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1. Introduction 

Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and is a 

complicated disease to treat. The current standard therapy includes surgical resection, 

followed by a combination of radiation and chemotherapy with several drugs. However, 

resistance and recurrence  are quite common, so we continue to investigate more effective 

treatments both for initial therapy and recurrence by searching novel neglected molecular 

targets as midkine.  This article will review the significance of midkine in therapy for newly-

diagnosed and recurrent glioblastomas. 

2. Glioblastoma  

In adults, GBMs are the most lethal and most frequent malignant brain tumors. 

Approximately, half of all primary brain tumors are  gliomas. Gliomas arise from glial 

cells,  the building-block cells of the connective and supportive, tissues in the central 

nervous system.  The common gliomas are diffuse gliomas which infiltrate throughout the 

brain parenchyma. These are classified histologically and/or ultrastructurally as 

astrocytomas, oligodendrogliomas, and oligoastrocytomas. They are graded on a World 

Health Organization (WHO) classification system scale of  I to IV according to  their 

degree of malignancy  based on different histological features and genetic alterations. 

Grade I tumors are benign and can be cured if they can be surgically resected; grade II 

tumors are incurable with surgery because of their early diffuse infiltration  of the 

surrounding brain, and long treatment regimens are needed to treat this disease 

completely; grade III tumors have increased anaplasia and proliferate over grade IV 

tumors and are more rapidly fatal; grade IV tumors  possess advanced features of 

malignancy, and are resistant to radio/chemotherapy.  Hence, they are characterized with 

poor prognosis resulting in the death within ~9-12 months. Grade I, II, III, and IV 

designation are pilocytic astrocytoma, low grade astrocytoma (LGA), anaplastic 

astrocytoma, and GBM, respectively. The most frequent subtypes are glioblastoma (47%) 

and grade II–III astrocytoma (23%), followed by oligodendroglioma and mixed glioma 

(Furnari et al., 2007; Krakstad and Chekenya, 2010). 
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Patients suffred from GBM generally have a dismal prognosis, with an average survival 

time of only 9-12 months from their diagnosis, and thus GBMs can be named as 

“terminator”. GBM accounts for ~ 50% of adult gliomas; and up to 10% of pediatric 

gliomas are either anaplastic astrocytomas or GBMs. Cases of GBMs are distributed over 

a broad range of ages, with an average age of 53 years at diagnosis. Prognostic factors 

include age and post-operative physical performance status. The tumors of older patients 

are more aggressive and more resistant to treatment. The patients who are alive just 3 to 

5 years following diagnosis are defined as “long-term survivors” and they are rare. 

Younger age than the average of 53 years is  usually the only common feature of long-

term survivors (Furnari et al., 2007; Krakstad and Chekenya, 2010; Ouant and Wen, 

2010).  

Important characteristics of GBMs are aberrant cellular proliferation, diffuse infiltration, 

prospensity for necrosis, robust angiogenesis, high resistance to apoptosis, and genomic 

instability. The  intratumoral heterogenity combined with a putative cancer stem cell (CSC) 

subpopulation and incomplete atlas of epigenetic lesions are the reasons of  poor 

prognosis/high  tumoral resistance against chemotherapeutics and recurrence. GBMs have 

been subdivided into the primary (de novo) and secondary (progessive) GBMs according to 

their clinical evaluation. Primary GBMs are commonly detected as subtypes, and tend to 

occur in older patients above the age of 45 years. Primary GBMs presents in an acute de novo 

manner without any evidence of prior clinical disease. In contrast, secondary GBMs are 

quite rare and commonly detected in younger patients below the age of 45 years. In 

addition, the latter initially present with lower grade astrocytomas and latterly ~70%  of 

grade II gliomas transform into GBMs within 5-10 years of the initial diagnosis, regardless of 

prior therapy. Primary and secondary GBMs show differences in their clinical characteristics 

and genetic profiles [different  transcriptional patterns and  frequency of specific mutations 

as the mutations of  tumour supressor genes  retinoblastoma (Rb) and p53 result in DNA 

copy number aberrations]. However, they also have similarities, which are morphologically 

indistinguishable and show poor prognosis (Furnari et al., 2007; Cheng et al., 2010; Ouant 

and Wen, 2010). 

Glioblastomas circumvent the blockage of tumour supressor genes [p53, phosphatase and 

tensin homolog deleted on choromosome 10 (PTEN), and Rb]  on positive regulators of cell 

division, survival and motility. These positive regulators are  receptor tyrosine kinases 

[RTKs, i.e. Platelet derived growth factor receptor (PDGFR), Epidermal growth factor 

receptor (EGFR), Vascular endothelial growth factor receptor (VEGFR)], growth factors [i.e. 

platelet derived growth factor (PDGF),  vascular endothelial growth factor  (VEGF)],  cell 

adhesion molecules (i.e. integrins) and  their two major  downstream signaling pathways  

[i.e. mitogen activated protein kinase (MAPK), phosphoinositide-3 kinases (PI3Ks)]. 

Molecular  pathogenesis of primary GBMs present (1) mutations of INK4aARF, PTEN, 

EGFR, loss of heterozygosity (LOH) of chromosome 10p and 10q, (2)  amplications of EGFR, 

Cyclin D1/3, murine double minute 2 and 4 (MDM2 and MDM4), and (3) overexpressions 

of Bcl2-like-12 (Bcl2L 12) (~95 %),  cyclin D 1/3. In contrast, molecular pathogenesis of 

secondary GBMs present (1) mutations of tumor supressors p53,  Rb,  PTEN  (~10 %),  loss 

of chromosomes 10q, 11p, 19q, (2) amplications of cyclin dependent kinases 4/6 (CDK4/6), 

and (3) overexpressions of  PDGFR, PDGF, CDK4/6 (Furnari et al., 2007; Krakstad and 

Chekenya, 2010). 
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Glioblastomas, the most highly vascular of all solid tumors and  microvascular hyperplasia, 
define both the histological phenotype of primary and secondary GBM. Although primary 
and secondary GBMs possess different genomic profiles, they form a final common 
angiogenesis pathway involving hypoxia inducible factor (HIF) and non-HIF-dependent 
downstream effectors such as VEGF, PDGF, stromal cell-derived factor-1 (SDF-1), 
endostatin, and thrompospondin 1 and 2  (TSP-1 and TSP-2). Because of their significant 
roles in GBMs’ molecular pathogenesis, these molecules/pathways are accepted as “major 
targets”  for the treatment of  GBMs  (Furnari et al., 2007; Krakstad and Chekenya, 2010). 
The poor prognosis despite aggressive treatment indicates the need to establish novel 
targets for molecular intervention. 

3. Midkine 

Midkine also known as MDK, FLJ27379, and NEGF2  is a heparin-binding cytokine or a 
growth factor or an angiogenic factor with a molecular weight of 13 kDa. Midkine binds to 
oversulfated structures in heparan sulfate and chondroitin sulfate. MDK is the founding 
member of a family, which is composed of only two members in humans. The other member 
is pleiotrophin (PTN), also called HB-GAM (Deuel et al., 2002; Rauvala and Peng, 1997)  
MDK is 50% homologous to PTN at the amino acid level and shares with PTN the genomic 
organization (Rauvala and Peng, 1997; Muramatsu et al., 1993; Owada et al. 1999) and 
predicted protein structure (Maeda et al., 1999; Sato et al., 2001).  
The structure of  MDK is mainly composed of two domains linked by disulfide bonds (Fabri 
et al., 1993) The C-domain  possess basic heparin-binding activity  which is responsible for  
the  mechanism of action (Muramatsu et al., 1994). Each domain of MDK has also  homology 
to the thrombospondin Type I repeat (Kilpelainen et al., 2000).  Two domains are composed 
of three anti-parallel ǃ-sheets (Iwasaki et al.,1997). The C-domain has two clusters of basic 
amino acids  named as Cluster-1 and -2. These clusters are required for heparin-binding 
activity (Asai et al., 1997; Iwasaki et al., 1997; Akhter et al., 1998).  MDK  forms dimers via 
spontaneous association and transglutaminase stabilize  dimers through crosslinking 
process 35). MDK is seemed to require dimerization  for its activity (Kojima et al.,1997). 
After dimerization, Cluster-2 forms a fused strong binding site (Iwasaki et al., 1997).  
Midkine was originally reported to be the product of a retinoic acid-responsive gene during 
embryogenesis (Takei et al., 2001). The expression of MDK was high during embryogenesis, but 
interestingly, MDK is not detectable in healthy adults and only re-appears in the body as a part 
of the pathogenesis of diseases (Muramatsu et al.2010).  MDK promotes proliferation 
(Muramatsu et al., 2006), migration (Maeda et al., 1999), anti-apoptotic manner (Quin et al., 
2011), mitogenesis (Dai 2009) , transforming (Nobata et al., 2005), and angiogenesis (Gustavsson 
et al., 2008) various cells. It has significant roles  in  reproduction, repair and in epidemiology of 
many diseases as rheumatoid arthritis (Maruyama et al.,2004),  multiple sclerosis (Wang et al., 
2008), hypertension and renal disease (Kodamatsu 2010),  and  cancer (Gustavsson et al., 2008)). 
The most intriguing feature of MDK is its massive expression in advanced tumors with high 
frequency (Qin Li et al., 2011; Kemik et al.,2010). Previous reports showed  that the blood MDK 
level is frequently elevated with advance of human carcinomas, decreased after surgical 
removal of the tumors (Kemik et al.,2010; Ota et al., 2008; Lucas et al.,2010).  
Glycosaminoglycan-recognizing activity of human MDK through its C-domain as heparan 
sulfate trisulfated unit and chondroitin sulfate E unit is important in its mechanism of 
action. Heparin inhibits MDK activiy. Proteoglycans like receptor-like protein tyrosine 
phosphatase-z (PTPz) (Maeda et al.  1999) syndecans (Mitsiadis et al., 1995), glypican-2 
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(Kurosawa et al., 2001),  PG-M/versican (Zou et al.,2000) and neuroglycan C (Ichihara-
Tanaka et al., 2006)  have strong affinity to MDK. Chondroitin sulfate proteoglycan PTPz is a 
component of the MDK receptor. Low density lipoprotein receptor-related protein (LRP) 
(Muramatsu et al., 2000), ǂ4ǃ1-integrin and ǂ6ǃ1-integrin (Muramatsu et al., 2004) also 
serve as MDK receptors. These proteins and PTPz form a receptor complex of MDK. After  
the complex formation with  PTPz and integrins, MDK starts downstream signaling systems 
as Src family kinases and  tyrosine phosphorylation,respectively (Muramatsu et al., 2000;. 
Maeda et al.  1999). Increased tyrosine phosphorylation of paxillin leads to migration at 
osteoblast like cells and followed by suppression of caspases, activation of PI3 kinase and 
mitogen activated protein (MAP) kinase takes part in survival (Muramatsu et al., 2000;. 
Maeda et al.  1999; Owada et al.,1999; Ohuchida et al., 2004). The previous reports showed 
that when MDK binds to a6b1-integrin and tetraspanin, and induces tyrosine 
phosphorylation of  focal adhesion kinase (FAK) followed by activation of paxillin and 
signal transducer and activator of transcription alpha (STAT1ǂ) pathway, it increases 
migration and invasion at human head and neck squamous cell carcinoma cells in vitro 
(Huang et al., 2008). Due to phosphorylation of STAT3 by MDK, the proliferation of 
postconfluent 3T3-L1 cells are stimulated and this leads to adipogenesis (Cernkovich et al., 
2007). Notch2 reserves an another receptor for MDK and acting through the janus kinase 2 
(Jak2)/STAT3 signalling pathway, MDK leads to epithelial-mesenchymal transition (EMT) 
in immortalized keratinocytes. Both MDK and PTN plays important role in EMT and 
neurogenesis during organogenesis process in embryonal development (Huang et al.,2008)  
Previous reports proposed that Anaplastic lymphoma kinase (ALK) can be included in the 
receptor group of MDK (Stoica et al., 2002). Unpublished observations of Muramatsu and 
coworkers, ALK also involves in the MDK complex with LRP and integrins that it is 
recruited to the receptor complex and plays roles in MDK signaling (Muramatsu 2010). 
After activation by MDK, ALK phosphorylates insulin receptor substrate-1, activates MAP 
kinase and PI3 kinase leading to transcriptional activation of nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) (Stoica et al., 2002). 
MDK binds to nucleolin, a nuclear protein which is also located at the cell surface and 
functions as a shuttle to the nucleus (Take et al, 1994; Dai 2009). A component of the MDK 
receptor LRP has major function as endocytose and delivering  its ligands to lysosomes for 
degradation or catabolism (Hussain et al., 1999;Krieger et al., 1994). LRP takes part in 
internalization of MDK (Shibata et al.,2002). MDK is not internalized in LRP-deficient cells, 
whereas transfection of a LRP expression vector can restore MDK internalization and 
subsequent nuclear translocation, suggesting that LRP binds to heparin-binding growth 
factor, MDK, and mediates nuclear targeting by MDK. After this internalization, nucleolin 
transfer cytoplasmic MDK to the nucleus (Shibata et al.,2002). With respect to nuclear 
targeting by MDK, laminin-binding protein precursor (LBP) binds to MDK and is 
cotranslocated with MDK into nuclei (Owada et al., 1999). MDK may use both nucleolin and 
LBP precursor as shuttle proteins, revealing a novel role of LRP in intracellular signaling by 
its ligand, and the importance of nucleolin and LBP in the process of nuclear target of MDK. 
MDK transferred to the nucleolus is involved in the synthesis of ribosomal RNA (Dai et al., 
2008). Unpublished observation by Muramatsu, H. and coworkers, translation initiation 
factor (eIF3) is can be an MDK-binding protein in the embryonic brain (Muramatsu 2010). 

4. Midkine and glioblastoma 

In the central nervous system, MDK is expressed by astrocytes in the fetal brain (Satoh et 
al.,1993), and its expression is developmentally regulated, decreasing progressively to an 
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undetectable level as the fetus matures (Kodamatsu et al., 1990;  Mitsiadis, et al.,1995)  
Previous reports showed that increased levels of MDK expression correlate with the 
progression of human astrocytomas, MDK mRNA and protein expression levels were 
higher in high-grade astrocytomas as anaplastic astrocytomas and GBMs than in low-grade 
astrocytomas (oligodendroglioma,ependioma, schwannoma, meningioma and pituitary 
adenoma) (Mishima et al., 1997). These reports conclude that MDK correlates with the poor 
prognosis of GBM. Stoica et al showed that MDK activates PI3-kinase and MAP kinase 
signal transduction in U87MG human glioblastoma cells which express ALK protein (Stoica 
et al., 2002). They showed that MDK is also unable to stimulate Akt phosphorylation upon 
reduction of ALK. In their report they revealed that  in contrast with the diminished PTN 
and MDK signals after reduction of ALK, Akt phosphorylation in the same cells via a 
different tyrosine kinase receptor, the platelet-derived growth factor receptor (PDGF-R), was 
not altered by the reduction of ALK levels (Powers et al., 2002). Interestingly, in the U87MG 
cells mitogen activated protein kinase (MAPK) is activated constitutively and remains 
unaffected by the ALK reduction or by MDK addition.  
In contrast to Stoica and coworkers, Grzelinski and coworkers  determined no mRNA levels 
of ALK and RPTP ǃ/ς levels, but high mRNA levels of MDK and PTN were determined in 
another human glioblastoma cell lines named T98G (Stoica et al., 2002; Grzelinski et al., 
2009). This condition is also same for human glioblastoma cell lines named G55T2. U118 
GBM cells possess high mRNA levels of ALK, low mRNA levels of MDK and RPTP ǃ/ς but 
no mRNA levels of PTN are detected. All cell lines derived from human GBMs are different. 
In the light of report by Grzelinski and coworkers we can conclude that MDK levels at GBM 
may not only affected by activity of ALK.  
GBM has a complex tumor structure consisting of accumulating tumors cells, abnormal vessel 
and necrotic debris. The increasing tumor mass leads to  increased capillary and venous 
collapse (Merlo, 2003). The new formed vessels are structurally and functionally abnormal, 
and leaky, leading to edema,  and low oxygen tension (Bani-Yaghoub et al., 2006).  High O2 

tension degrades hypoxia inducible factor-1 alpha  (HIF-1ǂ) and consequently promotes 
differentiation or apoptosis, HIF-1ǂ maintains at lower O2 tension  this augments signal 
transduction pathways leading to promote self-renewal (Panchision, 2009). Hypoxia induces 
MDK expression through the binding of to a hypoxia responsive element in the MDK 
promoter. 
Survivin, an antiapoptotic protein, has been found to be overexpressed in up to 79% of 
astrocytic tumors (Kajiwara et al., 2003; Yamada et al., 2003; Chakravarti et al., 2002). The 
expression of this gene correlates with grade and is present in 90% of GBMs.The activity of 
this promoter is also enhanced by hypoxia, commonly found in rapidly growing tumors like 
high grade gliomas (Yang et al., 2004). Survivin seems to play an important role in the 
oncogenesis and progression of these tumors (Kleinschmidt - DeMasters  et al., 2003; Das et 
al., 2002)This is suggested by its expression pattern and by the fact that patients with 
survivin positive astrocytic tumors have significantly shorter overall survival times 
compared with patients who have survivin negative tumors. Ulasov and coworkers showed 
that  Survivin, CXCR4 and midkine mRNAs are overexpressed in brain tumors compared to 
normal tissue (Ulusov et al., 2007). Although hypoxia activation both on survivin and MDK,  
high survivin expression detected human GBM cell lines (U87MG and U373MG) showed 
significantly decreased the expression of MDK mRNA in comparison to others (U118). We 
can conclude that hypoxia induced activation depends on the genetic profile of tumour and 
this also strengthen the reason of GBM complexicity during therapies.  
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Notch2 has been suggested to drive embryonic brain tumor growth, however Notch3 has been 
implicated in choroid plexus tumors (Solecki et al.,2001;Dang et al., 2006). The frequency and 
the intensity of Notch2 expression is higher than that of Notch1 in GBM and in 
medulloblastoma (Sivasankaran et al., 2009; Fan et al., 2004). As a consequence of local 
genomic amplifications at the Notch2 locus in both brain tumor types, this may also be linked 
to the later persistence of Notch2 expression in postnatal mouse brain (Tanaka et al.,1999). 
Previous report  showed that Notch1 regulates transcription of the epidermal growth factor 
receptor gene EGFR, known to be overexpressed or amplified in GBM, through TP53 (Purow 
et al.,2008). Reports showed that there is a direct correlation between p53 and MDK levels. 
Consistently, transcription of Notch signaling mediator genes are significantly overexpressed 
in the molecular subset of GBM with EGFR amplification (Brennan et al., 2009).  Notch 
signaling  activates the major GBM  signalling pathway. Subsets of gliomas (even with distinct 
histologies) with impaired Notch signaling result in slower progression.  
The most frequent genetic alteration occurring in GBM is genomic amplification of EGFR  
(Liebermann et al 1985a, 1985b). Consistently, EGF is the major proliferation pathway in 
GBM, mediated by activation of the RAS-RAF-MEK-ERK and the PI3K-AKT-mTOR 
cascades (Merlo 2003). Interestingly, mTOR has recently been shown to activate Notch 
signaling in lung and kidney tumor cells through induction of the Stat3/p63/Jagged 
signaling cascade (Ma et al.,2010).  Lino and coworkers proposed this cross-talk for GBM 
that this suggests potential creation of  a positive feedback loop between Notch and EGF 
signalling (Lino et al.,2010).  The most frequent GBM subset consists of the association of 
EGFR amplification, homozygous deletions at the cyclin dependent kinase  2A (CDKN2A) 
locus, and  TP53 mutations (Ohgaki et al., 2004). Notch activates expression of EGFR via 
TP53 (Purow et al., 2008), thus Notch is expected to stimulate the main GBM proliferation 
pathway. In addition, Notch also transactivates the gene for the EGFR-related ERBB2  in a 
DTX1-dependent manner (Patten et al.,2006). Notch-2 serves another receptor for MDK and 
so cross-talk between MDK and Notch-2 has been also shown to be a mediator of 
chemotherapy resistance to neighboring cells in GBM (Ikushima et al., 2009). 
Tumors  resistance to chemotherapy occured when a subset of cells  overexpress  drug 
transport proteins, possess receptor changes for the commitment of drug bounding and 
lack of ability to commit apoptosis. Mirkin and coworkers investigate the cytoprotective 
relationship between resistant and nonresistant cells in tumors  which both  accomplish to 
survive against drug cytotoxicity in human neuroblastoma (SKN-SH) and osteosarcoma 
(Saos2) (Mirkin et al., 2005). They hypothized that  drug-resistant cells may secrete in their 
culture medium factors able to protect sensitive cells from cytotoxicity of drug. They 
showed that expression of MDK was only detected  in drug resistant cells and midkine-
enriched fractions exert a significant cytoprotective effect against doxorubicin in the wild-
type drug-sensitive cells. In addition, they transfected these cells with MDK gene 
resulting in decreased response to DXR due to activation of AKT pathway and supression 
of caspase pathway. They concluded that the existence of intercellular cytoprotective 
signals such as the one mediated by MDK, originating from cells with acquired drug 
resistance to protect neighboring drug-sensitive cells and thus contribute to development 
of resistance to chemotherapy. They didn’t mention about the direct effect of MDK on 
drug efflux transporters.   
Hu and coworkers explored the possible effects of MDK gene on the chemotherapeutic 
drugs efflux and they concluded that there was powerful drug efflux ability in 
lymphoblastic leukemia cells with high MDK gene expression (Hu et al., 2010). They 
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proposed that MDK gene expression regulates drug efflux upstream of the p-glycoprotein 
(P-gp) and the other transporter proteins in this cell line. Previous reports showed that the 
expression of is higher than expression of p-gp in T98G (Rosenbaum et al., 2005). In our 
study, we investigated whether the combination of an antineoplastic imatinib mesylate (IM) 
and an antitussive noscapine (Nos) with new identified chemotherapeutic effects, can be an 
effective GBM treatment and the possible role of midkine (MDK) in this treatment by using 
human GBM cells named T98G cells (Unpublished data by Erguven et al.). The lowest MRP-
1 levels, but highest MDK levels  were detected in the combination group. The lowest MDK 
levels were detected in IM group especially at the 72nd hr (p<0.05), but IM takes second 
place at MRP-1 inhibition. The highest and the lowest  p-170 levels were detected at the IM 
group (p<0.05) and the Nos group (p<0.05), respectively. Thus, we can conclude that drug 
efflux ability was not correlated with MDK levels in this experiment.  
Yao and coworkers revealed that MDK is expressed in mouse embryonic stem cells 
(mESCs), human embryonic stem cells (hESCs) and mouse embryonic fibroblasts (MEFs) 
(Yao et al., 2010). In their study, MDK promotes proliferation and self-renewal of both 
mESCs and hESCs. Further study by Yao and coworkers  showed that the promoted growth 
of mESCs by MDK is occured through inhibiting apoptosis while accelerating the 
progression toward the S phase, and MDK leads to enhancement of  mESC self-renewal 
through PI3K/Akt signaling pathway. They concluded that MDK plays profound roles in 
ESCs and MDK/PTPzeta signaling pathway is a novel pathway in the signal network 
maintaining pluripotency of ESCs. Their results extend  gives information about the 
pluripotency control of ESCs and the relationship between ESCs and cancers.  Huang and 
coworkers and the others demonstrated that a highly tumorigenic subpopulation of cancer 
cells called GBM stem cells (GSCs) promotes therapeutic resistance (Huang et al., 2010). 
Huang and co-workers showed that GSCs stimulate tumor angiogenesis by expressing 
elevated levels of VEGF and contribute to tumor growth. In addition, stem cell-like cancer 
cells (cancer stem cells) have been shown to promote metastasis. MDK was found to be 
expressed in neural precursor cells, which consist of neural stem cells and the progenitor 
cells which has been translated into a useful therapeutic strategy in the treatment of 
recurrent or progressive GBMs (Zhou et al., 2006). 

5. Midkine inhibitors   

After the determination of significant role of MDK in carcinogenesis, the inhibition of MDK 
through the synthesis or action become a highlighting target for investigators. Previous report 
by Dai and coworkers showed that MDK inhibitors as antisense oligonucleotides potentiated 
the cytotoxicity of drugs and decreased their inhibition concentration value 50 (IC50) in  
hepatocellular carcinoma cells and  in situ hepatocarcinoma models (Dai 2009). Other reports 
showed that antisense oligonucleotides to MDK inhibit the growth of mouse colorectal 
carcinoma cells in vitro and suppress the growth of the tumor in nude mice (Takei et al., 2001). 
Takei and coworkers showed combinational antitumor effect of siRNA against midkine and 
paclitaxel on growth of human prostate cancer xenografts (Takei et al., 2006). 
Polyclonal anti-MDK antibodies inhibit the growth of tumor cells in vitro, however many 
monoclonal antibodies to MDK effected weakly due to internalization MDK.  Another type of 
inhibitors tested for MDK inhibition are aptamers and like monoclonal antibodies, they don’t 
inhibit growth of tumor cells efficiently (Wang et al., 2008).  A low molecular weight 
compounds were seemed promising MDK inhibitors. Matsui and coworkers  found  two 
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trifluoro compounds: one (PubChem 4603792) is 2-(2,6-dimethylpiperidin-1-yl)-4-thiophen-2-
yl-6-(trifluoromethy)pyrimidine, and the other has a related structure that inhibits MDK 
effectively without cytotoxic effects at osteoblast-like cells not at cancer cells (Matsui et al., 
2010). Last report by Sakamoto and coworkers in 2011 showed that the premature ligand-
receptor interaction during biosynthesis limits the production of MDK and its receptor LDL 
receptor-related protein 1 (LRP1) (Sakamoto et al.,2011). They utilized an endoplasmic 
reticulum (ER)-retrieval signal and a LRP1 fragment, which strongly bound to midkine and 
the LRP1-specialized chaperone RAP, to construct an ER-trapper. The ER-trapper efficiently 
trapped midkine and RAP, and mimicked the premature ligand-receptor interaction 
(maturation supresion of the ligand and receptor) and also diminished the inhibitory function 
of LRP1 on cell migration by PDGF in human colorectal carcinomas.  Up to date, we have not 
seen any application of these therapeutic approaches metioned above for GBM. 
In addition to these therapeutic applications, antineoplastic and non-antineoplastic drugs 
which were used in clinic efficiently for many years, were investigated for their role as MDK 
inhibitor (Erguven et al., 2011; Bilir et al., 2010). In our another study, we combined  a well 
known microtubule inhibitor drug vinorelbine with antiphysciotic drug lithium chloride 
and antidepressant drug clomipramine for neuroblastoma treatment in vitro and showed 
their novel mechanism of action as MDK inhibitor (Bilir et al., 2010). Rawnaq and coworkers 
showed that IM, a well known tyrosine kinase inhibitor,decreases MDK levels in the serums 
of patients with GIST (Rawnaq et al., 2010).  In concomitant with these result we showed 
that IM also decreased MDK levels  in human GBM cell lines T98G (Erguven et al., 2011). In 
addition we also revealed novel mechanism of action of an antitussive drug with new 
antineoplastic effects Nos as MDK inhibitor and effect of MDK in the antagonism of IM with 
Nos in T98G cells (Erguven et al., 2011)  

6. Concluding remarks and discussion 

Glioblastoma is the most common and the most aggressive primary brain tumor against 
conventional therapies, that is, radiotherapy, chemotherapy, surgery and their combinations 
which have been being resulted in only transient clinical response followed by tumor 
resistance/recurrence, without any significant improvement of patient survival and life 
quality. MDK with significant roles at proliferation, survival and resistance, invasion, 
neovascularization and recurrence holds a promise of being a particularly appropriate target 
to fight against GBM. Recent studies indicate that cancer stem cells share core signaling 
pathways with normal somatic or embryonic stem cells, but also display critical distinctions 
that provide important clues into useful therapeutic targets. High MDK levels also plays 
critical role in this distinction (Yao et al., 2010). These are  very highly infiltrative cancers 
often invade into normal brain tissues preventing surgical resection, and GSCs are 
responsible for this aggressive invasive phenotype, so targeting GSCs can  effectively reduce 
tumor resistance and recurrence. All together patient outcome can be improved with the 
future development of novel therapies interfering with identified MDK signalling pathways.  
Novel therapies applied with MDK inhibitors can serve more selective and less cytotoxic 
manner with maximum efficiency and without resistance and/or recurrence as we 
mentioned above for low molecular weight compounds.  All these are needed further 
investigations. Complexicity of GBM can be seen basicly in different human GBM cell 
lines derived from patients belonging to different  populations in terms of MDK levels 
and its receptors. Therefore, individual based therapy should be administered.      
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