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1. Introduction

Theory of wave scattering by small particles of arbitrary shapes was developed by

A. G. Ramm in papers (Ramm, 2005; 2007;a;b; 2008;a; 2009; 2010;a;b) for acoustic and

electromagnetic (EM) waves. He derived analytical formulas for the S-matrix for wave

scattering by a small body of arbitrary shape, and developed an approach for creating

materials with a desired spatial dispersion. One can create a desired refraction coefficient

n2(x, ω) with a desired x, ω-dependence, where ω is the wave frequency. In particular,

one can create materials with negative refraction, i.e., material in which phase velocity is

directed opposite to the group velocity. Such materials are of interest in applications, see,

e.g., (Hansen, 2008; von Rhein et al., 2007). The theory, described in this Chapter, can be

used in many practical problems. Some results on EM wave scattering problems one can

find in (Tatseiba & Matsuoka, 2005), where random distribution of particles was considered.

A number of numerical methods for light scattering are presented in (Barber & Hill, 1990).

An asymptotically exact solution of the many body acoustic wave scattering problem was

developed in (Ramm, 2007) under the assumptions ka << 1, d = O(a1/3), M = O(1/a),
where a is the characteristic size of the particles, k = 2π/λ is the wave number, d is the

distance between neighboring particles, and M is the total number of the particles embedded

in a bounded domain D ⊂ R3. It was not assumed in (Ramm, 2007) that the particles

were distributed uniformly in the space, or that there was any periodic structure in their

distribution. In this Chapter, a uniform distribution of particles in D for the computational

modeling is assumed (see Figure 1). An impedance boundary condition on the boundary Sm

of the m-th particle Dm was assumed, 1 ≤ m ≤ M. In (Ramm, 2008a) the above assumptions

were generalized as follows:

ζm =
h(xm)

aκ
, d = O(a(2−κ)/3), M = O(

1

a2−κ
), κ ∈ (0, 1), (1)
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where ζm is the boundary impedance, hm = h(xm), xm ∈ Dm, and h(x) ∈ C(D) is an arbitrary

continuous in D function, D is the closure of D, Imh ≤ 0. The initial field u0 satisfies the

Helmholtz equation in R3 and the scattered field satisfies the radiation condition. We assume

in this Chapter that κ ∈ (0, 1) and the small particle Dm is a ball of radius a centered at the

point xm ∈ D, 1 ≤ m ≤ M.

Fig. 1. Geometry of problem with M = 27 particles

2. Solution of the scattering problem

The scattering problem is

[∇2 + k2n2
0(x)]uM = 0 in R3\ M∪

m=1
Dm, (2)

∂uM

∂N
= ζmuM on Sm, 1 ≤ m ≤ M, (3)

where

uM = u0 + vM, (4)

u0 is a solution to problem (2), (3) with M = 0 (i.e., in the absence of the embedded particles)

and with the incident field eikα·x. The scattered field vM satisfies the radiation condition. The

refraction coefficient n2
0(x) of the material in a bounded region D is assumed for simplicity

a bounded function whose set of discontinuities has zero Lebesgue measure in R3, and

Imn2
0(x) ≥ 0. We assume that n2

0(x) = 1 in D′ := R3 \ D. It was proved in (Ramm, 2008)

that the unique solution to problem (2) - (4) exists, is unique, and is of the form

uM(x) = u0(x) +
M

∑
m=1

∫

Sm

G(x, y)σm(y)dy, (5)

where G(x, y) is Green’s function of the Helmholtz equation (2) in the case when M = 0,

i.e., when there are no embedded particles, and σm(y) are some unknown functions. If these

4 Numerical Simulations of Physical and Engineering Processes
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functions are chosen so that the boundary conditions (3) are satisfied, then formula (5) gives

the unique solution to problem (2) - (4). Let us define the "effective field" ue, acting on the m-th

particle:

ue(x) := ue(x, a) := u
(m)
e (x) := uM(x)−

∫

Sm

G(x, y)σm(y)dy, (6)

where |x − xm| ∼ a. If |x − xm| >> a, then uM(x) ∼ u
(m)
e (x). The ∼ sign denotes the same

order as a → 0. The function σm(y) solves an exact integral equation (see (Ramm, 2008)). This

equation is solved in (Ramm, 2008) asymptotically as a → 0, see formulas (12)-(15) in Section

3. Let h(x) ∈ C(D), Imh ≤ 0, be arbitrary, ∆ ⊂ D be any subdomain of D, and N (∆) be the

number of the embedded particles in ∆. We assume that

N (∆) =
1

a2−κ

∫

∆
N(x)dx[1 + o(1)], a → 0, (7)

where N(x) � 0 is a given continuous function in D. The following result was proved in

(Ramm, 2008).

Theorem 1. There exists the limit u(x) of ue(x) as a → 0:

lim
a→0

||ue(x)− u(x)||C(D) = 0, (8)

and u(x) solves the following equation:

u(x) = u0(x)− 4π
∫

D

G(x, y)h(y)N(y)u(y)dy. (9)

This is the equation, derived in (Ramm, 2008) for the limiting effective field in the medium,

created by embedding many small particles with the distribution law (7).

3. Approximate representation of the effective field

Let us derive an explicit formula for the effective field ue. Rewrite the exact formula (5) as:

uM(x) = u0(x) +
M

∑
m=1

G(x, xm)Qm +
M

∑
m=1

∫

Sm

[G(x, y)− G(x, xm)]σm(y)dy, (10)

where

Qm =
∫

Sm

σm(y)dy. (11)

Using some estimates of G(x, y) (see (Ramm, 2007)) and the asymptotic formula for Qm from

(Ramm, 2008), one can rewrite the exact formula (10) as follows:

uM(x) = u0(x) +
M

∑
m=1

G(x, xm)Qm + o(1) , a → 0, |x − xm| � a. (12)

5Numerical Solution of Many-Body Wave Scattering Problem 
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The numbers Qm, 1 ≤ m ≤ M, are given by the asymptotic formula

Qm = −4πh(xm)ue(xm)a2−κ [1 + o(1)], a → 0, (13)

and the asymptotic formula for σm is (see (Ramm, 2008)):

σm = − h(xm)ue(xm)

aκ
[1 + o(1)], a → 0. (14)

The asymptotic formula for ue(x) in the region |x − xj| ∼ a, 1 ≤ j ≤ M, is (see (Ramm, 2008)):

u
(j)
e (x) = u0(x)− 4π

M

∑
m=1,m �=j

G(x, xm)h(xm)ue(xm)a2−κ [1 + o(1)]. (15)

Equation (9) for the limiting effective field u(x) is used for numerical calculations when the

number M is large, e.g., M = 10b, b > 3. The goal of our numerical experiments is to

investigate the behavior of the solution to equation (9) and compare it with the asymptotic

formula (15) in order to establish the limits of applicability of our asymptotic approach to

many-body wave scattering problem for small particles.

4. Reduction of the scattering problem to solving linear algebraic systems

The numerical calculation of the field ue by formula (15) requires the knowledge of the

numbers um := ue(xm). These numbers are obtained by solving the following linear algebraic

system (LAS):

uj = u0j − 4π
M

∑
m=1,m �=j

G(xj, xm)h(xm)uma2−κ , j = 1, 2, ..., M, (16)

where uj = u(xj), 1 ≤ j ≤ M. This LAS is convenient for numerical calculations, because

its matrix is sometimes diagonally dominant. Moreover, it follows from the results in (Ramm,

2009), that for sufficiently small a this LAS is uniquely solvable. Let the union of small cubes

∆p, centered at the points yp, form a partition of D, and the diameter of ∆p be O(d1/2). For

finitely many cubes ∆p the union of these cubes may not give D. In this case we consider the

smallest partition containing D and define n2
0(x) = 1 in the small cubes that do not belong

to D. To find the solution to the limiting equation (9), we use the collocation method from

(Ramm, 2009), which yields the following LAS:

uj = u0j − 4π
P

∑
p=1,m �=j

G(xj, xp)h(yp)N(yp)up|∆p|, p = 1, 2, ..., P, (17)

where P is the number of small cubes ∆p, yp is the center of ∆p, and |∆p| is volume of ∆p.

From the computational point of view solving LAS (17) is much easier than solving LAS (16)

if P << M. We have two different LAS: one is (16), the other is (17). The first corresponds

to formula (15). The second corresponds to a collocation method for solving equation (9).

Solving these LAS, one can compare their solutions and evaluate the limits of applicability of

6 Numerical Simulations of Physical and Engineering Processes
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the asymptotic approach from (Ramm, 2008) to solving many-body wave scattering problem

in the case of small particles.

5. EM wave scattering by many small particles

Let D is the domain that contains M particles of radius a, d is distance between them. Assume

that ka ≪ 1, where k > 0 is the wavenumber. The governing equations for scattering problem

are:

∇× E = iωµH, ∇× H = −iωε′(x)E in R3, (18)

where ω > 0 is the frequency, µ = µ0 = const is the magnetic constant, ε′(x) = ε0 = const > 0

in D′ = R3\D, ε′(x) = ε(x) + i
σ(x)

ω ; σ(x) ≥ 0, ε′(x) �= 0 ∀ x ∈ R3, ε′(x) ∈ C2(R3) is a twice

continuously differentiable function, σ(x) = 0 in D′, σ(x) is the conductivity. From (18) one

gets

∇×∇× E = K2(x)E, H =
∇× E

iωµ
, (19)

where K2(x) = ω2ε′(x)µ. We are looking for the solution of the equation

∇×∇× E = K2(x)E (20)

satisfying the radiation condition

E(x) = E0(x) + v, (21)

where E0(x) is the plane wave

E0(x) = E eikα·x, k =
ω

c
, (22)

c = ω
√

εµ is the wave velocity in the homogeneous medium outside D, ε = const is the

dielectric parameter in the outside region D′, α ∈ S2 is the incident direction of the plane

wave, S2 is unit sphere in R3, E · α = 0, E is a constant vector, and the scattered field v satisfies

the radiation condition
∂v

∂r
− ikv = o(

1

r
), r = |x| → ∞ (23)

uniformly in directions β := x/r. If E is found, then the pair {E, H}, where H is determined

by second formula (19), solves our scattering problem. It was proved in (Ramm, 2008a), that

scattering problem for system (18) is equivalent to solution of the integral equation:

E(x) = E0(x) +
M

∑
m=1

∫

Dm

g(x, y)p(y)E(y)dy +
M

∑
m=1

∇x

∫

Dm

g(x, y)q(y) · E(y)dy, (24)

where M is the number of small bodies, p(x) = K2(x)− k2, p(x) = 0 in D′, q(y) = ∇K2(x)
K2(x)

,

q(x) = 0 in D′, g(x, y) = eik|x−y|
4π|x−y| . Equation (24) one can rewrite as

E(x) = E0(x) +
M

∑
m=1

[g(x, xm)Vm +∇xg(x, xm)vm] +
M

∑
m=1

(Jm + Km), (25)

7Numerical Solution of Many-Body Wave Scattering Problem 
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where

Jm :=
∫

Dm

[g(x, y)− g(x, xm)p(y)E(y)dy, (26)

Km := ∇x

∫

Dm

[g(x, y)− g(x, xm)q(y)E(y)dy. (27)

Neglecting Jm and Km, let us derive a linear algebraic system for finding Vm and vm. If Vm

and vm , 1 ≤ m ≤ M, are found, then the EM wave scattering problem for M small bodies is

solved by the formula

E(x) = E0(x) +
M

∑
m=1

[g(x, xm)Vm +∇xg(x, xm)vm] (28)

with an error O( a
d + ka) in the domain min1≤m≤M |x − xm| := d ≫ a. To derive a linear

algebraic system for Vm and vm multiply (25) by p(x), integrate over Dj, and neglect the terms

Jm and Km to get

Vj = V0j +
M

∑
m=1

(ajmVm + Bjmvm), 1 ≤ j ≤ M, (29)

where

V0j :=
∫

Dj

p(x)E0(x)dx, Vj :=
∫

Dj

p(x)E(x)dx, (30)

ajm :=
∫

Dj

p(x)g(x, xm)dx, (31)

Bjm :=
∫

Dj

p(x)∇xg(x, xm)dx. (32)

Take the dot product of (25) with q(x), integrate over Dj, and neglect the terms Jm and Km to

get

vj = v0j +
M

∑
m=1

(CjmVm + djmvm), 1 ≤ j ≤ M, (33)

where

v0j :=
∫

Dj

q(x) · E0(x)dx, vj :=
∫

Dj

q(x) · E(x)dx, (34)

Cjm :=
∫

Dj

q(x)g(x, xm)dx, (35)

djm :=
∫

Dj

q(x) · ∇xg(x, xm)dx. (36)

Equations (29) and (33) form a linear algebraic system for finding Vm and vm, 1 ≤ m ≤ M.

This linear algebraic system is uniquely solvable if ka ≪ 1 and a ≪ d. Elements Bjm and Cjm

8 Numerical Simulations of Physical and Engineering Processes
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are vectors, and ajm, djm are scalars. Under the conditions

max
1≤j≤M

M

∑
m=1

(|ajm|+ |djm|+ ||Bjm||+ ||Cjm||) < 1 (37)

one can solve linear algebraic system (29), (33) by iterations. In (37), ||Bjm|| and ||Cjm|| are the

lengths of corresponding vectors. Condition (37) holds if a ≪ 1 and M is not growing too fast

as a → 0, not faster than O(a−3). In the process of computational modeling, it is necessary

to investigate the solution of system (29), (33) numerically and to check the condition (37) for

given geometrical parameters of problem.

6. Evaluation of applicability of asymptotic approach for EM scattering

One can write the linear algebraic system corresponding to formula (24) as follows (Ramm,

2008a)

Ej = E0j +
P
∑

j �=p,p=1
g(xj, xp)p(xp)E(xp) + ∇x

P
∑

j �=p,p=1
g(xj, xp) q(xp) · E(xp),

j = 1, 2, ..., P, xj, xp ∈ D ,

(38)

where Ej = E(xj). Having the solution to (38), the values of E(x) in all R3 one can calculate

by

E(x) = E0(x) +
P

∑
p=1

g(x, xp)p(xp)E(xp) + ∇x

P

∑
p=1

g(x, xp) q(xp) · E(xp). (39)

The values E(xp) in (39) correspond to set {E(xp), p = 1, ..., P}, which is determined in

(38), where P is number of collocation points. In the process of numerical calculations the

integration over regions Dm in formula (24) is replaced by calculation of a Riemannian sum,

and the derivative ∇x is replaced by a divided difference. This allows one to compare the

numerical solutions to system (38) with asymptotical ones calculated by the formula (28).

7. Determination of refraction coefficient for EM wave scattering

Formula (28) does not contain the parameters that characterize the properties of D, in

particular, its refraction coefficient n2(x). In (Ramm, 2008a) a limiting equation, as a → 0,

for the effective field is derived:

Ee(x) = E0(x) +
∫

D

g(x, y)C(y)Ee(y)dy, (40)

and an explicit formula for refraction coefficient n2(x) is obtained. These results can be used

in computational modeling. One has Ee(x) := lim
a→0

E(x), and

C(xm) = c1m N(xm). (41)

Formula (41) defines uniquely a continuous function C(x) since the points xm are distributed

everywhere dense in D as a → 0. The function C(x) can be created as we wish, since it is

9Numerical Solution of Many-Body Wave Scattering Problem 
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determined by the numbers c1m and by the function N(x), which are at our disposal. Apply

the operator ∇2 + k2 to (40) and get

[∇2 + K2(x)]Ee = 0, K2(x) := k2 + C(x) := k2n2(x). (42)

Thus, the refraction coefficient n2(x) is defined by the formula

n2(x) = 1 + k−2C(x). (43)

The functions C(x) and n2(x) depend on the choice of N(x) and c1m. The function N(x) in

formula (7) and the numbers c1m we can choose as we like. One can vary N(x) and c1m to

reduce the discrepancy between the solution to equation (40) and the solution to equation

(39). A computational procedure for doing this is described and tested for small number of

particles in Section 9.

8. Numerical experiments for acoustic scattering

The numerical approach to solving the acoustic wave scattering problem for small particles

was developed in (Andriychuk & Ramm, 2010). There some numerical results were

given. These results demonstrated the applicability of the asymptotic approach to solving

many-body wave scattering problem by the method described in Sections 3 and 4. From the

practical point of view, the following numerical experiments are of interest and of importance:

a) For not very large M, say, M=2, 5, 10, 25, 50, one wants to find a and d, for which the

asymptotic formula (12) (without the remainder o(1)) is no longer applicable;

b) One wants to find the relative accuracy of the solutions to the limiting equation (9) and to

the LAS (17);

c) For large M, say, M = 105, M = 106, one wants to find the relative accuracy of the solutions

to the limiting equation (9) and of the solutions to the LAS (16);

d) One wants to find the relative accuracy of the solutions to the LAS (16) and (17);

e) Using Ramm’s method for creating materials with a desired refraction coefficient, one wants

to find out for some given refraction coefficients n2(x) and n2
0(x), what the smallest M (or,

equivalently, largest a) is for which the corresponding n2
M(x)

differs from the desired n2(x)

by not more than, say, 5% - 10%. Here n2
M(x)

is the value of the refraction coefficient of

the material obtained by embedding M small particles into D accoring to the recipe described

below.

We take k = 1, κ = 0.9, and N(x) = const for the numerical calculations. For k = 1, and a and

d, used in the numerical experiments, one can have many small particles on the wavelength.

Therefore, the multiple scattering effects are not negligible.

8.1 Applicability of asymptotic formulas for small number of particles

We consider the solution to LAS (17) with 20 collocation points along each coordinate axis

as the benchmark solution. The total number P of the collocation points is P = 8000. The

applicability of the asymptotic formulas is checked by solving LAS (16) for small number M

of particles and determining the problem parameters for which the solutions to these LAS are

close. A standard interpolation procedure is used in order to obtain the values of the solution

to (17) at the points corresponding to the position of the particles. In this case the number P of

10 Numerical Simulations of Physical and Engineering Processes
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the collocation points exceeds the number M of particles. In Fig. 2, the relative errors of real

(solid line) and imaginary (dashed line) parts, as well as the modulus (dot-dashed line) of the

solution to (16) are shown for the case M = 4; the distance between particles is d = a(2−κ)/3C,

where C is an additional parameter of optimization (in our case C = 5, that yields the smallest

error of deviation of etalon and asymptotic field components), N(x) = 5. The minimal relative

error of the solution to (16) does not exceed 0.05% and is reached when a ∈ (0.02, 0.03). The

value of the function N(x) influences (to a considerable degree) the quality of approximation.

The relative error for N(x) = 40 with the same other parameters is shown in Fig. 3. The error

is smallest at a = 0.01, and it grows when a increases. The minimal error that we were able to

obtain for this case is about 0.01% . The dependence of the error on the distance d between

Fig. 2. Relative error of solution to (16) versus size a of particle, N(x) = 5

Fig. 3. Relative error of solution to (16) versus size a of particle, N(x) = 40

particles for a fixed a was investigated as well. In Fig. 4, the relative error versus parameter d

is shown. The number of particles M = 4, the radius of particles a = 0.01. The minimal error

11Numerical Solution of Many-Body Wave Scattering Problem 
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was obtained when C = 14. This error was 0.005% for the real part, 0.0025% for the imaginary

part, and 0.002% for the modulus of the solution.

The error grows significantly when d deviates from the optimal value, i.e., the value of d for

which the error of the calculated solution to LAS (16) is minimal. Similar results are obtained

for the case a = 0.02 (see Fig. 5). For example, at M = 2 the optimal value of d is 0.038 for

a = 0.01, and it is 0.053 for a = 0.02. The error is even more sensitive to changes of the distance

d in this case. The minimal value of the error is obtained when C = 8. The error was 0.0078%

for the real part, 0.0071% for the imaginary part, and 0.002% for the modulus of the solution.

The numerical results show that the accuracy of the approximation of the solutions to LAS

Fig. 4. Relative error of solution versus distance d between particles, a = 0.01

Fig. 5. Relative error of solution versus distance d between particles, a = 0.02

12 Numerical Simulations of Physical and Engineering Processes
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M value
M = 2 M = 4 M = 6 M = 8

a = 0.01 0.038 0.025 0.026 0.027
a = 0.02 0.053 0.023 0.027 0.054

Table 1. Optimal values of d for small M

M value
M = 10 M = 20 M = 30 M = 40

a = 0.01 0.011 0.0105 0.007 0.006
a = 0.02 0.016 0.018 0.020 0.023

Table 2. Optimal values of d for medium M

(16) and (17) depends on a significantly, and it improves when a decreases. For example, the

minimal error, obtained at a = 0.04, is equal to 0.018%. The optimal values of d are given in

Tables 1, and 2 for small and not so small M respectively. The numerical results show that the

distribution of particles in the medium does not influence significantly the optimal values of

d. By optimal values of d we mean the values at which the error of the solution to LAS (16) is

minimal when the values of the other parameters are fixed. For example, the optimal values

of d for M = 8 at the two types of the distribution of particles: (2× 2× 2) and (4× 2× 1) differ

by not more than 0.5% . The numerical results demonstrate that to decrease the relative error

of solution to system (16), it is necessary to make a smaller if the value of d is fixed. One can

see that the quality of approximation improves as a → 0, but the condition d >> a is not valid

for small number M of particles: the values of the distance d is of the order O(a).

8.2 Accuracy of the solution to the limiting equation

The numerical procedure for checking the accuracy of the solution to equation (9) uses the

calculations with various values of the parameters k, a, lD, and h(x), where lD is diameter of

D. The absolute and relative errors were calculated by increasing the number of collocation

points. The dependence of the accuracy on the parameter ρ, where ρ = 3
√

P, P is the total

number of small subdomains in D, is shown in Fig. 6 and Fig. 7 for k = 1.0, lD = 0.5, a = 0.01

at the different values of h(x). The solution corresponding to ρ =20 is considered as “exact”

solution (the number P for this case is equal to 8000). The error of the solution to equation (9)

is equal to 1.1% and 0.02% for real and imaginary part, respectively, at ρ = 5 (125 collocation

points), it decreases to values of 0.7% and 0.05% if ρ = 6 (216 collocation points), and it

decreases to values 0.29% and 0.02% if ρ = 8 (512 collocation points), h(x) = k2(1− 3i)/(40π).
The relative error smaller than 0.01% for the real part of solution is obtained at ρ = 12, this

error tends to zero when ρ increases. This error depends on the function h(x) as well, it

diminishes when the imaginary part of h(x) decreases. The error for the real and imaginary

parts of the solution at ρ = 19 does not exceed 0.01%. The numerical calculations show that

the error depends much on the value of k. In Fig. 8 and Fig. 9 the results are shown for k = 2.0

and k = 0.6 respectively (h(x) = k2(1 − 3i)/(40π)). It is seen that the error is nearly 10 times

larger at k = 2.0. The maximal error (at ρ = 5) for k = 0.6 is less than 30% of the error for

k = 1.0. This error tends to zero even faster for smaller k.

13Numerical Solution of Many-Body Wave Scattering Problem 
for Small Particles and Creating Materials with Desired Refraction Coefficient

www.intechopen.com



12 Will-be-set-by-IN-TECH

Fig. 6. Relative error versus the ρ parameter, h(x) = k2(1 − 7i)/(40π)

Fig. 7. Relative error versus the ρ parameter, h(x) = k2(1 − 3i)/(40π)

8.3 Accuracy of the solution to the limiting equation (9) and to the asymptotic LAS (16)

As before, we consider as the “exact” solution to (9) the approximate solution to LAS (17) with

ρ = 20. The maximal relative error for such ρ does not exceed 0.01% in the range of problem

parameters we have considered (k = 0.5 ÷ 1.0, lD = 0.5 ÷ 1.0, N(x) ≥ 4.0). The numerical

calculations are carried out for various sizes of the domain D and various function N(x). The

results for small values of M are presented in Table 3 for k = 1, N(x) = 40, and lD = 1.0. The

second line contains the values of aest, the estimated value of a, calculated by formula (7), with

the number N (∆p) replacing the number M. In this case the radius of a particle is calculated

as

aest = (M/
∫

∆p

N(x)dx)1/(2−κ). (44)
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Fig. 8. Relative error versus the ρ parameter, k = 2.0

Fig. 9. Relative error versus the ρ parameter, k = 0.6

The values of aopt in the third line correspond to optimal values of a which yield minimal

relative error of the modulus of the solutions to equation (9) and LAS (16). The fourth line

contains the values of the distance d between particles. The maximal value of the error is

obtained when µ = 7, µ = 3
√

M and it decreases slowly when µ increases. The calculation

results for large number of µ with the same set of input parameters are shown in Table 4. The

minimal error of the solutions is obtained at µ = 60 (total number of particles M = 2.16 · 105.

Tables 5 and 6 contain similar results for N(x) = 4.0, other parameters being the same. It is

seen that the relative error of the solution decreases when number of particles M increases.

This error can be decreased slightly (on 0.02%-0.01%) by small change of the values a and lD

as well. The relative error of the solution to LAS (16) tends to the relative error of the solution

to LAS (17) when the parameter µ becomes greater than 80 (M = 5.12 · 105). The relative error

of the solution to LAS (17) is calculated by taking the norm of the difference of the solutions

15Numerical Solution of Many-Body Wave Scattering Problem 
for Small Particles and Creating Materials with Desired Refraction Coefficient

www.intechopen.com



14 Will-be-set-by-IN-TECH

µ 7 9 11 13 15
aest 0.1418 0.0714 0.0413 0.0262 0.0177
aopt 0.1061 0.0612 0.0382 0.0261 0.0172
d 0.1333 0.1105 0.0924 0.0790 0.0688
Rel.error 2.53% 0.46% 0.45% 1.12% 0.81%

Table 3. Optimal parameters of D for small µ, N(x) = 40.0

µ 20 30 40 50 60

aest 0.0081 0.0027 0.0012 6.65 × 10−4 4.04 × 10−4

aopt 0.0077 0.0025 0.0011 6.6 × 10−4 4.04 × 10−4

d 0.0526 0.0345 0.0256 0.0204 0.0169
Rel.error 0.59% 0.35% 0.36% 0.27% 0.19%

Table 4. Optimal parameters of D for big µ, N(x) = 40.0

µ 7 9 11 13 15
aest 0.0175 0.0088 0.0051 0.0032 0.0022
aopt 0.0179 0.0090 0.0052 0.0033 0.0022
d 0.1607 0.1228 0.0990 0.0828 0.0711
Rel.error 1.48% 1.14% 1.06% 1.05% 0.91%

Table 5. Optimal parameters of D for small µ, N(x) = 4.0

µ 20 30 40 50 60

aest 9.97 × 10−4 3.30 × 10−4 1.51 × 10−4 8.20 × 10−5 4.98 × 10−5

aopt 1.02 × 10−3 3.32 × 10−4 1.50 × 10−4 8.21 × 10−5 4.99 × 10−5

d 0.0542 0.0361 0.0265 0.0209 0.0172
Rel.error 0.21% 0.12% 0.11% 0.07% 0.03%

Table 6. Optimal parameters of D for big µ, N(x) = 4.0

to (17) with P and 2P points, and dividing it by the norm of the solution to (17) calculated for

2P points. The relative error of the solution to LAS (16) is calculated by taking the norm of the

difference between the solution to (16), calculated by an interpolation formula at the points yp

from (17), and the solution of (17), and dividing the norm of this difference by the norm of the

solution to (17).

8.4 Investigation of the relative difference between the solution to (16) and (17)

A comparison of the solutions to LAS (16) and (17) is done for various values of a, and various

values of the number ρ and µ. The relative error of the solution decreases when ρ grows and

µ remains the same. For example, when ρ increases by 50% , the relative error decreases by

12% (for ρ = 8 and ρ = 12, µ = 15). The differences between the real parts, imaginary parts,

and moduli of the solutions to LAS (16) and (17) are shown in Fig. 10 and Fig. 11 for ρ = 7,

µ = 15. The real part of this difference does not exceed 4% when a = 0.01, it is less than 3.5%

at a = 0.008, less than 2% at a = 0.005; d = 8a, N(x) = 20. This difference is less than 0.08%

when ρ = 11, a = 0.001, N = 30, and d = 15a (µ remains the same). Numerical calculations

for wider range of the distance d demonstrate that there is an optimal value of d, starting
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Fig. 10. Deviation of component field versus the distance d between particles, N(x) = 10

Fig. 11. Deviation of component field versus the distance d between particles, N(x) = 30

from which the deviation of solutions increases again. These optimal values of d are shown in

Table 7 for various N(x). The calculations show that the optimal distance between particles

increases when the number of particles grows. For small number of particles (see Table 1 and

Table 2) the optimal distance is the value of the order a. For the number of particles M = 153,

i.e. µ = 15, this distance is about 10a.

The values of maximal and minimal errors of the solutions for the optimal values of distance

d are shown in Table 8.

One can conclude from the numerical results that optimal values of d decrease slowly when

the function N(x) increases. This decreasing is more pronounced for smaller a. The relative

error of the solution to (16) also smaller for smaller a.
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N(x) value
N(x) = 10 N(x) = 20 N(x) = 30 N(x) = 40 N(x) = 50

a = 0.005 0.07065 0.04724 0.04716 0.04709 0.04122
a = 0.001 0.08835 0.07578 0.06331 0.06317 0.05056

Table 7. Optimal values of d for various N(x)

N(x) value
N(x) = 10 N(x) = 20 N(x) = 30 N(x) = 40 N(x) = 50

a = 0.005 0.77/0.12 5.25/0.56 0.52/0.1 0.97/0.12 0.32/0.05
a = 0.001 2.47/0, 26 1.7/0.3 0.5/0.1 2.7/0, 37 1.5/0.2

Table 8. Relative error of solution in % (max/min) for optimal d

8.5 Evaluation of difference between the desired and obtained refraction coefficients

The recipe for creating the media with a desired refraction coefficient n2(x) was proposed in

(Ramm, 2008a). It is important from the computational point of view to see how the refraction

coefficient n2
M(x), created by this procedure, differs from the one, obtained theoretically. First,

we describe the recipe from (Ramm, 2010a) for creating the desired refraction coefficient n2(x).
By n2

0(x) we denote the refraction coefficient of the given material.

The recipe consists of three steps.

Step 1. Given n2
0(x) and n2(x), calculate

p̄(x) = k2[n2
0(x)− n2(x)] = p̄1(x) + i p̄2(x). (45)

Step 1 is trivial from the computational and theoretical viewpoints.

Using the relation

p̄(x) = 4πh(x)N(x) (46)

from (Ramm, 2008a) and equation (45), one gets the equation for finding h(x) = h1(x) +
ih2(x), namely:

4π[h1(x) + ih2(x)]N(x) = p̄1(x) + i p̄2(x). (47)

Therefore,

N(x)h1(x) =
p̄1(x)

4π
, N(x)h2(x) =

p̄2(x)

4π
. (48)

Step 2. Given p̄1(x) and p̄2(x), find {h1(x), h2(x), N(x)}.

The system (48) of two equations for the three unknown functions h1(x), h2(x) ≤ 0, and

N(x) ≥ 0, has infinitely many solutions {h1(x), h2(x), N(x)}. If, for example, one takes N(x)
to be an arbitrary positive constant, then h1 and h2 are uniquely determined by (48). The

condition Imn2(x) > 0 implies Imp̄ = p̄2 < 0, which agrees with the condition h2 < 0 if

N(x) ≥ 0. One takes N(x) = h1(x) = h2(x) = 0 at the points at which p̄1(x) = p̄2(x) = 0.

One can choose, for example, N to be a positive constant:

N(x) = N = const, (49)

h1(x) =
p̄1(x)

4πN
, h2(x) =

p̄2(x)

4πN
. (50)
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Calculation of the values N(x), h1(x), h2(x) by formulas (49)-(50) completes Step 2 our

procedure.

Step 2. is easy from computational and theoretical viewpoints.

Step 3. This step is clear from the theoretical point of view, but it requires solving two basic

technological problems. First, one has to embed many (M) small particles into D at the

approximately prescribed positions according to formula (7). Secondly, the small particles

have to be prepared so that they have prescribed boundary impedances ζm = h(xm)a−κ , see

formula (1).

Consider a partition of D into union of small cubes ∆p, which have no common interior points,

and which are centered at the points y(p), and embed in each cube ∆p the number

N (∆p) =

⎡

⎢

⎣

1

a2−κ

∫

∆p

N(x)dx

⎤

⎥

⎦
(51)

of small balls Dm of radius a, centered at the points xm, where [b] stands for the integer nearest

to b > 0, κ ∈ (0, 1). Let us put these balls at the distance O(a
2−κ

3 ), and prepare the boundary

impedance of these balls equal to
h(xm)

aκ , where h(x) is the function, calculated in Step 2 of our

recipe. It is proved in (Ramm, 2008a) that the resulting material, obtained by embedding small

particles into D by the above recipe, will have the desired refraction coefficient n2(x) with an

error that tends to zero as a → 0.

Let us emphasize again that Step 3 of our procedure requires solving the following technological

problems:

(i) How does one prepare small balls of radius a with the prescribed boundary impedance? In particular,

it is of practical interest to prepare small balls with large boundary impedance of the order O(a−κ),
which has a prescribed frequency dependence.

(ii) How does one embed these small balls in a given domain D, filled with the known material,

according to the requirements formulated in Step 3 ?

The numerical results, presented in this Section, allow one to understand better the role

of various parameters, such as a, M, d, ζ, in an implementation of our recipe. We give the

numerical results for N(x) = const. For simplicity, we assume that the domain D is a union

of small cubes (subdomains) ∆p (D =
P
⋃

p=1
∆p). This assumption is not a restriction in practical

applications. Let the functions n2
0(x) and n2(x) be given. One can calculate the values h1 and

h2 in (50) and determine the number N (∆p) of the particles embedded into D. The value of

the boundary impedance
h(xm)

aκ is easy to calculate. Formula (51) gives the total number of

the embedded particles. We consider a simple distribution of small particles. Let us embed

the particles at the nodes of a uniform grid at the distances d = O(a
2−κ

3 ). The numerical

calculations are carried out for the case D =
P
⋃

p=1
∆p, P = 8000, D is cube with side lD = 0.5,

the particles are embedded uniformly in D. For this P the relative error in the solution to LAS

(16) and (17) does not exceed 0.1%. Let the domain D be placed in the free space, namely

n2
0(x) = 1, and the desired refraction coefficient be n2(x) = 2 + 0.01i. One can calculate the

value of N (∆p) by formula (51). On the other hand, one can choose the number µ, such that
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M = µ3 is closest to N (∆p). The functions ñ2
1(x) and ñ2

2(x), calculated by the formula

ñ2
1(x) = −4πh1(x)N

k2
+ n2

0, ñ2
2(x) = −4πh2(x)N

k2
, (52)

differ from the desired coefficients n2
1(x) and n2

2(x). In (52), N = Ma2−κ

VD
, VD is volume of D,

κ < 1 is chosen very close to 1, κ = 0.99. To obtain minimal discrepancy between n2
j (x) and

ñ2
j (x), j = 1, 2, we choose two numbers µ1 and µ2 such that M1 < N (∆p) < M2, where

M1 = µ3
1 and M2 = µ3

2. Hence, having the number N (∆p) for a fixed a, one can estimate

the numbers M1 and M2, and calculate the approximate values of n2
1(x) and n2

2(x) by formula

(52). In Fig. 12, the minimal relative error of the calculated value ñ2(x) depending on the

radius a of particle is shown for the case N(x) = 5 (the solid line corresponds to the real part

of the error, and the dashed line corresponds to the imaginary part of the error in the Figs.

12-14). These results show that the error depends significantly on the relation between the

Fig. 12. Minimal relative error for calculated refraction coefficient ñ2(x), N(x) = 5

numbers M1, M2, and N (∆p). The error is smallest when one of the values M1 and M2 is

sufficiently close to N (∆p). The error has quasiperiodic nature with growing amplitude as a

increases (this is clear from the behavior of the function N (∆p) and values M1 and M2). The

average error on a period increases as a grows. Similar results are shown in Fig. 13 and Fig. 14

for N = 20 and N = 50 respectively. The minimal error is attained when a = 0.015, and this

error is 0.51%. The error is 0.53% when a = 0.008, and it is equal to 0.27% when a = 0.006 for

N(x) = 20, 50 respectively. Uniform (equidistant) embedding small particles into D is simple

from the practical point of view. The results in Figs. 12-14 allow one to estimate the number

M of particles needed for obtaining the refraction coefficient close to a desired one in a given

domain D. The results for lD = 0.5 are shown in Fig. 15. The value µ = 3
√

M is marked on the

y axes here. Solid, dashed, and dot-dashed line correspond to N(x) = 5, 20, 50, respectively.

One can see from Fig. 15 that the number of particles decreases if radius a increases. The

value d = O(a(2−κ)/3) gives the distance d between the embedded particles. For example, for

N(x) = 5, a = 0.01 d is of the order 0.1359, the calculated d is equal to 0.12 and to 0.16 for
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Fig. 13. Minimal relative error for calculated refraction coefficient ñ2(x), N(x) = 20

Fig. 14. Minimal relative error for calculated refraction coefficient ñ2(x), N(x) = 50

µ = 5 and µ = 4, respectively. The calculations show that the difference between the both

values of d is proportional to the relative error for the refraction coefficients. By the formula

d = O(a(2−κ)/3), the value of d does not depend on the diameter lD of D. This value can

be used as an additional optimization parameter in the procedure of the choice between two

neighboring µ in Tables 9, 10. On the other hand, one can estimate the number of the particles

embedded into D using formula (51). Given N (∆p), one can calculate the corresponding

number M of particles if the particles distribution is uniform. The distance between particles

is also easy to calculate if lD is given. The optimal values of µ, µ = 3
√

M are shown in the

Tables 9 and 10 for lD = 0.5 and lD = 1.0 respectively.

The numerical calculations show that the relative error of ñ2(x) for respective µ can be

decreased when the estimation of d is taken into account. Namely, one should choose µ from

Tables 9 or 10 that gives value of d close to (a(2−κ)/3).
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Fig. 15. Optimal value of µ versus the radius a for various N(x)

a N (∆p) Optimal µ
0.02 96.12 4 ≤ µ ≤ 5
0.01 204.05 4 ≤ µ ≤ 5
0.008 245.62 6 ≤ µ ≤ 7
0.005 416.17 7 ≤ µ ≤ 8
0.001 2442.1 13 ≤ µ ≤ 14

Table 9. Optimal values of µ for lD = 0.5

a N (∆p) Optimal µ
0.02 809.25 9 ≤ µ ≤ 10
0.01 1569.1 11 ≤ µ ≤ 12
0.008 1995.3 12 ≤ µ ≤ 13
0.005 3363.3 15 ≤ µ ≤ 16
0.001 19753 27 ≤ µ ≤ 28

Table 10. Optimal values of µ for lD = 1.0

9. Numerical results for EM wave scattering

Computing the solution by limiting formula (28) requires much PC time because one

computes 3− D integrals by formulas (30)-(32) and (34)-(36). Therefore, the numerical results,

presented here, are restricted to the case of not too large number of particles (M ≤ 1000).

The modeling results demonstrate a good agreement with the theoretical predictions, and

demonstrate the possibility to create a medium with a desired refraction coefficient in a way

similar to the one in the case of acoustic wave scattering.

9.1 Comparison of "exact" and asymptotic solution

Let α = e3, where e3 is unit vector along z axis, then the condition yields E · α = 0, that

vector E is placed in the xOy plane, i. e. it has two components Ex and Ey only. In the case

22 Numerical Simulations of Physical and Engineering Processes

www.intechopen.com



Numerical Solution of Many-Body Wave Scattering Problem for Small Particles and Creating Materials with Desired

Refraction Coefficient 21

M a = 0.1 a = 0.2 a = 0.3 a = 0.4

8 0.351 0.798 0.925 1.457

27 0.327 0.825 0.956 1.596

64 0.315 0.867 1.215 1.691

125 0.306 0.935 1.454 1.894

Table 11. Minimal values of d guaranteeing the convergence of iterative process (29), (33)

if domain D is placed symmetrically to axis z and α = e3 one can consider the component

Ex or Ey because of symmetry (this restriction is valid if x− and y−components in E0 are

the same). The applicability of asymptotic approach was checked by comparison of solution

by the limiting formula (28) and solution determined by the formula (39). The first solution

implies the knowledge of vectors Vj and numbers vj which are received from the solutions

to LAS (29), (33). The second solution requires the values {E(yp), p = 1, ..., P}, which are

received as solution to LAS (38) by the collocation method (Ramm, 2009). We consider the

solution to LAS (38) with 15 collocation points along each coordinate axis as a benchmark or

"exact" solution. The total number P of the collocation points is P = 3375 and relative error

of solution does not exceed 0.5% in the range of considered values a, d, and M. The LAS (29),

(33) is solved by iterations and condition (37) superimposes considerable restriction on the

relation d to a. The analytical estimation gives d ∼ 15a and greater. It means that dimensions

of D at big number of M are very large that can not satisfy the engineering requirements.

Therefore, the knowledge of minimal values d at which the iterative process for solution to

system (29), (33) is still converged has a practical importance. In Table 11, the minimal values

of d for several a at fixed number of particles M are shown.

One can see that allowable distance d is order d ∼ 4a that is less three times than theoretical

estimation.

The investigation of the amplitude field deviation for the both solutions depending on the

radius a of particle was performed for points in the middle and far zone at M = 125, k = 0.1,

and d = 1. In Fig. 16, the results are presented for the far zone of D (d f = 15, where d f

is distance from center of D to far zone). The thick curves correspond to the case of the

same amplitude distribution of x− and y−components of the field E0(x), and thin curves

correspond to the case of various x− and y−components. In the middle zone the solutions

differ in the limits of 20% and greater at the small values of a, this difference grows if a

increases. The results for the far zone are in good correspondence with theoretical condition,

i. e., the asymptotical solution tends to "exact" one as a → 0. The maximum deviation of field

components is observed at a = 0.05 and it is equal to 5%, and it is equal to 25% if a grows to

0.5. The relative error can be decreased in the considerable extent if the value of d to icrease.

In the above example the relation d/a is equal to 2 only, and it is complicate situation for our

asymptotical approach.

9.2 Creating the desired refraction coefficient

In Section 7, the formula for refraction coefficient n2(x) for domain D with N (∆) embedded

particles of radius a was derived. If n2(x) is presribed, one can easy to determine the

parameters of D that can provide the desired value of refraction coefficient. Similarly to
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Fig. 16. Relative error of solution to limiting equation (28) for differing E0(x)

M N(x) c1m γm max |p(x)| Relative error
8 0.7407 0.0675 2.0250 64.4578 0.0005
27 0.5400 0.0912 2.7360 87.0896 0.0009
64 0.4665 0.1072 3.2154 102.1494 0.0023

Table 12. Optimal parameters of D for n2(x) = 1.2

the case of acoustic wave scattering, we formulate constructive recipe to create the media

with desired refraction coefficient. Let us denote the refraction coefficient of medium without

embedded particles n2
0(x) = 1. We develop a method to create a desired refraction coefficient

n2(x). To do this, we impose some mild restrictions on the function N(x) and p(x). Let the

domain D be a cube with M embedded particles. If one assumes that N(x) = const in D,

then N(x) = Ma2/(d + 2a)3. Having the prescribed n2(x) and known N(x), one can find c1m

from the relation C(x) = c1m N(x), and number γm by the formula γm = 30c1m (see (Ramm,

2008a)). In order to derive the limiting equation of the form (40), the function p(x) is chosen

as follows:

p(r) = p(r, a) =

{ γm

4πaκ (1 − t)2, 0 ≤ t ≤ 1,

0, t > 1; t := r
a , κ = const > 0.

(53)

The values of various parameters, calculated by above procedure, are presented in Tables 12

and 13. The relative error of the asymptotic solution is presented in the last columns in these

Tables. This error is minimal at the value of maxp(x) presented in the neighboring column.

In order to obtain greater n2(x) it is necessary to increase p(x) remaining the same of rest

parameters.

The dependence of n2(x) on a for the various d is shown in Fig. 17 at M = 125 and Fig. 18 at

M = 1000. At the small values of a the scattering from D is negligible, therefore n2(x) → n2
0(x)

as a → 0. If a grows, then n2(x) decreases and differs considerably from n2
0(x).

The relative error of the solution to limiting equation (40) is shown in Fig. 19. The error gets

smaller as a → 0. The numerical results show that the relative error for various d gets larger if

a approaches d/3.
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M N(x) c1m γm max |p(x)| Relative error
8 0.7407 0.1350 4.0500 128.9155 0.0008
27 0.5400 0.1825 5.4750 174.2747 0.0012
64 0.4665 0.2144 6.4309 204.7019 0.0033

Table 13. Optimal parameters of D for n2(x) = 1.4

Fig. 17. The refraction coefficient n2(x) at M = 125

Fig. 18. The refraction coefficient n2(x) at M = 1000
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Fig. 19. The relative error of solution to limiting equation (40) for various d

10. Conclusions

The numerical results based on the asymptotical approach to solving the scattering problem in

a material with many small particles embedded in it help to understand better the dependence

of the effective field in the material on the basic parameters of the problem, namely, on

a, M, d, ζm, N(x), and h(x), and to give a constructive way for creating materials with a desired

refraction coefficient n2(x), see (Ramm, 2009a), (Ramm, 2010), (Ramm, 2010a).

For acoustic wave scattering, it is shown that, for small number M of particles there is an

optimal value of a, for which the relative error to asymptotic solution is minimal. When a → 0

and M is small (M < 100) the matrix of (16) is diagonally dominant and the error goes to

0. This is confirmed by the numerical results as well. The relative error can be decreased by

changing function N(x) or by decreasing a, d being fixed, but the condition d >> a is not

necessary if M is small.

The accuracy of the solution to the limiting equation (9) depends on the values of k, a, and on

the function h(x). The accuracy of the solution improves as the number P increases.

The relative error of the solution to asymptotic LAS (16) depends essentially on the function

N(x) which is at our disposal. In our numerical experiments N(x) = const. The accuracy of

the solution is improved if N(x) decreases, while parameters M, a, and d are fixed. The error

of the solution decreases if M grows, while d is fixed and satisfying condition d ≫ a.

The relative difference between the solutions to LAS (16) and (17) can be improved by

changing the distance d between the particles, a being fixed. The optimal values of d change

slowly in the considered range of function N(x). The relative error is smaller for smaller a.

A constructive procedure, described in Section 8, for prescribing the function N(x),
calculating the numbers µ, and determining the radius a, allows one to obtain the refraction

coefficient approximating better the desired one.

These results help to apply the proposed technique for creating materials with a desired

refraction coefficient using the recipe, formulated in this paper. Development of methods

for embedding many small particles into a given domain D according to our recipe, and for

preparing small balls with the desired large impedances ζ = h(x)
aκ , especially if one wants
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to have function h(x, ω) with a desired frequency dependence, are two basic technological

problems that should be solved for an immediate practical implementation of our recipe.

For EM wave scattering it is shown that, for convergence of iterative procedure (29), (33)

condition (37) is not necessary, but only sufficient: in many examples we had convergence,

but condition was voilated. Altough theoretically we assumed d > 10a, our numerical results

show that the proposed method gives good results even for d = 3a in many cases.

The relative error between the "exact" solution corresponding to equation (39) and limiting

solution (28) depends essentially on the ratio d/a. For example, for fixed M and a, (M =
125, a = 0.05) this difference changed from 2.3% to 0.7% if d/a decreases twice.

As in the case of acoustic wave scattering, a simple constructive procedure for calculation of

desired refraction coefficient n2(x) is given. The numerical experiments show that in order to

change the initial value n2
0(x) one increases radius a while the number M is fixed and not too

large, or increases M and decreases a if M is very large. The second way is more attractive,

because it is in correspondence with our theoretical background.

The extension of the developed numerical procedures for very large M, M ≥ O(105), and

their applications to solving real-life engineering problems is under consideration now.
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