according to Eq. (26), typical of a weak turbulence regime, the
scenario that has been considered through this chapter.

5.1 Covariance function: weak fluctuations

The first task we need to achieve is to obtain the shape of the filtering stage displayed in Fig. 2.
In this respect, the theoretical Kolmogorov theory requires to solve the following expression
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z(t) FILTER x(t) ZERO-MEMORY asc(t)
> Hsc(f) — NON-LINEAR DEVICE

Gaussian Gaussian Desired statistical nature

f(z) f(x) fi(1)
S(f) S,(f) Si(f)

Fig. 2. Block diagram to generate the scintillation sequence, as.(t).
for the covariance function for irradiance fluctuations, By(r,L):

By(r,L) = 872K°L /01 /Ooo K@y (i) Jo () <1 — cos Lf‘:)d;cdg, (40)

where « is the spatial wave number, ®; (k) denotes the spatial power spectrum of refractive
index, k is the wave number, L represents the propagation path length whereas Jy(-) is the
Bessel function of the first kind and Oth order. In Eq. (40), an homogeneous and isotropic
random medium has been assumed in addition to a conversion to cylindrical coordinates since
B is a function of the transverse distance r (Ishimaru, 1997; Tatarskii, 1971). The obtention of
such an expression is conveniently treated in (Ishimaru, 1997; Lawrence & Strohbehn, 1970)
and will be the starting point to generate the filter Hsc(f). Nevertheless, Eq. (40) requires a
high computational complexity when any theoretical model for the spatial power spectrum of
refractive index, ®; (x), is employed. This feature is a critical point; in this respect, we develop
an efficient approximation to calculate such an integration that will be detailed below in
Subsection 5.1.2. Anyway, and by the Wiener-Khintchine theorem, we can obtain the resulting
temporal spectrum of irradiance fluctuations from which the filter frequency response, Hs.(f),
is obtained.

5.1.1 Taylor’s hypothesis of frozen turbulence

A useful property in turbulent media is the well-known Taylor’s hypothesis of frozen
turbulence (Jurado-Navas & Puerta-Notario, 2009; Tatarskii, 1971; Taylor, 1938). Modeling the
movement of atmospheric eddies is extremely difficult and a simplified “frozen air” model
is normally employed. Thus under this hypothesis, the collection of atmospheric eddies
will remain frozen in relation to one another, while the entire collection is transported as a
whole along some direction by the wind. When a narrow beam propagating over a long
distance is assumed, the refractive index fluctuations along the direction of propagation will
be well-averaged and will be weaker than those along the transverse direction to propagation.
Hence, consider the case when the atmospheric inhomogeneities move at constant velocity,
u,, perpendicular to the propagation direction. Taylor’s frozen-in hypothesis can be
expressed as (Lawrence & Strohbehn, 1970):

n(e,t+7)=n(r—u,1,t). (41)

Accordingly, a space-to-time conversion of statistics can be accomplished assuming the use of
Taylor’s hypothesis. The turbulence correlation time is therefore

d
T = ﬁ [s]; (42)
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where dj is the correlation length of intensity fluctuations. When the propagation length, L
satisfies the condition Iy < /AL < Lo, with A being the optical wavelength and with Iy and
Lo being the inner and outer scale of turbulence, respectively, then dy can be approximated by
(Andrews & Phillips, 1998; Tatarskii, 1971)

do =~ VAL, [m]. (43)

5.1.2 Shaping a Gaussian temporary spectrum of irradiance

As explained at the begining of this subsection, to obtain the filter frequency response,
Hsc(f), needed to generate the time-varying nature of scintillation sequence, ws.(t), (see Fig.
2), the covariance function of irradiance fluctuations, Bj, must be employed. Under the
assumption of weak irradiance fluctuations (‘772( < 1), the covariance functions of I and y
are related by Bj(r) ~ 4By(r), in a similar reasoning to obtain Eq. (32), where r denotes
separation distance between two points on the wavefront. Taking this latter relationship into
account, the filter, Hs.(f), employed in the scheme and displayed in Fig. 2 corresponds,
for simplicity, to the log-amplitude fluctuations. Furthermore, based on the Taylor frozen
turbulence hypothesis, spatial statistics can be converted to temporal statistics by knowledge
of the average wind speed transverse to the direction of propagation. In the case of a plane
wave, this is accomplished by setting r = u | T, where u | is the wind velocity transverse to
the propagation direction in meters per second, and 7 is in seconds. Now, taking into account
an approximation developed by Andrews and Phillips (Andrews & Phillips, 1998), Eq. (40),
in the case of a plane wave, reduces to

]-5/6 1B (_5;1; M) _ 0'6()(@)5/6] , (44)

Bi(t,L) = 3.8707Re - o7 -

withy F; (a; b; v) being the confluent hypergeometric function of the first kind whereas 07 is the

Rytov variance for a plane wave, as expressed in Eq. (33) that, under weak fluctuation, can
also be written as (712 = (712. Even so, Eq. (44) still suffers from significant numerical complexity,
especially if we try to solve the power spectral density (PSD), so an easier approach is
proposed by the authors in (Jurado-Navas et al., 2007). Hence, suppose small separation
distances in Eq. (44) so that [y < r < /AL, and assume Bj(r) ~ 4B, (r). Now, if we consider
the following approximation for the hypergeometric function:

1Fi(a; b, —v) =1 — % lv] < 1; (45)
then
T 2
Ry (7) = E[x(0)x"(t —7)] = o2 exp [— (0) } — By (u,7), (46)

where Ry (7) is the autocorrelation function of the process x(t). We must remark that, in

Eq. (46), it has been assumed a weak fluctuation regime so that we can state that (E[x])? =
oy ~ 0. Thus Ry (7) = B, (), with By (7) being the covariance function of the log-amplitude
perturbation.

www.intechopen.com



168 Numerical Simulations of Physical and Engineering Processes

5.2 Design of the filter frequency response
From Eq. (46), the resulting temporal spectrum of log-amplitude perturbation, x(t), can be
obtained (Ishimaru, 1997; Tatarskii, 1971) as:

S, (f) =4 /0 " By (1) cos 27t frd. 47)

Since assumed a weak irradiance fluctuations regime, R, (7) = By (7) so that we can apply the
Wiener-Khintchine theorem to solve Eq. (47). Thus the power spectral density of x is given

by:

|Hse(f) > = /o:o Ry(t)exp (—j2nfr)dt = U;Toﬁexp {— (nrof)z}. (48)

To corroborate the Gaussian approximation regarding to the theoretical zero inner-scale
(Io = 0) Kolmogorov spectrum, both of them have been plotted in Figure 3 with a remarkable
resemblance between them. As an interesting feature, the Kolmogorov spectrum was obtained
afters 1 «a*ea e Aml /AN - Aml /4 A NN

Gaussian
Approximation

_ . Kolmogorov h
Spectrum

Normalised amplitude
o
(62}

0.4 -
0.3 -
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0tfoe="T R
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Fig. 3. Zero inner-scale model of Kolmogorov spectrum (Andrews et al., 2001) against
Gaussian approximation conformed spectrum (Jurado-Navas et al., 2007).

To obtain the filter Hsc(f), we assume a causal channel. This fact is desirable and so, the
output sequence value of the system at the instant time t = t; depends only on the input
sequence values for t < tg. This implies that the system is nonanticipative (Oppenheim,
1999). Thus if the system is causal, zero phase is not attainable, and consequently, some phase
distortion must be allowed. To design the nature of the filter phase it is sufficient to mention
two concepts: first, a nonlinear phase can have an important effect on the shape of a filtered
signal, even when the frequency-response magnitude is constant; and second, the effect of
linear phase with integer slope is a simple time shift. It seems to be desirable to design systems
to have exactly or approximately linear phase owing to the hard effort made to obtain the
modulus of the filter.
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Hence the filter frequency response is designed to have a linear phase:

Hse(f) = [Hse(f)| exp (=27 fa), (49)

where « is the delay introduced by the system. The magnitude of a will be established to half
the length, M, of the filter impulse response, Hsc(f). Consequently, the final expression for
the behavior of the filter included in Figure 2 is:

Hs(f) = (U)ZCTO\/E)UZ exp |:—;(71’T0f)2} exp [—j27fal. (50)

The procedure to accomplish from now onwards is the following: for the time domain
method, we first determine the impulse response of the filter, hs(t) = T H( f)}, but
represented in its discrete-time version: hgc[n],0 <k < M — 1, with M being the length of
the filter impulse, whereas §~!{-} is the inverse Fourier transform operator. In this respect,
we initially select a sampling rate, F;, that is five times the maximum bandwidth of the filter
which is proportional to the inverse of the turbulence correlation time, 1y, such that:

Fstp =~ b. (51)

Ultimately, the scintillation will be interpolated up to a much higher sample rate as will be
discussed subsequently. This fact let us achieve a great reduction of computational load. We
denote {[n] as the discrete output sequence value of the filter at a frequency rate of Fs = 5/1
whereas x[n| represents the discrete log-amplitude scintillation with the proper bandwidth
for its power spectral density, as a consequence of the interpolation process that fills in the
missing samples of {[n].

5.3 Continuous-to-discrete time conversion

At this point, and as just commented, it is necessary to sample the continuous-time signal
of the filter converting it in a discrete time signal because of their advantages in realizations.
Hence we will obtain a[n].

The chosen sampling frequency is Fs inversely proportional to the turbulence correlation time,
Tp. We initially choose Fs1p ~ 2 — 5, depending on the computer’s memory. This initial value is
not very relevant since the scintillation sequence will be interpolated later up to a much higher
sample rate. However, this fact let the discrete Fourier transform (DFT) computation time be
remarkably reduced. The election of the Fs magnitude must satisfy the Nyquist sampling
theorem and should help avoid aliasing, should improve resolution and should reduce noise,
removing the possibility of obtaining a very oversampled signal with very few useful samples
of information (Oppenheim, 1999).

The N—point discrete version of the filter, denoted by H k], is given by

Hc[k] = Hse(el), 0<k<N-1,

27tk (52)
W=7

where it is employed a N—point DFT, with w being the discrete frequency in rads. In Eq. (52),
Hsc(e/%) is the Fourier transform of & [n], being this latter one the sequence of samples of the
continuous-time impulse response h.(t), whereas Hsc[k] is obtained by sampling H,c(e/“) at
frequencies wy = % Consequently, from (Oppenheim, 1999), and substituting Eq. (50) into
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Eq. (52):

1/2 1 kE, \ 2 . MEKF,
Hsc[k] = Fs (0’)2(’1'0\/7‘() exp [—2 <7‘['L’0NS> ] exp {—]27IZNS , 0<k<N/2
(53)

Since the desired impulse response, hsc[k] 0 < k < M — 1, is a real sequence, by applying the
Hermitian symmetry property it follows that

l 27tk
Hiclk] = Hee(e),  0<k<N/2,  w= 37 (54)

Ho[N—K =HZL[K, 1<k<N/2—1.

By applying the inverse-DFT (IDFT) of Hs[k], we can obtain hs[n] = §~1{Hs.[k]}. Consider
hsc[n] as a finite-length sequence, i.e. a finite impulse response (FIR) system. Accordingly,
one of the simplest method of FIR filter design is called the window method, explained in
(Oppenheim, 1999). The method consists in defining a new system with impulse response
hwsc[n]. This impulse response is the desired causal FIR filter given by

_ fhse[n]wn], 0<n<M,
hwsc[”] = { 0, otherwise. (55)

In Eq. (55), w[n] is the finite-duration window. In this paper, we use a M-points Hamming
window symmetric about the point M/2 of the form

(56)

wfn] = {054~ 046cos(2rn/M), 0 <n < M,
B 0, otherwise;

owing to it is optimized to minimize the maximum (nearest) side lobe. As a result, the
definitive expression for lysc[n] is:

1 Nl .27tkn
Consequently, the output sequence without being upsampled, {|[n], accomplished with the
filter stage of Fig. 2, is of the form:

M-1
Xln]=p 2 hwsc[k]z[n — k], (58)
k=0

where B is the scaling constant chosen to yield the desired output variance, 0)2(, with z[n]
representing the discrete version of z(t), this latter being a random unit variance Gaussian
input signal to be filtered by Hs.(f), as it is shown in Figure 2. We must remind that {[n] is
a Gaussian version of the scintillation sequence without being upsampled, i.e., at Fs = 5/1,
whereas x|n] is the upsampled and accuracy version of {[n].

Equation (58), however, makes reference to a linear convolution between two finite-duration
sequences: hysc[n], M samples in extent; and z[n], N samples in extent. Since we want the
product to represent the DFT of the linear convolution of hysc[n] and z[n], which has length
M + N — 1, the DFTs that we compute must also be at least that length, i.e., both hysc[n] and
z[n] must be augmented with sequence values of zero amplitude. This process is referred to
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as zero-padding (Oppenheim, 1999) and it is necessary to adopt it to compute such a linear
convolution by a circular convolution avoiding time-aliasing of the first M — 1 samples. With
the purpose of employing fast Fourier transform (FFT) algorithms to compute all values of
the DFTs, it is required that we first zero-pad N samples of the white, unit variance random
Gaussian input sequence z[n| and M samples of hysc[n] out to 2N samples and compute
the FFT of each (zero-padded) sequence. As an interesting remark, for the computation of
all N values of a DFT using the definition, the number of arithmetical operations required
is approximately N2, while the amount of computation is approximately proportional to
Nlog, N for the same result to be computed by an FFT algorithm (Oppenheim, 1999). Even
more, when N is a power of 2, the well-known decimation-in-time radix-2 Cooley-Tukey
algorithm can be employed and then, the computational load is reduced to only (N /2) log, N.
Such an algorithm is based on a divide and conquer technique by breaking a length-N
DFT into two length-N/2 DFTs followed by a combining stage consisting of many size-2
DFTs called “butterfly” operations, so-called because of the shape of the data-flow diagrams
(Oppenheim, 1999). Thus, according to these criteria, the zero-pad versions of z[n] and hysc[n],
denoted as z;p[n] and hysc;zp[1] respectively, are:

_ Z[n]l OSnSN_]-/
ZZPH_{ 0, N<n<2N-1; 9
and "
nj, 0<n<M-1,
hwsc;zp[n] - { ws(;/[ ] M<n<2N-—1. (60)

Hence, after computing an FFT of length 2N to the sequences written in Egs. (59)-(60), we can
obtain the following expressions:

2N-1

Zeplk) = ) zzp[n]e 2/ CON), (61)
n=0
and
IN-1 ,
Husc;zplk] = Z hwsc;zp[n]eijzﬂkn/(ZN)- (62)
n=0

Now, the inverse FFT of the product, Z;y[k] - Husc;zp[k] is then computed and the first N
samples of the result are retained, i.e.

A 1 2N-1 ,

k) = 55 kzo Zap k] Huscizp[K]e2™H/ 2N) 0 < n < N -1, (63)
Thus, once this latter expression were multiplied by the scaling constant, §, the result will
coincide with the first N samples of the linear convolution between hysc[1] and z[n].

5.4 Increasing the sampling rate

Up until now, the temporal behavior of a Gaussian-amplitude scintillation sequence was
modeled. Nevertheless, this sequence lacks the right value of the temporal frequency of the
amplitude and, consequently, its adequate temporal variability. Such a temporal frequency
will be achieved including the frequency content of the intensity fluctuation power spectral
density. Fante, in (Fante, 1975), observed that the power spectral density bandwidth of the
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intensity fluctuations under weak turbulence is:

(64)

as a direct result of the atmospheric motion, with A being the optical wavelength, L is the
propagation path length and u | denotes the wind velocity transverse to the propagation
direction. By including this bandwidth reported in Eq. (64), we will be able to increase the
sampling rate by a factor of P. The way of yielding this is:
FE=+i=if, iel2-5
(65)
R.
P — E,

where R is the desired bit rate in bits/s; and Fs is the sampling frequency. Thus, and found P,
the output samples of the filter H, are upsampled by linear interpolation:

n—i-P

xln] = &[] + {;e[z' +1] - 2] } ( ) if 1P <n<@+D)-P-, (66)

0<i<N-1;
where, as we said before, x[n] is the upsampled version of £[n] shown in Eq. (58).

5.5 Changing the statistical description

At this point, we have modeled the known random log-amplitude of the scintillation, x, with
a statistically Gaussian PDF, f, (). Next, its PDF is converted from Gaussian to a lognormally
distributed one that is generally accepted for the irradiance fluctuations, I, under weak
turbulence conditions; or to a gamma-gamma PDF, a K PDF or even a Beckmann probability
density (Hill & Frehlich, 1997) that much more accurately reflects the statistics of the intensity
scintillations if Rytov variance (Andrews & Phillips, 1998) increases even beyond the limits of
the weak turbulence regime. The resulting PDF is here denoted as f,_ (@sc)-

The statistical conversion is carried out with the zero-memory nonlinear device that was
shown in Fig. 2. According to (Gujar & Kavanagh, 1968), this nonlinear device is just a
one-to-one transformation between x and «s, of the form:

0 on
fx(X— TX)|5X| = fa (“sc— ZSC>|5“SC|I (67)

where fy, (asc) is the PDF typical of the scintillation coefficients sequence (lognormal,
gamma-gamma or Beckmann, for instance). This f, (as.) PDF is identical to the probability
density function of the irradiance fluctuations, I. Consequently, for any point (x,asc) in
the transformation, the probability of x(t) being in the range (x — dx) to x is equal to the
probability that as.(t) is in the corresponding range of (as. — dasc) to s, where dx and dws,
are small increments beyond the points of study (o, #s¢, ) in every moment. The known initial
points are given by the mean values of the sequences x and I, whose values are given by
(Huang et al., 1993; Zhu & Kahn, 2002):

_ 2
E[I] = ase,;
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Fig. 4. Comparison of time series realizations characterized by the Kolmogorov (magenta)
and Gaussian (blue) spectra.

where E[-] denotes an ensemble average or, equivalently with the assumption of ergodicity, a
long-time average; and 07 is the normalized irradiance variance.

To illustrate the effect of a Gaussian spectrum, Figure 4 shows segments of time series
realizations generated by the process of filtering white Gaussian noise with the proposed
Gaussian spectrum given in Eq. (48). This realization is compared with another obtained
by using the theoretical Kolmogorov spectrum.

6. Numerical results

To study the performance of both Kolmogorov and the proposed Gaussian spectra under
identical conditions of simulation, IM/DD links are assumed operating through a 250 m
horizontal path at a bit rate of 50 Mbps and transmitting pulses with on-off keying (OOK)
formats under the assumption of equivalent bandwidth of 50 MHz. The criterion of constant
average optical power is adopted, being one of the most important features of IM/DD
channels (Jurado-Navas et al., 2010). In relation to the detection procedure, a maximum
likelihood (ML) detection and a soft-decision decoding are considered respectively. A 830-nm
laser wavelength is employed. All these features are included in the system model proposed
in Figure 5 so that the spectra under study (Kolgomorov and Gaussian) can be compared
under identical conditions of simulation. Thus its remarkable elements are: first, the channel
model depicted in this chapter corresponding to a turbulent atmospheric environment, where
the component of the wind velocity transverse to the propagation direction, u | is taken to
be 8 m/s. This average wind velocity is a typical magnitude, at least in southern Europe
being the main reason to employ this concrete magnitude. On the other hand, the values of
turbulence strength structure parameter, C2 were set to 1.23 x 10~ 1% and 1.23 x 10713 m~2/3
for (772( = 0.01 and 0.1, respectively and for plane waves. As a second remarkable element of
Figure 5, a three-pole Bessel high-pass filter with a —1 dB cut-off frequency of 500 kHz for
natural (solar) light suppression is designed. However, this is an optional stage that can be
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Fig. 5. Atmospheric optical system model with Monte-Carlo bit error rate estimation.

suppressed. Finally, a five-pole Bessel low-pass filter employed as a matched filter constitutes
the third main stage of Figure 5. The receivers employed here are point receivers whereas the
weather-induced attenuation is neglected so that we concentrate our attention on turbulence
effects. Furthermore, the atmospheric-induced beam spreading that causes a power reduction
at the receiver is also neglected because we are considering a terrestrial link where beam
divergence is typically on the order of 10 yRad.

As a remarkable comment, with the inclusion of a wind speed, concretely 8 m/s as was
said before, we can study the effect of the channel coherence in terms of burst error rate
(Jurado-Navas et al., 2007) so that we obtain highly reliable link performance predictions. In
addition, in urban atmospheres, especially near or among roughness elements, strong wind
shear is expected to create high turbulent kinetic energy, as was detailed in (Christen et al.,
2007). In such assumptions, we could have employed a higher magnitude for the wind speed
without loss of generality. This fact even avoids a higher numerical complexity when we
generate the lognormal scintillation sequence. Finally, and for simplicity, we assume that
the wind direction is entirely transverse to the path of propagation. For special scenarios
where Taylor’s hypothesis may not be fully satisfied (scenarios affected by strong wind shear,
urban environments or tropical areas), the procedure needed to generate the scintillation
pattern may be modified as detailed in (Jurado-Navas & Puerta-Notario, 2009). In such cases,
scintillation sequences registered by a receiver will not be identical to the patterns seen by
another receiver except for a small shift in time, but the entrance of new structures into
the optical propagation path may introduce new fluctuations into the received irradiance.
Although Taylor’s hypothesis is a good estimate for many cases, and for mathematical
convenience this Taylor’s hypothesis is assumed to be fully satisfied in this paper, however,
the corrections proposed in (Jurado-Navas & Puerta-Notario, 2009) may be very useful to
obtain more realistic results in particular environments.

The obtained performance for an OOK format with a 25% duty cycle are presented in terms
of burst error rate average, as displayed in Figure 6 (Jurado-Navas et al., 2007). Hence, the
impact of the atmospheric channel coherence on the behavior of the different signalling
schemes can be taking into account, as was indicated in (Jurado-Navas et al., 2007), due to
burst error rate average represents a second order of statistics and so, the temporal variability
of the received irradiance fluctuations can influence on such metric of performance. However,
this fact is not considered simply by doing a bit error rate analysis since bit error rate does not
change with the variable wind speed, i.e., bit error rate is the first order of statistics and,
consequently, it is just a function of the lognormal channel variance. Accordingly such bursts
of errors are affected by the temporal duration of the turbulence-induced fadings, as it was
already contemplated in Eq. (48), that was depending on 7y and consequently, from Eq. (42),
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Fig. 6. Burst error rate against normalized average optical power for OOK format with a 25 %
duty cycle for (772( = 0.1 and 0.01 and for u | = 8 m/s and no coherence (1| — o0). The burst
error length is established to 256, 192 and 128 bits (Jurado-Navas et al., 2007).

in inverse proportion to u | . Concretely, two time-varying scintillation sequences, as(t) are
represented in Figure 7 for two different average wind speed transverse to the direction of
propagation. Hence, different temporal variabilities in such scintillation sequences must entail
different performance in any atmospheric optical link.
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Fig. 7. Time-varying atmospheric scintillation sequence, as.(t) generated for an average wind
speed transverse to the direction of propagationofa) u; =8 m/s.b) u; =2.5m/s.

To include these atmospheric coherence effects, we followed Deutsch and Miller’s
(Deutsch & Miller, 1981) definition of a burst error with lengths of 256, 192 and 128 bits
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respectively for the particular case of Figure 6, not containing more than L, — 1 consecutive
correct bits (L, = 5 as explained in (Deutsch & Miller, 1981)) any sequence of burst error. An
excellent agreement between our proposed channel model and the theoretical model can be
observed from the results included in such a figure.

Additionally, the main conclusion we can deduce from Figure 7 is the vulnerability to
the coherence of the channel in FSO communications, specially if the variance of the
log-amplitude of the intensity, (T)ZC, increases. Thus, for instance, if comparing both the curves
where channel coherence has been taking into account to the ideal curves without the adverse
effect of the coherence, we can achieve a cut in average optical power requirements above 0.8
and 5.9 optical dB at a burst error rate of 1075 for (772( = 0.01 and 0.1, respectively, assuming
a burst error with length of 256 bits. In this sense, the consideration of the atmospheric
coherence may be a key factor to value a much more realistic performance of these systems in
order to obtain a more detailed information about the design of a specific FSO link.

A wide set of results can be consulted in (Jurado-Navas et al., 2010) for different transmission
schemes including repetition coding, pulse-position modulation (PPM) or even an alternative
rate-adaptive transmission techniques based on the use of variable silence periods and on-off
keying (OOK) formats with memory.

7. Conclusion

In this chapter, we have presented a novel easily implementable model of turbulent
atmospheric channel in which the adverse effect of the turbulence on the transmitted optical
signal is included. We adopt some of the ideas proposed in (Brookner, 1970) that represent
the starting point for our investigation. Thus a locally homogeneous and locally isotropic
atmosphere is supposed through which a plane wave is transmitted under a weak fluctuation
regime. Under these assumptions, a time-varying atmospheric scintillation sequence is
generated and included in a multiplicative model. Some useful techniques have also been
employed to reduce the computational load: so, first, to generate the sequence of scintillation
coefficients, it has been chosen to adapt to optical environments the Clarke’s method, so
frequently used in fading channels in radiofrequency. It consists on filtering a random
statistically Gaussian signal. Hence, the output signal, i.e. x(t), keeps on being statistically
Gaussian, but shaped in its power spectral density by the filter, Hsc(f), employed in this
method. This Hsc(f) filter is forced to have a linear phase to minimize any effect on the
modulus of the filter. Second, the continuous-time signal of the filter is sampled, converting
it in a discrete time signal because of their advantages in realizations. In this respect, we
initially select a very low sampling rate, F, to obtain a first and decimated version of the
atmospheric scintillation sequence. This fact let the computation time be remarkably reduced.
The election of the F; magnitude must satisfy the Nyquist sampling theorem and should help
avoid aliasing, should improve resolution and should reduce noise, removing the possibility
of obtaining a very oversampled signal with very few useful samples of information. At the
end of the process, the scintillation sequence will be interpolated later up to a much higher
sample rate, which provides it with the adequate temporal variability.

As a third useful technique employed to reduce the computational load, the Hs.(f) filter is
proposed to be as a causal FIR filter. For this purpose, a window method is considered,
employing a Hamming window owing to it is optimized to minimize the maximum side
lobe. Then, a zero-padding process to compute a linear convolution by a circular convolution
avoiding time-aliasing is implemented. A fast Fourier algorithm is employed to compute all
values of the DFTs so that the number of arithmetical operations required will be substantially
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reduced. In this respect, the number of samples of any FFT is a power of two. Thus the
well-known decimation-in-time radix-2 Cooley-Tukey algorithm is implemented.

However, the most important decision taken to reduce the computational load is the proposal
of a second-order Gaussian statistical model that substitutes the theoretical Kolmogorov
spectrum, offering a great analytical simplicity. The integration time involved in such process
is reduced 12-15 times in a DELL computer (8 Gb RAM, 8 CPU processors at 2.66 GHz each
one).

On another note, the model shown in (Gujar & Kavanagh, 1968) is taken into account. Hence
it makes the statistical conversion from Gaussian to the desired statistical nature (lognormal,
gamma-gamma, Beckmann, etc.) much easier and better modularized in structure due to its
well differentiated stages.

Finally, we must remark that a great accuracy in results using the approximation proposed
in Eq. (46) instead of the theoretical model is achieved and, secondly, we have demonstrated
the need to include consideration of channel coherence as a key factor to fully evaluate the
performance of atmospheric optical communication systems.
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9. Nomenclature

Covariance function of irradiance and log-amplitude, respectively.

C2 Refractive-index structure parameter.

Dy (r) Index of refraction structure function.

do Correlation length of intensity fluctuations.

E Vector amplitude of the electric field.

fe Power spectral density bandwidth of the intensity fluctuations.
Sx() Probability density function of random log-amplitude scintillation.
f1(I) Probability density function of intensity fluctuations (=fy, (asc)).
1F1(a;¢;v) Confluent hypergeometric function of the first kind.

H Vector amplitude of the magnetic field.

hse(t) Impulse response of the filter Hs.(f).

hse[n] Discrete version of the impulse response of the filter Hs.(f).
huwse|n] hsc[n]w|n].

hesc;zp (1] Zero pad version of hysc[n].

Hse(f) Filter frequency response.

Hc [K] Discrete version of the filter frequency response.

I Irradiance of the random field.

Iy Level of irradiance fluctuation in the absence of air turbulence.
Jo(+) Bessel function of order v.

k Wave number of beam wave (=27/A).

L Propagation path length.

Iy Inner scale of turbulence.

Lo Outer scale of turbulence.

n(r) Index of refraction.

no Average value of index of refraction.
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Fluctuations of the refractive index.

Pulse shape having normalized amplitude.

Transverse position of observation point.

Magnitude of the transverse distance between two points.

Random phase of the field.

Temporal spectrum of log-amplitude perturbation.

Complex amplitude of the field in free space.

First and second order perturbations of the complex amplitude of the field.
Complex amplitude of the field in random medium.

Uy Component of the wind velocity transverse to the propagation direction.
w(n] Hamming window.

ase(t) Time-varying atmospheric scintillation sequence.

x(t) Log-amplitude fluctuation of scintillation.

x[n] Discrete version of log-amplitude fluctuation of scintillation.

X[n] Xx[n] at a lower frequency rate.

K Scalar spatial wave number.

A Wavelength.

Dy (x) Power spectrum of refractive index.

P(r,L) Phase perturbations of Rytov approximation.

Po(r, L) Phase of the optical wave in free-space.

P1(r,L), Po(r, L) First and second order phase perturbations of Rytov approximation.
o? Rytov variance for a plane wave.

(7[2 Scintillation index (normalized irradiance variance).

(772( Log-amplitude variance.

T Turbulence correlation time.

w Discrete frequency (in rads.).
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