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1. Introduction 

Unlike circular genomes in which the conventional replication fork machinery can 
accomplish the copy of the complete molecule, the requirement of a DNA/RNA molecule to 
prime DNA synthesis imposes replication strategies to avoid the loss of genetic information 
contained at the very end of the lagging strand in linear chromosomes since DNA 
polymerases are unable to start de novo DNA synthesis. Thus, once the most terminal primer 
is removed, a short region of unreplicated single-stranded DNA (ssDNA) will remain at the 
end of the chromosome that would eventually lead to a continuous shortening of the 
daughter DNA molecule after successive rounds of DNA replication (the end-replication 
problem). Therefore, it is essential to guarantee replication of the chromosome ends, that 
otherwise would cause cell death. Organisms containing linear genomes have developed 
novel replication strategies to overcome such a problem by either yielding head–tail 
concatemers, most of them making use of terminal redundancies as phages T4, T7 and SPP1, 
or by the circularisation and further rolling circle replication of their chromosomes, as it 
occurs in phage  [reviewed in (Salas &  de Vega, 2008)]. In higher eukaryotes telomerase 
extends directly the 3´ end, producing an overhanged ssDNA end (Kornberg &  Baker, 1992) 
that finally can invade homologous double-stranded telomeric tracts, enlarging and 
protecting chromosome ends (Verdun &  Karlseder, 2007).  
Other organisms, as bacteriophages, animal viruses as adenovirus and human hepatitis B 
virus, mitochondrial plasmids, linear chromosomes and plasmids of Streptomyces (Salas, 
1999), as well as several virus infecting Archaea, as halovirus (Bamford et al., 2005; Bath et 
al., 2006), possess replication origins, constituted by inverted terminal repetitions (ITR) 
together with a terminal protein (TP), placed at both ends of their linear chromosomes 
(Salas, 1991). In these cases, the location of the two replication origins allows both strands to 
be replicated continuously, without requiring asymmetric complexes of the replicative DNA 
polymerase with other accessory proteins to control the different mechanics of continuous 
and discontinuous synthesis (Blanco et al., 1989). The TP provides the OH- group of a 
specific serine, threonine or tyrosine to prime initiation of DNA replication from the ends of 
the linear chromosome, circumventing the end replication problem, the TP remaining 
covalently linked to such 5´-termini of the genome (TP-DNA) (Salas, 1991, 1999; Salas et al., 
1996).  

www.intechopen.com



 
DNA Replication and Related Cellular Processes 

 

180 

2. The protein-primed replication mechanism 

The development of a soluble in vitro replication system with highly purified proteins and 
TP-DNA from bacteriophage 29 of Bacillus subtilis has allowed us to lay the foundations of 
the so-called protein-primed mechanism of DNA replication (Salas et al., 1995; Salas et al., 
1996). 
Figure 1 shows a summary of the protein-priming mechanism of 29 DNA replication 
(Salas, 1991). Initiation of replication starts by the formation of a TP/DNA polymerase 
heterodimer that recognises the TP-containing DNA ends which are the origins of 
replication. On the other hand, the formation of a nucleoprotein complex of the 29-encoded 
double-stranded (ds)DNA binding protein p6 (DBP) at the DNA ends has been proposed to 
facilitate opening of the latter (see below) and, in the presence of the initiating nucleotide, 
dATP, stimulates the formation of the covalent linkage between dAMP and the OH group of 
a specific serine residue in the TP, catalysed by the 29 DNA polymerase (hereafter 29 
DNApol). Afterwards, the same polymerase molecule starts the elongation step (DNA-
primed) of replication. This results in the formation of the type I replication intermediates 
that consist in full-length dsDNA molecules with one or more ssDNA tails of different 
 

 
Fig. 1. Schematic representation of bacteriophage 29 TP-DNA replication. Primer and 
parental TP are shown in black and green, respectively. 29 DNApol, DBP and SSB are 
coloured in blue, red and yellow, respectively. An scheme of the type-I and type-II 
replication intermediates is shown at the left. See text for details. 
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lengths that are stretched by the binding of the phage-encoded single-stranded DNA 
binding protein (SSB). When the two replication forks, that have been initiated at each DNA 
end, are encountered, type I molecules give rise to two type II molecules that consist of a 
full-length 29 DNA molecule in which a portion of the DNA, starting from one end, is 
double-stranded and the portion spanning to the other end is single-stranded. Type II 
molecules are elongated by the 29 DNApol with concomitant dissociation of the SSB 
protein to yield two fully replicated 29 TP-DNA molecules. The final dissociation of the 
DNA polymerase from each DNA molecule should allow the formation of new 
heterodimers with free TP molecules to initiate a new round of replication. 
These steps and the proteins involved are dissected in the following sections. 

2.1 Replication origins of TP containing genomes 

29 is a lytic phage that infects the gram-positive bacterium B. subtilis (Anderson et al., 
1966). It has a linear dsDNA genome 19.3 kbp long, with a 6 bp ITR (3´-TTTCAT) (Escarmís 
&  Salas, 1982; Yoshikawa &  Ito, 1982) and a 31 kDa TP covalently linked to each 5´ end by a 
phosphoester bond between Ser232 and 5´-dAMP (the initiator nucleotide) (Salas et al., 1978), 
forming the minimal replication origin.  
Other B. subtilis phages related to 29 that also contain linear dsDNA and TP of similar size 
are classified in three groups: 1) ø15, PZA and PZE that belong to the 29 group; 2) Nf, M2 
and B103; and 3) GA-1. The DNA of all these phages has a short ITR six nucleotides long (3´-
TTTCAT) for 29, ø15, PZA and B103, eight nucleotides long (3´-TTTCATTC) for Nf and M2, 
and seven nucleotides long (3´-TTTATCT) for GA-1 (Salas, 1991). 
Phage Cp-1, that infects the Gram-positive bacterium Streptococcus pneumoniae, contains a 
19.3 kbp linear dsDNA (Martín et al., 1996b) with a TP of 28 kDa covalently linked to the 5’ 
DNA ends by a phosphoester bond between a still undetermined Thr and 5’-dAMP (García 
et al., 1983; García et al., 1986). Cp-1 DNA has an ITR of 236 bp with the reiteration 3´-TTT 
(Martín et al., 1996a). 
TP-DNA genomes have also been observed in phages infecting Gram-negative bacteria as it 
is the case of phage PRD1, a member of a family of lipid-containing phages that infect 
Escherichia coli. The 5’ termini of the 15 kbp long linear dsDNA of PRD1 (Bamford et al., 
1991) are linked to a 28 kDa TP by a phosphoester bond between Tyr190 and 5’-dGMP 
(Bamford &  Mindich, 1984; Shiue et al., 1991). The TP-DNA of PRD1 and related phages has 
110 bp long ITR and the reiteration 3’-CCCC at the ends. 
Adenoviruses also contain a linear dsDNA genome 36 kbp long with two replication origins 
located at the 100 bp long ITRs. The Adenovirus type-5 origin sequence starts with the 
reiteration 3´-GTAGTA. The 5´ ends are covalently linked to the 55 kDa TP by a 
phosphoester bond between Ser580 and 5´-dCMP [reviewed in (Coenjaerts &  van der Vliet, 
1995; Van der Vliet, 1995)]. 
The product of 29 early gene 6 is a DBP that binds preferentially to the 29 DNA ends 
every 24 nucleotides and with a defined phase, being essential for the activation of the 
initiation of DNA replication (Serrano et al., 1990). This protein has been described as a 
histone-like protein that self-associates into elongated oligomers doughnut-shaped that 
grow into right-handed double-helical filaments (Abril et al., 1999). These filaments form a 
scaffold tightly wrapped by a DNA right-handed superhelix (Serrano et al., 1990) restraining 
its positive supercoiling (Prieto et al., 1988; Serrano et al., 1993b) and helping to open the 
DNA ends, activating initiation of TP-DNA replication most probably by allowing 
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replication origin recognition by the DNA polymerase/primer TP heterodimer (Serrano et 
al., 1993a). In support of this hypothesis, 29 DBP is absolutely required for the in vitro 
formation of the TP-dAMP complex at low temperature (Serrano et al., 1994). Our results 
were pioneers in proposing the structural basis for the activation of replication origins, a 
biological event shown later to be universally conserved in both prokaryotic and eukaryotic 
initiators (Clarey et al., 2006; Erzberger et al., 2006; O'Donnell &  Jeruzalmi, 2006). 
By site-directed and deletion mutagenesis we showed that the N-terminal region of p6 is 
involved in DNA binding. Specifically, mutation in residues Lys2 or Arg6 resulted in p6 
proteins impaired in DNA binding (Freire et al., 1994; Otero et al., 1990). On the other hand, 
residues critical for the dimerization of protein p6, identified by random mutagenesis, are 
Ile8 and Ala44. In addition to impaired dimer formation ability, mutations at these two 
residues showed reduced DNA binding affinity and they were affected in the initiation of 
29 DNA replication. Thus, dimers seem to be the active form of 29 DBP for DNA binding 
(Abril et al., 2000). 

2.2 Initiation of 29 TP-DNA replication 

The first step in 29 TP-DNA replication is the recognition of the replication origins by a 
heterodimer formed by two viral encoded proteins: the replicative DNA polymerase and a 
free molecule of TP. 

2.2.1 29 DNApol 

29 DNApol is a monomeric enzyme of only 66 kDa, fully responsible for viral DNA 
replication (Blanco &  Salas, 1985a). Based on amino acid sequence similarities and its 
sensitivity to specific inhibitors, we included 29 DNApol in the family B (eukaryotic-type) 
of DNA-dependent DNA polymerases (Bernad et al., 1987). As any of them, it accomplishes 
sequential template-directed addition of dNMP units onto the 3´-OH group of a growing 
DNA chain, with insertion discrimination values ranging from 104 to 106 and with an 
efficiency of mismatch elongation 105 to 106-fold lower than that of a properly paired primer 
terminus (Esteban et al., 1993). In addition, 29 DNApol catalyses 3´-5´ exonucleolysis, i.e., 
the release of dNMP units from the 3´ end of a DNA strand (Blanco &  Salas, 1985b), 
showing a preferential degradation of a mismatched primer-terminus, in agreement with a 
role in proofreading of DNA insertion errors that enhances replication fidelity 102-fold 
(Esteban et al., 1994; Garmendia et al., 1992), as it occurs in most DNA replicases.  
An extensive mutational analysis of individual residues contained in regions of high amino 
acid similarity among family B DNA polymerases, as well as the construction of deletion 
mutants (Blanco &  Salas, 1996) allowed us to identify the 29 DNApol catalytic residues 
required for these activities and those responsible for the stabilisation of the primer-
terminus at both active sites. As these residues are evolutionarily conserved the results 
obtained with 29 DNApol could be extrapolated to most DNA polymerases [reviewed in 
(Blanco &  Salas, 1995, 1996)]. Thus, sequence alignments and site-directed mutagenesis 
served to identify the catalytic and ssDNA ligand residues responsible for the 3´-5´ 
exonuclease activity, located at the N-terminal one-third of the enzyme (exonuclease 
domain), and to propose the hypothesis, widely demonstrated later, of an evolutionary 
conserved 3´-5´ exonuclease active site among distantly related DNA-dependent DNA 
polymerases (Bernad et al., 1989). Such an active site is formed by three N-terminal amino 
acid motifs, named ExoI, ExoII, and ExoIII, invariantly containing four carboxylate groups 
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that bind two metal ions and one tyrosine residue that orients the attacking water molecule 
(Bernad et al., 1989), as it had been shown to occur in E. coli Pol I (Derbyshire et al., 1991). In 
addition, these analyses led us to identify a new motif (Kx2h) whose lysine residue plays an 
auxiliary role in catalysis, specifically in family B DNA polymerases (de Vega et al., 1997). 
Similarly, our site-directed mutagenesis studies of 29 DNApol pioneered the functional 
analyses of specific amino acids at motifs YxGG, Dx2SLYP, Kx3NSxYG, Tx2GR, YxDTDS, 
and KxY, highly conserved at the C-terminal two-thirds of eukaryotic DNA polymerases 
from family B. These investigations demonstrated the overlapping between polymerisation 
and protein-primed initiation domains, and served to identify the amino acids involved in 
metal binding and catalysis, as well as DNA, TP and dNTP ligands (Blanco &  Salas, 1995, 
1996; Pérez-Arnaiz et al., 2010).  
We have shown that 29 DNApol has three distinctive functional features compared to most 
replicases. First, it initiates DNA replication at the origins located at both ends of the linear 
genome by catalysing the addition of the initial dAMP onto the hydroxyl group of Ser232 of the 
phage TP, which acts as primer (see below) [reviewed in (Salas 1991, 1999; Salas &  de Vega, 
2006)]. Second, unlike most replicases that rely on accessory proteins to be stably bound to the 
DNA, asthioredoxin in the case of T7 DNA polymerase (Huber et al., 1987; Tabor et al., 1987), 
the -subunit of E. coli Pol III holoenzyme (Kong et al., 1992), or the eukaryotic clamp protein, 
PCNA (Jonsson &  Hübscher, 1997; Kelman, 1997), 29 DNApol performs DNA synthesis 
without the assistance of processivity factors, displaying the highest processivity described for 
a DNA polymerase [>70 kb; (Blanco et al., 1989)]. A third distinctive property of 29 DNApol 
is the efficient coupling of processive DNA polymerisation to strand displacement. This 
capacity enables the enzyme to replicate the double-stranded genome without the need for a 
helicase (Blanco et al., 1989). These two features, high processivity and intrinsic strand 
displacement activity, are currently being exploited for the use of 29 DNApol in isothermal 
multiple displacement amplification (MDA) (Dean et al., 2002; Dean et al., 2001). These 
amplification technologies based on 29 DNApol have two main advantages respect to 
classical PCR DNA amplification: first, no previous sequence information is required, due to 
the use of random hexamer primers, any DNA being susceptible to be amplified, and second, 
amplicons performed by the 29 DNApol are much larger than those obtained with PCR. On 
the other hand, the ability displayed by 29 DNApol to use circular multiply primed ssDNA 
as template has led to the development of the multiply primed rolling circle amplification, one 
of the most robust technologies to amplify circular templates of variable size (Dean et al., 
2001). This amplification technology is being widely used for genome sequencing, efficient 
amplification and detection of known and unknown circular viral genomes (Johne et al., 2009), 
genotyping of single nucleotide polymorphisms (Qi, et al., 2001), whole genome analysis of 
noncultivable viruses (Johne et al., 2009), detection and identification of circular plasmids in 
zoonotic pathogens (Xu et al., 2008), and for the description of new metagenomes (López-
Bueno et al., 2009). Recently we have achieved improvements of isothermal MDA by fusing 
DNA binding domains to the C-terminus of 29 DNApol (de Vega et al., 2010). The results 
showed that the addition of Helix-hairpin-Helix domains increases DNA binding of the hybrid 
DNA polymerases without hindering their replication rate. In addition, the chimerical DNA 
polymerases displayed an improved DNA amplification efficiency on both circular plasmids 
and genomic DNA and are unique 29 DNApol variants with enhanced amplification 
performance. These chimerical DNA polymerases will contribute to make 29 DNA 
amplification technology one of the most powerful tools for genomics, consolidating MDA 
technology as the alternative to PCR for many applications. 
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Despite the exhaustive mutational analyses carried out throughout 29 DNApol, they did 
not provide a structural rationale for both the intrinsic processivity and strand displacement 
capacity of the enzyme. Instead, resolution of the 29 DNApol structure gave the insights 
into these two unique properties of the enzyme. These structural studies, carried out in 
collaboration with Tom Seitz’s lab (Yale University), showed 29 DNApol formed by an N-
terminal exonuclease domain, containing the 3´-5´ exonuclease active site, and a C-terminal 
polymerisation domain that, like in other DNA polymerases, is subdivided into the 
universally conserved palm (containing the catalytic and DNA ligand residues), fingers 
(containing the dNTP ligands) and thumb (which confers stability to the primer) 
subdomains (Kamtekar et al., 2004) (see Figure 2A). 3D-structural comparisons indicated 
that the main difference between other family B DNA polymerases and 29 DNApol was 
the presence in the latter of two additional subdomains, both corresponding to sequence 
insertions that we had previously identified as specifically conserved in the protein-primed 
subgroup of DNA polymerases, called TPR1 and TPR2 (Blasco et al., 1990; Dufour et al., 
2000). TPR1 lies at the edge of the palm, while TPR2 contains a -hairpin structure just 
facing the apex of the thumb subdomain. Palm, thumb, TPR1, and TPR2 subdomains form a 
doughnut-shaped structure that encircles the upstream duplex DNA at the polymerisation 
active site (Berman et al., 2007), constituting an internal clamp that provides the enzyme 
with the maximal DNA-binding stability required for its intrinsic processivity, mimicking 
and making unnecessary the sliding clamp used in other replisomes. On the other hand, 
TPR2, palm and fingers subdomains, together with the exonuclease domain, surround the 
downstream template strand (Berman et al., 2007), forming another tunnel whose narrow 
dimensions (~10 Å) do not allow dsDNA binding. Thus, downstream dsDNA has to be 
unwound to enable threading of the template strand through this tunnel to reach the 
polymerisation site, using the same topological mechanism as hexameric helicases to open 
dsDNA regions, and providing a structural basis for the strand displacement capacity of 29 
DNApol (Kamtekar et al., 2004; Rodríguez et al., 2005). 
3D resolution of 29 DNApol structure also gave us the clues about how primer-terminus 
switches between polymerisation and exonuclease active sites during proofreading of 
polymerisation errors. Comparison of the structures of many apo DNA polymerases with 
their corresponding binary complexes showed that the major conformational changes occur 
mainly in their thumb subdomains, composed of two microdomains with a clear helicoidal 
character linked by a flexible region (Beese et al., 1993; Doubliè et al., 1998; Eom et al., 1996; 
Franklin et al., 2001; Li et al., 1998; Shamoo &  Steitz, 1999). Conversely, the 29 DNApol 
thumb subdomain has an unusual structure since it is small and mainly constituted by a 
long -hairpin without identifiable microdomains (Kamtekar et al., 2004). Moreover, 
comparison of the apo enzyme with the binary complexes showed that the thumb 
subdomain does not rotate upon DNA binding (Berman et al., 2007). We have shown that 
the prevention of a potential thumb movement by crosslinking the tips of the TPR2 and 
thumb subdomains did not affect the partitioning of the primer-terminus between the 
polymerisation and editing active sites (Rodríguez et al., 2009). The impeded motion of the 
TPR2 subdomain suggests that rotation of the DNA is not required to transfer the primer-
terminus between the polymerisation and editing active sites in 29 DNApol, most likely as 
there is not any structural barrier in between. Then, how does the frayed terminus travel to 
the exonuclease active site? Considering the 29 DNApol thumb subdomain as a nearly 
static structure, the primer switching would be accomplished by a passive diffusion of the 
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frayed primer-terminus. The energetically unfavourable gradual melting of three-four base 
pairs should be progressively offset by new and specific interactions established with DNA 
ligands of the thumb subdomain, as suggested (Pérez-Arnaiz et al., 2006). Such interactions 
would also channel the primer-terminus in the appropriate orientation to contact with 
ssDNA ligands of the exonuclease domain responsible for the stabilisation of the primer-
terminus at the editing active site (de Vega et al., 1996, 1998b; Kamtekar et al., 2004; Pérez-
Arnaiz et al., 2006; Rodríguez et al., 2009).  
 

 

 
Fig. 2. (A) 29 DNApol-DNA complex. (B) Structure of the 29 DNApol-Terminal Protein 
complex. Reproduced with permission from Kamtekar, S., Berman, A.J., Wang, J., Lázaro, 
J.M., de Vega, M., Blanco, L., Salas, M. & Steitz, T.A. (2006). The phi29 DNA 
polymerase:protein-primer structure suggests a model for the initiation to elongation 
transition. EMBO J. Vol. 25, No. 6, pp. 1335-1343. 
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Additionally, recent resolution of 29 DNApol tertiary complex structures has allowed us to 
dissect the subtle changes in the polymerisation active site that take place upon dNTP 
binding, providing the structural basis for the mechanism of translocation. Thus, once the 
catalysis of the phosphoester bond formation between the -phosphate of the incoming 
dNTP and the OH- group of the priming nucleotide takes place, the pyrophosphate 
produced leaves the DNA polymerase, breaking the electrostatic crosslink that kept the 
fingers subdomain in the closed state. Concomitantly to the fingers opening, residues Tyr254 
and Tyr390 move back into the nucleotide insertion site, leading to one position backwards 
translocation of the nascent base pair out of the binding pocket, as now the nucleotide 
insertion site is sterically inaccessible (Berman et al., 2007). This translocation allows the 3´ 
OH-group of the newly added nucleotide to be in a competent position to attack 
nucleophylically the -phosphate of the incoming nucleotide during the next nucleotide 
insertion event (Berman et al., 2007) (see Figure 3). 
 

 
Fig. 3. Comparison of the binary (yellow) and ternary (green) complex structures of 29 
DNApol. The mechanistically significant amino acid movements are indicated. Reproduced 
with permission from Berman, A.J., Kamtekar, S., Goodman, J.L., Lázaro, J.M., de Vega, M., 
Blanco, L., Salas, M. & Steitz, T.A. (2007). Structures of phi29 DNA polymerase complexed 
with substrate: the mechanism of translocation in B-family polymerases. EMBO J. Vol. 26, 
No. 14, pp. 3494-3505. 

2.2.2 29 Terminal protein 
As already mentioned, the primer TP forms a heterodimer with the DNA polymerase for 
recognition and further initiation of TP-primed DNA replication. To discriminate between 
the two different functions, the TP molecule linked to the 5´ DNA ends is called parental TP 
and the TP present in the complex with DNA polymerase is called primer TP. 
Crystallographic resolution of the structure of 29 DNApol/primer TP heterodimer has 
shown that the TP has an elongated three-domain structure (Figure 2B) (Kamtekar et al., 
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2006). The N-terminal domain (residues 1–73) is structurally disordered likely because it is 
not interacting with the polymerase (Kamtekar et al., 2006; Pérez-Arnaiz et al., 2007). The 
intermediate domain (residues 74–172) contains two long -helices and a short –turn- 
structure and makes extensive contacts with the TPR1 subdomain of the polymerase. This 
interface has many charged residues and includes two salt bridges between arginine 
residues in the TP and glutamic acid residues in the TPR1 subdomain (R158:E291; 
R169:E322). It is connected through a hinge region to the C-terminal priming domain 
(residues 173–266), a region highly electronegative that has a four-helix bundle topology. 
Ser232, which provides the priming hydroxyl group for DNA synthesis, lies in a disordered 
loop (residues 227–233) at the end of the priming domain close to the active site of the DNA 
polymerase (see Figure 4, left panel). The priming domain structure shows interactions 
between many of their acidic residues and positively charged residues of the thumb 
subdomain of the polymerase (e.g., between E191:K575 and D198:K557), with residue R96 of 
the exonuclease domain and with TPR2 subdomain residues (Kamtekar et al., 2006; 
Rodríguez et al., 2004). Thus, the upstream duplex DNA “tunnel” of 29 DNApol encircles 
the TP priming domain whose overall dimensions and its negative charge mimics DNA in  
 

 
Fig. 4. Left, placement of TP priming residue Ser232 (in grey) and penultimate template 
nucleotide at the ø29 DNApol active site (catalytic aspartates are shown in red). Right, flexible 
orientations of TPR1 loop in the apoenzyme (coloured in magenta) and its stable and moved 
out structural conformation shown in the DNA polymerase/TP complex (coloured in orange). 
TP is coloured in yellow. Green arrows indicate the suggested conformational changes of both, 
the DNA polymerase TPR1 loop and the TP priming domain to allow the formation of a stable 
heterodimer. Reproduced with permission from Pérez-Arnaiz, P., Longás, E., Villar, L., Lázaro, 
J.M., Salas, M. & de Vega, M. (2007). Involvement of phage ϕ29 DNA polymerase and terminal 
protein subdomains in conferring specificity during initiation of protein-primed DNA 
replication. Nucleic Acids Research. Vol. 35, No. 21, pp. 7061-7073. 
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its interactions with the polymerase during initiation (de Vega et al., 1998a; Kamtekar et al., 
2006). This explains why DNA synthesis by the heterodimer cannot begin at internal sites of 
the phage genome, as the upstream 3´ template would sterically clash with the TP 
(Kamtekar et al., 2006). 
Our previous studies showed that 29, GA-1 and Nf DNA polymerases display a great 
specificity for their corresponding primer TPs, as the heterologous systems did not give any 
detectable initiation product (González-Huici et al., 2000a; Longás et al., 2006). By means of 
chimerical proteins, constructed by swapping the priming domain of the related 29 and 
GA-1 TPs, we showed that DNA polymerase can form catalytically active heterodimers 
exclusively with that chimerical TP containing the N-terminal and intermediate domains of 
the homologous TP, suggesting that the interaction between the polymerase TPR1 
subdomain and the TP intermediate domain is the one main responsible for the specificity 
between both proteins (Pérez-Arnaiz et al., 2007).  
In addition, the independent expression of the 29 TP priming domain and intermediate 
plus N-terminal domains showed that the former can only prime initiation in the presence 
of the latter that assists the TP-dAMP formation most probably by inducing a 
conformational change in the DNA polymerase (Pérez-Arnaiz et al., 2007). The structure of 
the 29 DNApol forming a complex with the TP is very similar to that of the apo enzyme, 
the main conformational changes being restricted to TPR1 residues 304-315 (Kamtekar et al., 
2006). Such residues form loops with a high degree of flexibility in the apo enzyme. By the 
contrary, the 29 heterodimer structure shows that this loop moves out to allow the TP to 
access the polymerase active site. Altogether, these results led to propose a model for the 
DNA polymerase-TP interaction in which the TP intermediate domain would recognise 
specifically and interact with the DNA polymerase TPR1 subdomain. Such interaction 
would promote the change of the TPR1 loop from a flexible to the stable moved out 
conformation that now would allow the proper (prone to catalysis) placement of the TP 
priming domain into the DNA polymerase structure (Pérez-Arnaiz et al., 2007) (see Figure 4, 
right panel). 

2.2.3 Recognition of replication origins by the DNA polymerase/TP heterodimer 

The 29 DNApol/TP heterodimer recognises the replication origins at the genome ends (see 
Figure 1). Blunt-ended DNA fragments containing the left or right 29 DNA ends, but not 
internal 29 DNA fragments, were active as templates in in vitro initiation reactions (García 
et al., 1984; Gutiérrez et al., 1986a; Gutiérrez et al., 1986b). However, the activity was 6- to 
10-fold lower than that obtained with TP-DNA (Gutiérrez, et al. 1986a; Gutiérrez et al., 
1986b). These results indicated on the one hand, that specific DNA sequences located at the 
29 DNA ends are involved in origin recognition and on the other hand, that the parental TP 
is a major signal in the template for such a recognition, strongly suggesting that the 
heterodimer is recruited to the origin through interactions with the parental TP. In 
agreement with this, detection of initiation activity by using heterologous systems in which 
DNA polymerase, primer TP and TP-DNA came from 29 and Nf related phages, showed 
that initiation was selectively enhanced when the DNA polymerase and the TP-DNA were 
from the same phage, implying a specific interaction between DNA polymerase and 
parental TP (González-Huici et al., 2000a). In line with this, a chimerical 29 DNApol 
containing the GA-1 DNA polymerase TPR1 subdomain was capable of catalysing the 
initiation reaction primed by GA-1 TP but solely in the presence of 29 TP-DNA, supporting 
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the hypothesis that a major contribution to the parental TP recognition is carried out by the 
DNA polymerase (Pérez-Arnaiz et al., 2007). Similarly, mutations introduced at several TP-
intermediate domain residues rendered TP mutants that could not support DNA replication 
when they acted as parental TP, indicating also a contribution of the primer TP in the 
specific recognition of the replication origins (Illana et al., 1998; Serna-Rico et al., 2000). 
Furthermore, measurement of the ability of the different DBPs coming from 29, Nf and 
GA-1 bacteriophages to activate homologous and heterologous replication origins showed 
also a specific recognition of each nucleoprotein complex by the homologous DNA 
polymerase/TP heterodimer (Freire et al., 1996). The fact that 29 DBP stimulates the 
initiation activity of the heterodimer formed by GA-1 primer TP and a chimerical 29 
DNApol containing the TPR1 subdomain of GA-1 DNA polymerase to a similar extent as 
that of the 29 heterodimer, favours the hypothesis of a main and specific recognition of the 
DBP by the DNA polymerase (Pérez-Arnaiz et al., 2007). 

2.2.4 A sliding-back mechanism for protein-primed DNA replication 

As already indicated, the DNA ends of 29 and those of the 29-related phages have a 
reiteration of three nucleotides (3’-TTT…. 5’). Once the replication origins are specifically 
recognised by the heterodimer formed by the DNA polymerase and the primer TP (Blanco 
et al., 1987; Freire et al., 1996; González-Huici et al., 2000a; González-Huici et al., 2000b; 
Pérez-Arnaiz et al., 2007), the DNA polymerase catalyses the formation of a phosphoester 
bond between the initiator dAMP and the hydroxyl group of Ser232 of the TP (see Figure 1), a 
reaction directed by the second T at the 3´ end of the template strand (Méndez et al., 1992) 
and performed by the same catalytic residues responsible for canonical polymerisation 
(Blanco &  Salas, 1995, 1996). Modelling of an incoming dNTP and a template strand onto 
the 29 DNApol/primer TP complex shows that the priming Ser232 of TP is placed at the 
catalytic site of the DNA polymerase in line to attack nucleophylically the -phosphate of 
the incoming nucleotide to form the phosphoester bond (Figure 4, left panel). The model 
also suggests that the 3´ end of the template strand goes deep into the catalytic site of the 
DNA polymerase through the downstream template strand tunnel until it positions the 
penultimate 3´ dTMP of the template strand at the catalytic site, allowing it to direct 
insertion of the initiator dAMP. To perform TP-DNA full-length synthesis, the TP-dAMP 
initiation product translocates backwards one position to recover the template information 
corresponding to the first 3´-T, the so-called sliding-back mechanism that requires a terminal 
repetition of 2 bp. This reiteration permits, prior to DNA elongation, the asymmetric 
translocation of the initiation product, TP-dAMP, to be paired with the first T residue 
(Méndez et al., 1992) (see scheme in Figure 5).  
Our studies have shown how the sliding-back mechanism, or variations on it, seems to be a 
common feature of protein-priming systems to restore full-length DNA. Thus, in the case of 
the 29-related phage GA-1, initiation also occurs at the 3´ second nucleotide of the template 
(3´-TTT) and, to a lesser extent, at the third nucleotide (Illana et al., 1996). The 29-related 
phage Nf and the Streptococcus pneumoniae phage Cp-1 initiate at the 3´ third nucleotide of 
their terminal repetition (3´-TTT) (Longás et al., 2008; Martín et al., 1996b), whereas the E. 
coli phage PRD1 initiates at the fourth nucleotide (3´-CCCC) (Caldentey et al., 1993), 
requiring two and three consecutive sliding-back steps, respectively, to recover the DNA 
end information (stepwise sliding-back). The adenovirus genome ends present a more 
complex reiteration (3'-GTAGTA), the 3´ fourth to six template positions directing the 
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formation of the TP-CAT initiation product. Thus, recovery of the 3´ ends is performed by a 
single jump, after which TP-CAT is paired with the terminal 3'-GTA (jumping-back) (King &  
van der Vliet, 1994) (see scheme in Figure 5). 

 
Fig. 5. Sliding-back (jumping-back) model for the transition from initiation to elongation. TP 
is represented as a pink oval and DNA polymerase as a grey square. The internal template 
nucleotide that directs the insertion of the initiator nucleotide is shown in bold red letter. 
Yellow box represents the catalytic active site of the DNA polymerase. 
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2.2.4.1 Why sliding-back during genome replication? 

Protein-primed initiation can be predicted to be an inaccurate reaction. The insertion fidelity 
of protein-primed initiation in 29 has been shown to be quite low, the insertion 
discrimination factor being about 102. Even more, the 3´-5´ exonuclease activity of 29 
DNApol is unable to act on the TP-dNMP initiation complex, precluding the possibility that 
a wrong dNMP covalently linked to TP could be proofread (Esteban et al., 1993). If 
misincorporation during the initiation reaction takes place, a mismatch would be produced 
with the terminal 3'-T on the template after the sliding-back of the incorrect TP-dNMP 
complex, unfavouring the further elongation step. If an incorrect TP-dNMP product were 
elongated it would be corrected in the next round of replication, because it would not serve 
as a template (Esteban et al., 1993). Thus, the sliding-back and its variations are envisaged to 
increase the fidelity during the initiation reaction, as several base pairing checking steps 
have to occur before elongation of the initiation product takes place (King &  van der Vliet, 
1994; Méndez et al., 1992). The fact that other TP-containing genomes also contain some 
kind of sequence repetitions at their ends supports the hypothesis that the sliding-back type 
of mechanism could be a common feature of protein-primed replication systems (Méndez et 
al., 1992).  

2.3 Transition from protein-primed to DNA-primed replication 

Our functional analyses established that the29 DNApol/primer TP heterodimer do not 
dissociate immediately after initiation or after sliding-back (Méndez et al., 1997). The same 
DNA polymerase molecule incorporates 5 nucleotides to the primer TP while is still 
complexed with the latter (initiation mode), undergoes some structural change during 
incorporation of nucleotides 6-9 (transition) and finally dissociates from the primer TP when 
nucleotide 10 is incorporated into the nascent DNA chain (elongation mode) (Méndez et al., 
1997). These results probably reflect the polymerase requirement for a DNA primer of a 
minimum length to catalyse DNA elongation efficiently.  
We have shown that the strength of the 29 DNA pol-primer TP interaction is differently 
contributed by the TP priming and intermediate domains (Pérez-Arnaiz et al., 2007), 
supporting the model proposed for the transition from the protein-primed initiation to the 
DNA-primed elongation modes (Kamtekar et al., 2006). Thus, the TP intermediate domain 
would be in a fixed orientation on the polymerase by means of stable contacts with the TPR1 
subdomain. The weak interaction observed with the DNA polymerase would facilitate the 
TP priming domain to rotate following the helicoidal pathway as DNA is synthesized. The 
relative motion of the TP priming domain with respect to the fixed TP intermediate domain 
would be possible due to the flexibility of the hinge region that connects both domains. 
After incorporation of 6-7 nucleotides the proximity of the priming Ser to the hinge region 
would impede a further priming domain rotation, promoting complex dissociation 
(Kamtekar et al., 2006) (see Figure 6). 

2.4 DNA-primed elongation 

Once the initiation, sliding-back and transition steps have been fulfilled and 29 DNApol 
has separated from the primer TP, the DNA polymerase resumes TP-DNA replication; 
therefore, the same DNA polymerase molecule accounts for complete genome replication 
from a single binding event (Blanco et al., 1989). As mentioned before, the high stability of 
the 29 DNApol/DNA complex, by virtue of the "internal sliding-clamp-like" structure 
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Fig. 6. A model for the transition from initiation of replication to elongation (see main text 
for details). Reproduced with permission from Kamtekar, S., Berman, A.J., Wang, J., Lázaro, 
J.M., de Vega, M., Blanco, L., Salas, M. & Steitz, T.A. (2006). The phi29 DNA 
polymerase:protein-primer structure suggests a model for the initiation to elongation 
transition. EMBO J. Vol. 25, No. 6, pp. 1335-1343. 

formed by thumb, palm, TPR1 and TPR2 subdomains, allows the polymerase to perform 
complete DNA replication without the assistance of processivity factors, in contrast to most 
replicative DNA polymerases. In addition, the singular TPR2 subdomain enables the 29 
DNApol to couple polymerisation to the unwinding of the downstream dsDNA regions 
(strand displacement capacity) making unnecessary the intervention of a helicase-like 
protein (Blanco et al., 1989).  
As mentioned above, since replication starts at both 29 DNA ends and is coupled to strand 
displacement, this results in the generation of so-called type-I replication intermediates (see 
Figure 1). The ssDNA stretches generated are bound by the viral SSB, essential for elongation 
of replication in vivo (Mellado et al., 1980). Binding of 29 SSB to 29 DNA replicative 
intermediates has been demonstrated to occur in vitro (Gutiérrez et al., 1991b). The protein 
binds in a cooperative way (Soengas, et al., 1994) stimulating dNMP incorporation during 29 
DNA replication (Gutiérrez et al., 1991a), and increasing the elongation rate, mainly when 29 
DNApol mutants impaired in strand displacement are used, probably due to the helix 
destabilising activity of the 29 SSB (Soengas et al., 1995). When the two converging DNA 
polymerases merge, a type-I replication intermediate becomes physically separated into two 
type-II replication intermediates (Gutiérrez et al., 1991b; Inciarte et al., 1980). Continuous 
elongation by the DNA polymerase completes replication of the parental strand. 
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2.5 Termination of TP-DNA replication 

For termination of genome replication, the 29 DNApol encounters a covalently linked TP 
molecule (see Figure 7, upper panel), terminating DNA replication by an as yet unknown 
mechanism. As already indicated, the TPR2 insertion of the 29 DNApol, together with the 
exonuclease domain and the fingers and palm subdomains form a downstream tunnel 
whose narrow dimensions precludes the passage of a dsDNA through it. Considering that 
the terminal base of the template is covalently linked to the Ser232 of TP, the priming loop of 
the parental TP has to enter the downstream template-binding tunnel of 29 DNApol to 
allow the last 5´-dAMP (covalently linked to the parental TP) to be replicated. However, the 
dimensions of such a tunnel do not allow the TP to pass through it to reach the catalytic 
active site, so a disruption of the interactions of TPR2 with the exonuclease domain and the 
thumb subdomain of the polymerase is required to get an opened tunnel (see Figure 7, lower 
 

 

 
Fig. 7. Hypothetical partial opening of the TPR2 and thumb subdomains to allow the last 5´-
template nucleotide to reach the polymerisation active site of the DNA polymerase. 
Template and primer strands are coloured in blue and magenta, respectively. 
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panel). By using primer/5´-streptavidine-bound template DNA to mimic the parental TP, 
we showed that all but 4 terminal nucleotides were replicated by the 29 DNApol (de Vega 

et al., 1999). This situation could be parallel to the physiological one, in which 29 DNApol 
has to finish the replication of a DNA template strand that contains a TP molecule 
covalently linked at its 5´ end. It is tempting to speculate that during termination of 
replication, a specific interaction between DNA polymerase and TP is required to allow 
synthesis of the terminal nucleotide.  

2.6 Terminal protein-primed DNA amplification 

By using appropriate amounts of the four 29 DNA replication proteins described above, 
primer TP, DNA polymerase, the double-stranded DNA-binding protein, and the single-
stranded DNA-binding protein, we were able to amplify limited amounts of the 29 TP-
DNA molecule by three orders of magnitude after 1 hr of incubation at 30 ºC. Moreover, the 
quality of the amplified DNA was demonstrated by transfection experiments, in which 
infectivity of the synthetic (amplified) 29 TP-DNA, measured as the ability to produce 
phage particles, was identical to that of the natural 29 TP-DNA obtained from virions 
(Blanco et al., 1994), leading us to establish some of the requisites for the development of 
isothermal DNA amplification strategies based on the 29 DNA replication machinery to 
amplify very large (> 70 kb) segments of exogenous DNA. 

3. In vivo compartmentalisation of 29 DNA replication 

It is well established that replication of phage genomes occurs at specific intracellular 
locations by the use of large organising structures that bring together replication factors to 
enhance the efficiency of the replication process. Some lines of evidence support that 
replication of phage DNA takes place in close association with the bacterial membrane 
(Firshein, 1989; Mosig & Macdonald, 1986; Siegel & Schaechter, 1973). Our recent 
investigations have also given evidences concerning compartmentalization of phage 29 
DNA replication in B. subtilis cells.  
We have shown that 29 TP binds to dsDNA through its N-terminal domain in a non-
sequence dependent way, both in vitro and in vivo (Muñoz-Espín et al., 2010; Zaballos & Salas, 
1989). This capacity enables the parental TP, and therefore the viral TP-DNA, to associate with 
the bacterial nucleoid early after injection of the 29 genome (see scheme in Figure 8) where 
the B. subtilis RNA polymerase is also located (Muñoz-Espín et al., 2010). There, synthesis of 
the 29 early proteins DNA polymerase, primer TP, SSB and DBP, essential for in vivo 29 
DNA replication takes place. Once synthesized, primer TP binds the bacterial chromosome 
and recruits the DNA polymerase to form the heterodimer that will recognise TP-DNA 
replication origins. At this stage, replication of TP-DNA will start from both terminal origins 
giving rise to the replicative intermediates type I and II, as it has been observed by electron 
microscopy (Harding & Ito, 1980; Inciarte et al., 1980; Sogo et al., 1982) (see scheme in Figure 8).  
By fluorescence microscopy, we have shown that at middle infection times, the DNA 
polymerase, TP, and viral TP-DNA are reorganised adopting a peripheral helix-like 
distribution toward the poles of the cell (Muñoz-Espín et al., 2009; Muñoz-Espín et al., 2010). 
Although the pathway followed by the 29 replicative machinery from the nucleoid to 
bacterial peripherical regions remains to be determined, it has been proposed that it could 
travel associated to the replication of bacterial chromosome (Muñoz-Espín et al., 2010), as 
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newly synthesized bacterial DNA is translocated towards the cell poles via a helical 
structure (Berlatzky et al., 2008). 
 

 

Fig. 8. Model of nucleoid-associated early ϕ29 DNA replication organised by the TP. (A) 
Attachment of ϕ29 TP-DNA to the bacterial nucleoid surface (gray mass at bottom) through 
the N-terminal domain (red) of the parental TPs (red and green). (B) Recruitment of the 29 
DNApol/primer TP heterodimer to the replication origins of TP-DNA. (C) Processive 
elongation of the nascent DNA strands (red lines) coupled to strand displacement. (D and E) 
Once DNA replication is completed, two ϕ29 TP-DNA molecules are ready for another 
round of replication. For simplicity, other viral proteins involved in DNA replication are not 
drawn. Reproduced with permission from Muñoz-Espín, D., Holguera, I., Ballesteros-Plaza, 
D., Carballido-López, R. & Salas, M. (2010). Viral terminal protein directs early organisation 
of phage DNA replication at the bacterial nucleoid. Proceedings of the National Academy of 
Sciences of USA. Vol. 107, No. 38, pp. 16548-16553.

The 29 membrane protein p16.7 has a non-sequence specific DNA binding capacity (Meijer 

et al., 2001) that enables it to interact with the 29 replication origins through recognition of 
the parental TP (Serna-Rico et al., 2003). This protein also shows a helix-like pattern at the 
membrane of infected cells, most probably being involved in the compartmentalization of in 

vivo membrane-associated 29 DNA replication through a direct contact with TP-DNA, 
organising the viral replicating intermediates at numerous peripheral locations (Albert et al., 
2005; Muñoz-Espín et al., 2009) (see Figure 9). Different experimental approaches have 
demonstrated that protein p16.7 interacts directly with the B. subtilis actin-like cytoskeleton 
protein MreB (Muñoz-Espín et al., 2009). This protein forms helix-like filamentous structures 
in vivo essential for the control of the bacterial rod-shaped morphology (Jones et al., 2001), 
suggesting that MreB would contribute to efficient 29 DNA replication by recruiting 
protein p16.7 to the appropriate sites at the cell membrane allowing simultaneous 
replication of multiple templates at numerous peripheral locations. Further evidence is the 
finding that 29 DNA replication is severely affected in MreB cytoskeleton mutants 
(Muñoz-Espín et al., 2009). 

29 gene 1 codes for a small protein (p1) that assembles into long protofilaments forming 
bidimensional sheets (Bravo &  Salas, 1998) in association with the bacterial membrane in 
vivo (Serrano-Heras et al., 2003). Cell fractionation studies indicated that protein p1 is 
membrane-associated both during synthesis of 29 DNA and after blocking 29 DNA 
replication (Bravo &  Salas, 1997). Membrane-association of p1 also occurs in the absence of 
other viral components, suggesting that protein p1 contacts the bacterial membrane directly 
(Bravo &  Salas, 1997; Serrano-Heras et al., 2003). Phage 29 DNA replication was shown to 
be significantly reduced when non-suppressor B. subtilis cells were infected with mutant 
phage sus1(629) at 37ºC (Bravo &  Salas, 1997; Prieto et al., 1988). In addition, protein p1 was 
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Fig. 9. Model of membrane-associated late 29 DNA replication organised by the MreB 
cytoskeleton. MreB, Mbl, and MreBH are shown to form a putative triple helical structure 
closely associated with the inner surface of the membrane. Each dimeric unit of protein p16.7 
is represented by a yellow hexagon. The tridimeric p16.7 units form oligomers in a helix-like 
localisation at the cell membrane. For simplicity, other viral proteins involved in DNA 
replication are not drawn. Reproduced with permission from Muñoz-Espín, D., Daniel, R., 
Kawai, Y., Carballido-López, R., Castilla-Llorente, V., Errington, J., Meijer, WJ & Salas, M. 
(2009). The actin-like MreB cytoskeleton organises viral DNA replication in bacteria. 
Proceedings of the National Academy of Sciences of USA. Vol. 106, No. 32, pp. 13347-13352. 

also shown to interact with the viral TP in vitro (Bravo et al., 2000). These results suggest that 
protein p1 is a component of a membrane-associated structure which would play, in 
addition to p16.7, a role in the organisation of 29 DNA replication by providing an 
anchoring site for the replication machinery.  

4. 29 codes for a B.subtilis uracil-DNA glycosylase inhibitor. 

Downstream to 29 gene 1 there is an open reading frame (ORF56) encoding an acidic 
protein of 56 amino acids (protein p56) that shows a dimeric state in solution and that 
accumulates throughout the 29 infective cycle (Serrano-Heras et al., 2006). Chemical 
crosslinking assays showed that viral p56 interacts, both during the infective process and in 
the absence of viral components, with B. subtilis uracil-DNA glycosylase (UDG), a key 
enzyme that eliminates uracil residues from the DNA during the Base Excision Repair (BER) 
pathway (Serrano-Heras et al., 2006). In vitro assays demonstrated that such an interaction 
inhibits UDG. In agreement with this, extracts from 29-infected cells showed a dramatic 
drop in bacterial UDG activity, in contrast to the nearly 90% of the activity that remained 
after incubation with extracts from non-infected cells. 

4.1 Role of protein p56 in 29 DNA replication 
Inhibition of the cellular UDG activity after phage infection was established previously in 
two systems. The first was the inhibition of the host UDG after infection of B. subtilis with 
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the uracil-containing phage PBS2 (Friedberg et al., 1975). In this case, inhibition of cellular 
UDG was crucial to prevent the elimination of uracils from the viral genome. Similarly, 
bacteriophage T5 inhibits E. coli UDG, although the physiological role of this inhibition is 
still unclear, as its genome does not contain uracils (Warner et al., 1980).  
Both, in vitro and in vivo assays have recently demonstrated the ability of 29 DNApol to 
insert, extend and use as template dUMP residues with nearly the same efficiency that 
dTMP to give full-length DNA (Serrano-Heras et al., 2008). Whereas removal by the UDG of 
the uracil residues incorporated into the phage genome caused a drastic reduction in the 
efficiency of 29 DNA replication, as 29 DNApol is unable to use as template the resulting 
abasic sites (de Vega & Salas, unpublished results), such an inhibitory effect caused in 
replication by UDG was counteracted by the addition (in vitro) or expression (in vivo) of 
protein p56 (Serrano-Heras et al., 2008).  
As in the case of bacteriophage T5, 29 TP-DNA does not contain uracils, then, why does 
phage 29 synthesize a UDG inhibitor? It has been suggested that this inhibition is related to 
the mechanism of 29 DNA replication. As illustrated in Figure 1, during 29 TP-DNA 
replication replicative intermediates (type-I and type-II) with long stretches of single-
stranded DNA are generated. The presence of uracil in the replicative intermediates could 
recruit components of the cellular BER pathway, such as UDGs and AP endonucleases. 
Further removal of the uracil moiety would render an abasic site that cannot be used as 
template by the 29 DNApol. By the contrary, the AP site will be further recognised by the 
cellular AP endonuclease that would introduce a nick into the phosphodiester backbone 
with accompanying loss of the terminal DNA region, giving rise to shorter viral DNA 
molecules lacking one parental TP. Therefore, the action of the cellular UDG on single-
stranded DNA regions of the 29 replicative intermediates would be harmful for viral 
replication (Serrano-Heras et al., 2008).  

5. Conclusions and future research 

The availability of an efficient in vitro 29 TP-DNA replication system, as well as the 
biochemical characterisation of the different proteins involved, have greatly contributed to 
lay the foundations of the different steps in the protein-priming mechanism of DNA 
replication. In this, a specific DNA polymerase catalyses the formation of a phosphoester 
bond between the initiator dNMP and the OH group of a specific residue in the TP. In vitro 
systems have been also developed for the replication of adenovirus and bacteriophages 
GA1, Nf, PRD1 and Cp1, showing that they use a similar protein-priming mechanism for 
the initiation of replication. Thus, the mechanism of initiation of 29 DNA replication can be 
extrapolated to other organisms containing a TP covalently linked to the 5´-ends of their 
genomes, as human hepatitis B virus, mitochondrial plasmids, linear chromosomes and 
plasmids of Streptomyces, as well as several virus infecting Archaea, as halovirus. 
Despite of the advances in the knowledge of the protein-priming process, several questions 
regarding the initiation at internal positions of the TP-containing genomes remain to be 
elucidated, as the basis for the specificity for the templating nucleotide. In this respect, the 
use of chimerical TPs, constructed by swapping the priming domains of the related 29 and 
Nf proteins, allowed us to conclude that this domain is one of the structural determinants 
that dictates the internal 3´ nucleotide used as template during initiation. On the other hand, 
the backwards motion of the primer TP with respect to the fixed template molecule, implies 
a breakage of the pair TP-A:T (in the case of bacteriophages 29, Cp1, Nf and GA-1) or, most 
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drastically the triple base pairing TP-CAT:GTA, as in the case of adenovirus. This 
energetically unfavoured step should be explained by a power stroke mechanism, by which 
the energy released after dissociation of the pyrophosphate could drive the backwards 
movement of the TP-dNMP initiation product with respect to the DNA polymerase and 
template strand with the consequent correct base pairing with the preceding 3´ nucleotide, 
to reach a more energetically favoured situation. The elucidation of the conformational 
changes that govern the sliding-back mechanism will give the clues to understand such a 
special way to initiate genome replication. 
Termination of replication of TP-containing genomes is still an unresolved matter. We have 
shown that protein-primed DNA polymerases exhibit an exquisite specificity for their TP 
counterparts during the initiation step of TP-DNA replication. Based on the 29 DNApol 
structure, it seems obvious that to let the last 5´dAMP to be copied during termination, at 
least the parental TP priming loop of the template strand has to access the catalytic site of 
the polymerase following the downstream template tunnel pathway. The question that 
arises is whether there is also specificity between the DNA polymerase and the parental TP 
during termination, and how the DNA polymerase performs this step. 
We are starting to understand how replication of 29 is organised and compartmentalised 
into the bacterium, acting in concert with cellular factors to increase the efficiency of this 
biological process. Thus, early after 29 infection TP-DNA replication takes place at the 
bacterial nucleoid by means of a non-specific interaction between the parental TP and the 
bacterial chromosome. Later during infection, the 29 DNA replication machinery is 
organised in peripheral helix-like structures through an interaction of the phage protein 
p16.7, which recognises the dsDNA of replicating TP-DNA molecules, with the actin-like 
MreB cytoskeleton.  
In addition, phage 29 protein p56 is essential in the viral DNA replication cycle since it 
prevents the impairment caused by the host UDG. Inhibition of UDG has been proposed to 
be a defence mechanism developed by 29 to prevent formation of abortive replicative 
intermediates.  This is the first case reported of an UDG inhibitor encoded by a non-uracil 
containing DNA. 
The mechanistic details of how B. subtilis MreB is specifically employed by phage 29, and 
how they are temporally and spatially organized may be main directions for future 
experiments. Since bacteriophages contain genomes with a limited size due to their small 
dimensions, it is expected that new bacterial proteins interacting with viral components may 
be discovered. A major challenge is to identify these novel targets that might be used by 
bacteriophages to optimize the production of high numbers of progeny. 
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