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1. Introduction 

The old model in which the problem of power quality (PQ) involved two partners – the 
electricity supplier and the customer – is replaced by a new configuration where at least 
four, mutually dependent parties participate: the customer, supplier of electric power, 
manufacturer of equipment and electrical installation contractor. The supplier often insists 
that sources of disturbances are located at the customer's side, whereas the latter complains 
about causes located in the supply network. It happens that their discussion leads to the 
conclusion, shared by both parties, that the equipment is not properly installed or 
adequately designed, to be operated in the given electromagnetic environment. 
Often, in the case of a significant level of a disturbance in electrical power system, at the 
customer's supply terminals, there is a need for locating the source of harmonics (e.g. [7-
9,14,21,27,32-35,38,40-43]), voltage fluctuations (e.g. [10-13,36,]), voltage dips (e.g. 
[17,19,22,25,26,29-31,37,39]), occasionally also asymmetry. With the deregulation of power 
industry, utilities have become increasingly interested in quantifying the responsibilities for 
power quality problems. This issue gains particular meaning when formulating contracts for 
electric power supply and enforcing, by means of tariff rates, extra charges for worsening 
the power quality.  
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Fig. 1. Problem of locating the voltage disturbance sources 
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There are two, sometimes separate problems which can be stated as follows (Fig. 1). First 
details concerning the location of disturbance source. A power quality monitor captures 
disturbance-containing voltage and current waveforms at the point of common coupling 
(PCC). It is required to determine if the disturbance comes from the upstream or the 
downstream. As a result, both the supply utility and customer can obtain a list of disturbances, 
their severity and directions. Such information will greatly facilitate the resolution of disputes 
between the two parties if a disturbance results in financial losses to either party. 
The second is to assess the emission level of the particular considered load or supplier in 
order to quantitative evaluation of the both parts contribution to the total disturbance level 
measured at the point of power delivery. The goal is to check the fulfilment of standard or 
contract requirements.  
Solution for both problems posed above is not a trivial task. Works focused on this subject 
have been carried out for many years. Numerous methods have been proposed and 
published, only a part of them having practical significance. They differ in the probability of 
inference correctness (e.g. locating a disturbance source), the value of error made (e.g. 
determining an individual customer's share in the total disturbance level), the time required 
to carry out measurements, the number and complexity of equipment needed, etc.  
This chapter deal with the first of the two problems specified above - location of the 
disturbance source based on measurements made at a single point of a network (PCC), and 
does not concern an assessment of individual emission. Selected methods are presented for 
high harmonics, voltage fluctuations, voltage dips and unbalance, that allow determining 
location of the disturbance source: at the supplier side (upstream) or at the customer side 
(downstream), as viewed from PCC. 

2. Voltage harmonics 

The most commonly practical method for locating harmonic sources is based on 
determining the direction of active power flow for given harmonics, though many authors 
indicate its limitations e.g. [7,34,42,43]. Many other techniques are based on investigation of 
the "critical impedance" [21], the so-called voltage index value [32-34,41], interharmonic 
injection [42], determining voltage and current relative values [38], etc. Some methods 
determine the dominant harmonics source together with their quantitative contribution. 
In most cases these methods, aside from their technical complexity, require precise 
information on values of equivalent parameters of the analysed system, which are difficultly 
accessible, or can only be obtained in result of costly measurements. As the examples some 
selected methods are more detail described below. They are presented employing the 
equivalent Thevenin circuit for the considered harmonic analysis (Fig. 2). 
 

 
Fig. 2. Equivalent circuit for disturbance analysis , PCCPCCU I  - voltage and current values 

measured at PCC; ZS , ZC – equivalent impedances of the supplier and customer sides; ES , 

EC – harmonic voltages at the supplier and customer sides 
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2.1 The criterion of active power flow direction 

The dominant source of the considered harmonic (h-th order) can be located analysing this 

harmonic active power (Ph) flow at PCC. Analysing the sign of this power at the 

measurement point we can conclude that: 

- the positive sign of active power at PCC (Ph>0) means the dominant source of the 
considered harmonic is the supplier, 

- the negative sign of active power at PCC (Ph<0) means the dominant source of the 
considered harmonic is the consumer.  

A non-zero value of active power is the result of mutual interaction of the same frequency 
voltage and current, and is determined by the formula: 

 ( )cos cos
h hh h h U I h h hP U I U I ϕ= Φ − Φ =  (1) 

where: Uh and Ih  – rms voltage and current values of the h-th harmonic  

 
hUΦ and 

hIΦ  - the h-th harmonic current and voltage phase angles. 

The method is equivalent to examining of the phase shift angle hϕ  between the considered 

harmonic voltage and current. If this angle is contained within the interval / 2 / 2π ϕ π−    

then, according to this criterion, the dominant disturbance source is located at the supplier 

side. If the condition / 2 3 / 2π ϕ π   is fulfilled, the customer is the dominant source of the 

considered harmonic. For / 2ϕ π= ±  there is no decision about the dominant source of 

harmonic. 
 

 

Fig. 3. Model of the electric power network chosen for simulations illustrating the active 
power flow method 

Fig. 3 shows a simplified model of electric power network employed in the investigation, 
the supplier and customer sides are indicated. For the purpose of illustration let us assume 
the supplier is the dominant source of 5th and 11th harmonics and the customer is the 
dominant source of 7th and 13th harmonics. The above assumption is valid for both the 
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balanced and unbalanced system (Table 1). Balanced RL loads are connected in parallel with 

non-linear loads represented by currents ,iS iLI I  for i = A, B, C. 

Fig. 4 summarizes the simulation results for selected cases. It is evident that in the case of 
balance for the considered harmonic the method correctly locates the dominant source of 
disturbance: at the supplier or customer side, also in the case where non-linear loads are 
connected at both sides of PCC 
In the latter case a change in the phase shift angle between the current harmonics generated 
at the supplier and customer side may, in a certain interval of values, affect correctness of 
the inference about the disturbance source location. Fig. 6 shows the fifth harmonic active 
power variation at PCC for the case when the customer and supplier fifth harmonic 
relations were (a) 1:1.2 and (b) 1:1.8, and the phase shift angle between the 5th harmonic 
currents was varying within the interval 0-3600. The larger the difference between the values 
of customer and supplier harmonic currents, the wider is the angle interval in which the 
inference is correct.  
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Table 1. The supplier and customer harmonics – balanced/unbalanced system 

Fig. 5 shows analogical simulations but for an unbalanced system. In the case of harmonic 
source located only at one side of PCC the calculated powers of harmonics in particular 
phases have different values but in the analysed case maintain the same sign and correctly 
indicate the source of disturbance. 
In the case harmonic sources are located at both the supplier and customer side, the inference 
based on this method can not be correct. Comparison of simulation results in Fig. 5 with data 
contained in Table 1 indicates that the party responsible for 13th harmonic distortion was 
wrongly identified. The dominant party, responsible for the 13th harmonic presence in all 
phases is the customer, whereas the result of identification indicates the supplier in phases B 
and C. Thus the method fails also in the case of the considered circuit unbalance. 
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a) 
 

 

b) 

Fig. 6. Variation of the 5th harmonic active power at PCC for different values of the phase 
shift angle φ between the customer and supplier current and various relations between their 
rms values: (a) 1:1.2; (b) 1:1.8  

 

 

Fig. 7. Impedance plane illustration for result interpretation (criterion of the real part of the 
equivalent impedance at PCC – Chapter 2.2) 

φ

φ
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2.2 Criterion of the real part of the equivalent impedance at PCC [37] 

The balance system of Fig. 1 can be represented by an equivalent one-phase circuit shown in 
Fig. 2. This is a h. harmonic circuit, ZS and ES are equivalent impedance and internal voltage 
source of the left side (supply system, upstream). ZC and EC are the similar parameters for 
the customer system on the right side. 
Assume a disturbance occurs on the customer-side and leads to a voltage change at PCC (for 
considered harmonic), the measurements satisfy this equation before the occurrence of the 
event: 

 S PCC SPCCU E I Z= −    (2) 

When a disturbance occurs, the voltage and current are changed to PCC PCCU U+ Δ  and 

PCC PCCI I+ Δ , where PCCUΔ  and PCCIΔ  are the voltage and current changes due to the 

customer-side event. If we assume that the parameters on the supply-side (ZS and ES) 

remain unchanged during the disturbance period, a similar equation can be written as: 

 ( )S PCC PCC SPCC PCCU U E I I Z+ Δ = − + Δ     (3) 

Since the probability that a disturbance occur on both sides simultaneously is practically 
zero, the above assumption that the parameters on the no disturbance side are constant is 
justifiable. Subtracting (2) from (3), we can find: the impedance of the no disturbance 
(supply) side as: 
 

the impedance of the no disturbance (supply) side 
PCC

S

PCC

U
Z

I

Δ
= −

Δ
 

the customer-side impedance if a disturbance 
occurs on the supply-side 

PCC
C

PCC

U
Z

I

Δ
=

Δ
 

 

It can be seen that the quantity /e PCCPCCZ U I= Δ Δ  gives different signs depending on the 

origin of the disturbance. The basic idea is, therefore, to estimate eZ . In fact, eZ  has a 

physical meaning. It is the equivalent impedance of the no disturbance side. If the 

disturbance occurs on the supply-side, eZ  is the customer impedance. If the disturbance 

occurs on the customer-side, eZ  is the supply impedance multiplied by (-1). Since the 

resistance should always be positive, it is possible to determine the direction of harmonic 

source by checking the sign of the real part of the impedance eZ . This forms the basis of the 

method: calculate the equivalent impedance once a voltage disturbance is detected at 

monitoring point: 

 
before afterPCC

e

PCC before after

U UU
Z

I I I

−Δ
= =

Δ −
  (4) 

where ( , beforebeforeU I ) and ( , afterafterU I ) are pairs of pre-variation and after variation h. voltage 

and current harmonic, respectively. This gives rise to conclusions: 

 

If Real ( )eZ >0 the source of h. harmonic is on supply-side 

If Real ( )eZ <0 the source of h. harmonic is on customer-side 
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(a) 

 
(b) 

Fig. 8. (a) Unfavourable case: the 5 harmonic voltage and its variation are too small; (b) 
favourable case: the 5 harmonic variation is very significant [39] 

The above method can be graphically illustrated on the impedance plane as shown in Fig. 7. 

If the calculated impedance eZ  lies in either the first or fourth quadrant (Re >0), the 

harmonic source is on the supply-side. And if the impedance lies in either the second or 

third quadrant (Re <0), the harmonic source is on the customer-side. 
Because this method is based on harmonic variation, if the harmonic variation is too weak, it 
is very difficult to determine harmonic impedance with enough accuracy (Fig. 8). 
The method drawbacks are: (a) high requirements for voltage and current harmonics 
measurement, especially with respect to their arguments; (b) time interval between 
measurements should be short (of the order of 1 - 3s) thus a large number of calculations is 
required; (c) accuracy of calculations can be solely achieved where the dominant harmonic 
source is at one side (either the supplier or the customer). 

2.3 The "source" criterion [8,34] 

The basis for the analysis is the equivalent circuit shown in Fig. 2, whose implication is the 
relation: 

 S C
PCC

S C

E E
I

Z Z

−
=

+
    where: ( )expC C CE E jϕ=     ( )expS S SE E jϕ=     (5) 

The current at PCC can be represented by two components (Fig. 9): 

 PCC C PCC S PCCI I I− −= −   (6) 
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where ,C PCC S PCCI I− −  are components associated with the customer and supplier side, 

respectively. The component C PCCI −  results from the h-th order harmonic source presence at 

the customer side, whereas the component S PCCI −  results from the h-th order harmonic 

source presence at the supplier side. The influence of a source located at the customer side 

on the current PCCI  is characterized by the projection of the current C PCCI −  vector onto the 

current PCCI  vector, whereas the influence of a source located at the supplier side – by the 

projection of the current S PCCI −  vector (Fig. 9). 
 

PCCI  

PCCSI −−  

PCCCI −  

( )
dPCCCI −  

( )
dPCCSI −−  

( )
qPCCSI −−  

( )
qPCCCI −  

 

Fig. 9. Components of the current IPCC at PCC [34] 

As follows from Fig. 9: 

 ( ) ( )
2 2

C PCC C PCC C PCCd q
I I I− − −= +   ( ) ( )

2 2

S PCC S PCC S PCCd q
I I I− − −= +    (7) 

and 

 ( ) ( )C PCC S PCCq q
I I− −=  (8) 

The quotient of component modules ,C PCC S PCCI I− −  is given by the formula: 

 
( ) ( )

( ) ( )

2 2

2 2

C PCC C PCCd qC PCC

S PCC
S PCC S PCCd q

I II

I I I

− −
−

−
− −

+
=

+
 (9) 

Taking into consideration the relation 8 it can be concluded that the relationship between 

the component modules C PCCI −  and S PCCI −  is the same as the relationship between their 

projections onto the current IPCC vector. It can be, therefore, concluded that if the projection 

of the current C PCCI −  vector onto the current IPCC vector is greater than the projection of the 

current S PCCI − , i.e. the harmonic source at the customer side has a stronger influence on 

current IPCC than the source at the supplier side, the condition: 

 C PCC S PCCI I− −  (10) 

is fulfilled. Conversely: components ,C PCC S PCCI I− −  can be determined using the relation: 

 C
C PCC

S C

E
I

Z Z
− = −

+
   S

S PCC

S C

E
I

Z Z
− =

+
 (11) 
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Thus the following relations are true: 
 

If  C PCC S PCCI I− −  then C SE E  the dominant disturbance source is 
located at the customer side 

 

If  C SE E=  there is no decision about the dominant 
source of harmonic 

          (12)

If C PCC S PCCI I− −  then C SE E  the dominant disturbance source is 
located at the supplier side 

 

 

According to the considered criterion the inference is based on source voltages CE and SE , 

that are unknown. They can be determined from voltages and currents measured at PCC 

and the knowledge of equivalent impedances CZ  and SZ : 

 S PCC S C PCC CPCCU E I Z E I Z= − = +  (13) 

However, the internal impedances of equivalent harmonic sources, representing the 
supplier and customer sides, are also unknown and their determination is not an easy task, 
it is significant disadvantage of this method. 

2.4 The "critical impedance" criterion  

The authors of publication [21] observed in a power system shown in Fig. 2 a strong 
association between the sign of reactive power and the relation between source voltages 
modules ES and EC. This is explained by the formula determining the source ES active and 
reactive power values in the case where the circuit equivalent resistance is negligibly small: 

 cos sinS C
S PCC

E E
P E I

X
δ= Θ =   (14) 

 ( )sin cosS
S PCC C S

E
Q E I E E

X
δ= Θ = −  (15) 

where: ( )ReR Z= , ( )ImX Z= , S CZ Z Z= + , C C CZ R jX= + , S S SZ R jX= +  

arg argS PCCE IΘ = − , arg argC SE Eδ = −  

According to (14), the direction of active power flow (i.e. its sign) is exclusively determined 

by phase angles of voltages at both: the supply and load end of a line, and does not depend 

on the relation between modules of voltages CE  and SE . This relation, however, determines 

the sign of reactive power. It is noticeable from relations (15) that if Q>0, then EC > ES, i.e. the 

dominant source of the considered current harmonic at PCC is a source at the customer side. 

Because of the presence of cosδ  in the formula (15) it cannot be concluded that if Q<0 then 

EC < ES, i.e. the supplier is the dominant source of the considered current harmonic. 

Publication [21] gives theoretical basis for the decision making process utilizing the 

examination of reactive power also if Q<0 introducing the concept of the so-called critical 

impedance.  
The base of this method is finding the answer to the question: how far the reactive power 

generated by the source ES can "flow" along the impedance jX, assuming this impedance is 
distributed evenly between the sources ES and EC. In order to find the answer has been 
defined the voltage value at an arbitrary point m between sources ES and EC (Fig. 2): 
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 1 2

1 2 1 2

S Cm

X X
U E E

X X X X
= +

+ +
 (16) 

where: 1 2X X X= + , and 2X  is the part of X at the source ES side. The point of the least 

voltage mU  value can be determined from the condition 
2

0mU

X

∂
=

∂
: 

 
2

2 2

cos

2 cos
S S C

S C S C

E E E
x X

E E E E

δ

δ

−
=

+ −
 (17) 

where x is the reactance of the source ES for the point of the least voltage value. It is 
noticeable that: 

 
2 2

2 2 cosS C S C
PCC

E E E E
I

X

δ+ −
=  (18) 

Regarding (15) and (18), we have: 

 
2

sinS

PCC PCC

Q E
x

I I

−
= = − Θ  (19) 

As inferred from the formula (19) x is the most distant point to which the reactive power 
generated by the source ES can "flow". If the point x is closer to the customer side (x > X/2) 
then the dominant source of the considered harmonic is located at the supplier side. If x < 
X/2 then EC is the dominant source.  
The so-called critical impedance CI, which is the basis for inferring in this method, is defined 
in [21]: 

 
2

2
PCC

Q
CI

I
=  (20) 

Taking into account the circuit equivalent resistance ( 0R ≠ ), [21] gave this concept a 

practical value. Thus the relations (14) and (15) take the form: 

 ( )
2

sin sinS C SE E E
P

X Z
δ β β= + −      ( )

2

cos cosS C SE E E
Q

X Z
δ β β

 
= + = 

 
   (21) 

where: 
R

arctg
X

β = . Using transformation of powers expressed by (22) [34]: 

 
*

* 2

sin

cos

S C

S C S

E E
PP Z

T
QQ E E E

Z Z

δ

δ

 
    
 = =   
    −  

 where 
cos sin

sin cos

β β

β β

− 
 
 

 (22) 

we obtain the same relations that describe the active and reactive power as for the condition 
R=0 and the basis for inference about location of the dominant harmonic source remains 
true. Then the index CI is given by relation: 
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 ( )* 2 sinS

PCC

E
CI

I
β= Θ +  (23) 

This index is determined from the voltage and current measurements at PCC, which are 

utilized for the source voltage SE  calculation:  

 S PCC SE U I Z= +  (24) 

The impedance ZS, which occurs in (24) is not always exactly known. In consequence, the 

source voltage ES may not be determined accurately. Another quantity that occurs in the 

formula for CI (23), which is inaccurately determined when the impedance ZS and, above all, 

the impedance ZC are not exactly known, is the angle ǃ. The above factors cause that 

decisions taken according to the criterion (25) may not be correct.  
 
If CI > 0 or CI < 0 and minCI Z  the dominant source of the considered 

harmonic is located at the customer side  
 

If 
min maxZ CI Z   there is no decision about the dominant 

source of the considered harmonic  (25)
If CI < 0 and maxCI Z  the dominant source of the considered 

harmonic is located at the supplier side 
 

 

where min max,Z Z  determine the interval of impedance Z changes. 

2.5 The voltage indicator criterion [34] 

The method is based on the equivalent circuit diagram presented in Fig. 2, created for the 
investigated harmonic. By investigating the quotient of source voltages of the supplier's and 
the consumer's side, known as “voltage indicator”1: 

 CC
U

SS

Z ZE

E Z Z

+
Θ = =

−
    where PCC

PCC

U
Z

I
=  (26) 

it is possible to determine the location of the dominant distortion source in the electrical 
power network, according to the following criterion: 
 

If 1UΘ   the dominant source of the investigated harmonics is located at the
consumer's side 

 

If 1UΘ =  it is impossible to explicitly identify the location of the dominant
source of the disturbance 

(27)

If 1UΘ   the dominant source of the investigated harmonics is located at the
supplier's side 

 

 

Impedance values ZS and ZC have been assumed as known. Since this requirement is 

difficult to meet, the criterion is modified to the form (28), which takes into account 

approximate knowledge of equivalent impedance values ZS and ZC. The ranges are 

determined which may contain the values of such impedances, evaluated on the basis of the  

                                                 
1A detailed theoretical justification of the method is to be found in works [32,33,34,41]. 
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analysis of various operating conditions of an investigated electrical power system. 

Impedance xZ  variation range where ( ),x C S∈  is defined by means of equations: 

min maxx xn xZ Z Z≤ ≤ and  min maxx xn xα α α≤ ≤ , where ,xn xnZ α  are the modulus and the 

argument, respectively, of the impedance xZ . On this basis, indicator extreme values  minUΘ  

and  maxUΘ , are determined, which are the basis for the following conclusions: 
 
If 

min 1UΘ   the dominant source of the investigated harmonics is 
located at the consumer's side 

 

If min max1U UΘ  Θ  it is impossible to explicitly identify the location of the 
dominant source of the disturbance 

(28) 

If max 1UΘ   the dominant source of the investigated harmonic is 
located at the supplier's side 

 

 

The results of example simulations illustrating this method (according with Fig. 3 and Table 
1) are presented in Fig. 10. Fig. 11 shows the results of the identification of the disturbance 
source by means of the voltage indicator method, depending on the phase shift angle 
between 5 harmonic current of the supplier and the consumer for two distinct relations 
between rms values of these currents. The change of phase shift angle value does not affect 
the correctness of conclusions in the analysed case. 
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Fig. 10. Criterion of voltage indicator – example results of simulations for a system as that 
presented in Fig. 3   
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a)

 
 

b)

 

Fig. 11. Variation of 5th harmonic active power value for various values of phase shift angle 
φ between the supplier's and the consumer's current harmonic and for various relations 
between their rms values: (a) 1:1,2; (b) 1:1,8 

2.6 Criterion of the relative values of voltage and current harmonics [38] 

This method consists in comparison of relative harmonic values measured with respect to 
the fundamental voltage and current values. While analysing the correctness of decisions 
made on the basis of this method the equivalent circuit diagram of an electrical power 
system, presented in Fig. 2, is used In the case of a single harmonic source, located, for 
example, at the energy supplier's side, the following equations are valid: 
 

for the fundamental component – index (1) for h. harmonic 

(1) (1) (1) (1) (1)(1) S PCC S PCC CPCCU E I Z I Z= − =  Sh PCCh Sh PCCh ChPCChU E I Z I Z= − =  

 

Therefore, voltage quotient: 

 
(1)(1) (1) (1) (1) (1)

ChPCCh PCCh Ch PCCh PCCh

CPCC PCC C PCC PCC

U I Z I Z I
K

U I Z I Z I
= = =       (29) 

Assuming that: (1) (1) (1)C C CZ R jX= +  and (1) (1)Ch C CZ R jhX= +    (30) 

for h >1 the following inequality is satisfied: 2 2 2
(1) (1) (1) (1)C C C CR h X R X+  +  which means that 

K >1 and, as a result 
(1) (1)

PCCh PCCh

PCC PCC

U I

U I
 . A similar reasoning may be carried out for the case when 

a single harmonic source is located at the consumer's side and for sources located at both sides 
of the PCC [34]. In each case the conclusion criterion is based on the relations (for h= 2,3,4 …): 

φ

φ
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(1) (1)

  PCCh PCCh

PCC PCC

U I

U I
≥  The dominant harmonic source is located at the supplier's side 

(1) (1)

  PCCh PCCh

PCC PCC

U I

U I
<  The dominant harmonic source is located at the consumer's side 

 

The above reasoning is correct if equation (30) is approximately valid. 
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Fig. 12. (a) Relative values of the 7th voltage and current harmonic in phase L3; (b) the 
change in the phase-to-neutral voltages distortion factor during an example workday 24 
hours (110kV network) 

It happens that the influence of some harmonics on the voltage to current ratio is increased 

due to the resonance, and therefore the above relations are amplified or reduced. For the 

above reasons it is essential that harmonics should be analysed comprehensively, taking into 

consideration several lowest, especially odd harmonics from the 3rd to 11th, on which the 

impedance from the supply side has the lowest influence. An example of the 7th harmonic 

measurements at the feed point of 110 kV distribution network in large city is shown in 

Fig. 12a. A dominant influence of the municipal network loads during evening hours is 

evident and confirmed by the daily THD time characteristic, measured at the same point 

(Fig. 12b). 

2.7 Statistical approach from simultaneous measurement of voltage and current 
harmonics [13] 

Voltage and current harmonics are measured simultaneously at the point of evaluation 

during longer periods of time - Fig. 13 (10-minutes values, measured during one week). 

In Fig. 13a, the experimental points are spread over the area delimited by the two straight 

lines. This means that the harmonic current and the resulting voltage are actually resulting 

from the combined influences of the background level and the considered distorting load, 

without any prevalence of one or the other. In Fig. 13b, however the load acts clearly as a 

rather dominant emitter at the PCC: the points are mostly grouped along the straight line. 

This means that the influence of the considered installation is greater than the background 

harmonic level. 

A similar reasoning may be based on the investigation of the correlation between voltage 

harmonic value and, for instance, current rms value or active power. 

www.intechopen.com



Single-Point Methods for Location of Distortion, Unbalance,  
Voltage Fluctuation and Dips Sources in a Power System 

 

173 

 
 

U
5
 [
V

] 

U
5
 [
V

] 

I5 [A] I5 [A] 
 

 a) b) 
 

20

40

60

80

100

120

140

25 50 75 100 125 150

Power [MW]

R
m

s
 U

(5
) 

[k
V

]

 
 c) d) 

Fig. 13. Examples of: 5th voltage harmonic vs. (a,b) 5th current harmonic and (c,d) active 
power of a large industrial company fed from 110 kV line - 4 months of measurement (d), 
selected days of operation that shows a load acting as a dominant emitter (gray dots) and 
the supply that acts as a dominant emitter (black dots) 

3. Voltage dips 

The procedure of locating the dip source is usually a two-stage technique. The first part 
involves inferring whether the dip has occurred upstream or downstream of the measuring 
point, i.e. at the supplier's or the consumer's side. In the next step the algorithm that 
precisely computes the voltage dip location is applied. This chapter deals with the first 
stage. Even though a methodology for the exact locations of  voltage dips does not exist yet, 
several methods for voltage dip source detection have already been reported.  They are 
based mainly on: the analysis of voltage and current waveforms; the analysis of the system 
operation trajectory during the dip; the analysis of the equivalent electric circuit; the analysis 
of power and energy during the disturbance; the analysis of voltages; asymmetry factor 
value and symmetric component phase angle and algorithms for the operation of protection 
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automatics systems (impedance variation analysis, the analysis of current real part, 
“distance” protection). 
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current 

 

Fig. 14. Slope of the trajectory line of the (U-I) system during the dip for various short circuit 
locations: a) upstream (point A at Fig. 1), b) downstream (point B at Fig. 1)  

3.1 Analysis of the voltage and current waveforms at PCC  

The location of the point of connection of the motor whose start causes a disturbance (in 

general: a voltage dip source) can be sometimes identified with respect to the considered 

point of a supply network (the measurement point) on the basis of recorded voltages and 

currents ― Fig. 14. A noticeable increase in the current during a voltage dip may indicate 

that the cause of a disturbance is located downstream the monitoring point (Fig. 14b). That 

does not always hold true. At reduced voltage the current of induction motor loaded 

with a constant torque increases, although, as a rule, it is smaller than the increase 

necessary to cause a voltage dip. Similarly, the increase of current can result from the 

voltage control at the consumer's side or the response a power electronic interface 

control. 

3.2 The criterion using the system operating conditions trajectory during the dip  

The natural consequence of waveform analysis during the disturbance is an empirical 
method based on the investigation of the trajectory of the supply system operation point 
before and during the disturbance [22].  
In the example used to illustrate this method it has been assumed that there is one source 
supplying a passive load, while the monitoring device is connected in the PCC point (Fig.1). 
Two cases of three-phase short circuits have been investigated: in points A and B, which 
result in a voltage dip. Both short circuits lead to voltage reduction in point PCC; however, 
current value variation will be different in each case. 
During the short circuit in point A the current measured in point PCC will be typically 
lower in comparison with its value before the disturbance occurred. In the other case (short 
circuit in point B) the current measured in point PCC will be the sum of short-circuit current 
and load current during the dip. Its value will be higher than before the disturbance 
occurrence. 
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The above statements are also illustrated in Fig. 14. Particular operating conditions of the 
supply system are presented by means of points representing voltage and current before 
and after the dip. The sign of derivative of the segment joining these two points makes it 
possible to identify the short circuit location: a positive derivative suggests the short 
circuit at the source side (in point A), while a negative derivative suggests the short circuit 
at the load side (in point B). Although originally the method was intended for a  
system with a single supply source, it can also be applied, after small  modifications, to 
two-side supply systems, such as that presented in Fig. 15 (also including non-linear 
elements) [22]. 
In this case the disturbance source location is determined in relation to the assumed 

direction of active power flow in the measurement point. If the disturbance source is located 

on the right side of the measurement point (i.e. in the same direction as that of active power 

flow) it means it is located at the “lower” side. Disturbances on the left side of the 

measurement point (the direction is opposite to that of active power flow) indicate that the 

source is located at the “upper”side. 

 

M 

Rf 

Source 1 Source 2 

upstream downstream 

Z Z2 Z’ 

PQ monitor

the direction of active power flow 

E1 E2 

 

Fig. 15. A two-source system locating the dip source [22] 

Fig. 15 shows a short circuit (represented by resistance Rf ), which occurs on the right side of 

the measurement point, while those elements of the equivalent circuit diagram which are on 

the left side remain unchanged. Voltage in the measurement point (which is not PCC) can be 

expressed by the equation: 

 1U E IZ= −  (31) 

where U and I can be measured directly in point M. Multiplying both sides of equation (31) 

by current conjugate value I*, and taking into account only the real part, results in the 

following equation: 

 2
2 1 1cos cosUI E I I Rθ θ= −     (32) 

where θ2 – phase angle between vectors U and I, θ1 – phase angle between E1 i I, R represents 

the real part of complex impedance Z. Transforming (32) to the form: 

 2 1 1cos cosU IR Eθ θ= − +  (33) 
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results in the equation, the form of which is convenient to determine the inclination of the 

U-I trajectory. For example, if 2cos 0Θ  , the direction of active power flow is such as has 

been assumed, i.e. such as has been shown in Fig. 15, while the disturbance source is located 

at the lower side and 2 2cos cosU UΘ = Θ . Each point representing the system operating 

conditions in coordinate system (I, 2cosU Θ ) is placed on the straight line with the 

inclination –R, like in Fig. 16a (assuming that cosθ1 does not significantly change its 

value). 

 

     
 a) b) 

Fig. 16. The slope of system trajectory during the disturbance: the disturbance source is 
located (a) downstream, (b) upstream the measurement point [22] 

If 2cos 0Θ  , active power flows from E2 to E1, the disturbance is located at the upper side, 

and the equation has the following form: 

 2 1 1cos cosU IR Eθ θ= −    (34) 

Every point representing the system operating conditions in coordinate system (I, 

2cosU Θ ) is placed on the straight line with the slope +R (Fig. 16b). The line which is 

connecting these points during the disturbance has positive inclination then – providing 

cosθ1 does not significantly change its value during the disturbance. 
It can be demonstrated that during the disturbance |cosθ1| usually decreases when current 

I increases for the disturbance source at the lower side and decreases for the upper side. This 

ensures that in practical cases conclusions are drawn in the correct way. 

It has been assumed so far that the direction of active power flow does not change before 

and after the disturbance occurrence, which is not always the case. Variations are possible, 

however, only in the case of disturbances at the upper side, while for disturbances at the 

lower side the direction of active power flow remains unchanged. This fact may be used for 

the identification of voltage dip source location: if the direction of active power flow 

changes, the event must have occurred at the upper side. This additional hint, together with 

the identification of the inclination of the trajectory U-I during the dip may help draw 

correct conclusions. 

The investigated method has been used in simulation studies, the aim of which was to locate 

the voltage dip source using a modified model of IEEE 37-Node Test Feeder network [18]. Its 

diagram is presented in Fig. 17a. A three-phase short circuit, which occurred in node 703, 

has been simulated; the study investigated if the disturbance in nodes 702 and 709 was 

located correctly (Fig. 17b). 
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(b) 

Fig. 17. Example results of a three-phase short circuit simulation in node 703 of 23 network 
model; waveforms of voltages and currents in nodes 702 and 709 as well as system 
operation trajectories in these points for phase L1 (analogous waveforms in other phases) 
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Both this and other simulation studies have confirmed that it is highly probable to draw 
correct conclusions concerning the dip source location in the case of symmetrical 
disturbances; incorrect conclusions can be drawn in the case of asymmetrical disturbances, 
in particular single-phase earth faults. 

3.3 The analysis of the equivalent electric circuit 

In the investigated point of the supply system, both current and voltages are measured at 
the same time. The measured current is the basis for calculating the voltage value on the 
basis of the equivalent circuit diagram of the studied system. Conclusions concerning the 
disturbance location are drawn on the basis of the relationship between the measured (Um) 
and the calculated (US) voltage value in PCC (Fig. 18). If the relationship is US ≈ Um, it means 
that the disturbance source is located “downstream” the measurement point (at the 
consumer's side), whereas if US << Um, the disturbance source is located at the supplier's side. 
 

 

Fig. 18. The method of dip source location on the basis of the comparison between measured 
and calculated voltage variation value in PCC [39]  

3.4 The criterion using power and energy during the disturbance 

The circuit of a short-circuit which has occurred at the consumer's side takes power from the 
supply network. On the other hand, during a short circuit that has occurred at the supplier's 
side energy in transient state will flow from the consumer's side. The direction of flow of 
instantaneous power and energy is determined on the basis of registered voltage and 
current waveforms.  
In the steady state, assuming that the network is a symmetrical one, instantaneous power 
has practically constant value which changes as a result of variations in voltage and current 
instantaneous waveforms. The difference in power between the steady state and the 
disturbance state is the so-called “disturbance power” - DP. According to this definition, in 
the steady state the DP value approximately equals zero (assuming very brief intervals 
between subsequent measurements), while during short circuit it is different than zero. 
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As a result of integrating the DP value, disturbance energy – DE – is determined. 
Information concerning DP and DE variation makes it possible to locate the voltage dip 
source, because during a  short circuit energy flows towards the place of the short circuit 
occurrence (Fig. 19) – the increase of DE during the disturbance indicates that the disturbance 
source is located downstream the measurement point. On the other hand, DE decreases if the 
disturbance source is located upstream the measurement point [33]. The method requires that 
a threshold value of energy is assumed; since the reliability of results depends on this value, 
the method works correctly as long as the value has been accurately chosen. 
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Fig. 19. The method of dip source location on the basis of the analysis of power and energy 
during the disturbance – example results of the simulation of a tree-phase short circuit in 
node 703 of the model network (Fig. 17a) waveforms of voltages and currents in nodes 702 
and 709 as well as of disturbance power and energy 

Fig. 19 shows the results of simulation studies aimed at locating the voltage dip source using 
the network model such as that in Fig. 17a.  A three-phase short circuit, which occurred in 
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node 703, has been simulated; the study investigated if the disturbance in nodes 702 and 709 
was located correctly. Correct conclusions are guaranteed also in the case of other types of 
short circuits. 

3.5 Voltage criterion 

In this method the dip source is located only on the basis of voltage measurement [20]. It 
consists in comparing the dip depth at the primary and secondary side of the transformer 
before and after the dip (Fig. 20): 

 
1*

1

1

dip

before

U
U

U

−

−

=     
2*

2

2

dip

before

U
U

U

−

−

=  (35) 

where Ui-dip is the voltage during the dip, while Ui-before is the voltage before the dip 
occurrence. The value by which voltage decreases on both sides of the transformer is 
represented by the following equations: 

 1 1 SCU Z IΔ =     2 1( )Tr SCU Z Z IΔ = +  (36) 

where ZTr is the transformer impedance, and ISC is the short-circuit current. The value by 

which voltage decreases is higher at this side where the dip source is located. Therefore, if 

ΔU2> ΔU1 (
* *
2 1U U ), the dip source is located at the lower side; otherwise, it is located at the 

upper side (orientation according to the direction of active power flow). 
 

short circuit 
E1 

E2 

IL+ISC 

Z1 Z2 

U1 

active power flow 

U2 

 

Fig. 20. The circuit showing the method of voltage dip location [20] 

If the lower side of the system does not contain any energy sources and the dip source is 
located at the upper side, U1 and U2 have the same value in relative units.  
The described method can easily be applied to transformers with connections of Y-Y type, 
which is a typical connection in the case of transmission grids. On the basis of characteristics 
of various types of voltage dips according to Bollen's classification [6,20] describes 
relationships between dip depths at both sides of the transformer with a Δ-Y connection. 
The nature of load may affect the correctness of conclusions. The original assumption that 
only a short circuit at the lower side of the system may lead to the increase of current 
flowing through the transformer may be wrong in the case of a constant power load and 
transient response of milliseconds. In such a case, voltage reduction during the dip also 
leads to the increase of load current. 
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3.6 The criterion using asymmetry indicators 

The method is based on the analysis of the factors of voltage and current asymmetry in PCC 
(Fig. 21). As far as most industrial loads (such as induction motors, rectifiers) are concerned, 
the current asymmetry factor is considerably higher than the voltage asymmetry factor in 
the case of an asymmetrical dip the source of which is located at the supplier's side. For 
example, induction motor impedance for a negative sequence component is very low; hence, 
even low voltage asymmetry will cause a high value of current negative sequence 
component (such a phenomenon will not occur in the case of synchronous machines). 
 

 

Fig. 21. Registration in PCC of an industrial consumer [39] 

The disturbance source can also be located using the variation of phase angle ΔΦ of the 
symmetric positive sequence component of current for the state before and during the short 
circuit [31]. The rule of the method is as follows: if ΔΦ>0, the dip is located “upstream” the 
PCC, otherwise it is located “downstream” the PCC, where the angle ΔΦ is in the range (-
π ) ÷ π .   

Drawing correct conclusions depends on the choice of period for the analysis before and 

after the short circuit occurrence in order to calculate the vector complex value of current 

symmetric component for both distinguished states. 

3.7 The criterion of protection automatics systems functioning  

Since voltage dips are mainly caused by short circuits, it is appropriate to use the knowledge 

of protection automatics systems in order to locate the dip source. 

3.7.1 The criterion based on the analysis of impedance variation  

The concept of “increase impedance” applied in protection systems may be used as the basis 

for the dip source location [37]. It can be demonstrated that impedance calculated on the 

basis of current and voltage variations before and during the disturbance will be located in 

various quadrants of the complex plane, depending on the short circuit location. The 

procedure to follow is analogous to that presented in chapter 2.2, but this time it concerns 

the fundamental harmonic. The study is focused on the sign of the real part of the 

www.intechopen.com



  
Power Quality – Monitoring, Analysis and Enhancement 

 

182 

impedance measured in PCC for the fundamental harmonic (according to the relationships 

presented in chapter 2.2). Since resistance should always have a positive sign, it is possible 

to locate the disturbance source on the basis of checking the sign of the real part of 

impedance eZ . Thus, the application algorithm of this method is as follows: equivalent 

impedance should be calculated in the measurement point during the registration of the 

disturbance in voltage, by means of the following equation: 

 
dip before

e

dip before

U UU
Z

I I I

−Δ
= =

Δ −
  (37) 

where ( , beforebeforeU I ) and ( , dipdipU I ) are pairs of voltage and current fundamental harmonic 

values before and during the dip. The above method may be presented graphically on the 
complex variable plane. Since electrical power network impedance is usually of inductive 
character for the fundamental frequency, impedance Ze vector will be most often located in 
the first or third quadrant of the coordinate system, like in Fig. 8. The conclusion algorithm 
is then as follows: 
 

If Real ( )eZ >0  the source dip is located at the supplier's side 

If Real ( )eZ <0 the source dip is located at the consumer's side 

 

The above condition is true for current flow direction like in Fig. 2. In a practical algorithm it 
can be assumed that the current direction is compatible with the direction of active power 
flow. 
This method can also be applied to asymmetrical voltage dips, due to the fact that the 

estimated value of impedance for the positive sequence component does not depend on the 

disturbance type. 

In theory the method works correctly; there are, however, two basic difficulties in its 

application in practice. 

The results (equivalent impedance values) are different for various voltage and current 

periods accepted for analysis before and during the dip. Accepting only one period as the 

basis for the analysis during the dip may give incorrect results. In order to improve the 

quality of conclusions drawn on the basis of this method the authors of [37] suggest a multi-

period analysis and the method of least squares to estimate impedance or the choice of 

voltage period number on the basis of an additional analysis of power during the 

disturbance. 

The second factor which may reduce the method reliability is the assumption concerning 

the linearity of the system. In fact, there are very often non-linear elements, i.e. regulated 

electric drives or induction motors at the consumer's side. Both types of the loads can 

operate with constant power. Their reaction during a voltage dip may be fundamentally 

different than that of linear loads. In order to reduce the influence of this factor some 

modifications of the investigated method are suggested [37]. 

Another impedance based methods is proposed in [30], which is based on the assumption 

that the estimated impedance during the voltage dip changes both in magnitude Z  and in 

phase Z∠ . Thus, new criterion is introduced, where the results obtained before and during 

the dip are compared, i.e.: 
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If dip beforeZ Z  and Z∠  >0  the source dip is located at the supplier's side 

Else the source dip is located at the consumer's side 

3.7.2 The criterion using real current component 

In order to locate the voltage dip source in relation to the measurement point the current 

active component measured in the measurement point is analysed; on the basis of its sign in 

the dip initial phase the disturbance source is located [16]. 

For a two-source system, the equivalent circuit diagram of which is presented in Fig. 22, the 

current flowing from source E1 to E2 is described by the following equation: 

 1 2E E
I

Z

−
=  (38) 

 

 
 a) b) 

Fig. 22. A two-source system: (a) before a short circuit; (b) during a short circuit [16]  

Upon the short circuit in point X with short-circuit impedance fZ , like in Fig. 22b, in point 

X voltage becomes reduced practically to 0. There are three currents in the circuit: I1 – 

flowing from the source E1 , I2 – flowing from the source E2 and If – flowing through the 

impedance Zf. The direction of current I1 is the same as the direction of the current flowing 

before the short circuit occurred. If impedance Z2 is much higher than impedance Zf, current 

I2 approximately equals zero, and the current of the source E1 will be almost the only current 

flowing in the circuit. If the above condition is not satisfied, current I is seen as the current 

flowing from the source E2. This idea of the directions of currents during the short circuit is 

used for the voltage dip source location. 
For a short circuit in point X voltage in point MA is: 

 1 1U E IZ= −  (39) 

where U and I are voltage and current measured in point  MA. Multiplying both sides of 

equation (39) by I* results in the following equation: 

 2
1 1* *UI E I I Z= −  (40) 

The real part of equation (40):  

 2
1 1cos( ) cos( )UI E I I Rθ α φ α− = − −  (41) 
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where θ and ǂ are phase angles of, respectively, voltage and current in the measurement 
point  MA, while cos(θ-ǂ) is the power factor in point MA.  
On the basis of equation (41), in the measurement point MA the current flows from E1 to X, 
and Icos(θ-ǂ)>0. In such case it is concluded that the short circuit leading to the dip is located 
downstream the point MA. In the case of the point MB the current Icos(θ-ǂ)<0 is seen as the 
current flowing from E2 to X, while the voltage dip source is located upstream the point MB. 
The described method can also be applied to a single-source system. 
If impedance Zf<<Z2, the current from the source E2 will not flow. However, in the initial 
phase of a voltage dip, the current resulting from a sudden change of circuit configuration 
can be considerably higher than the steady state current. Therefore, even if short-circuit 
impedance is very low, at the beginning of the short circuit a sudden change of the current 
direction can be observed. Consequently, the direction of current at the very beginning of 
the short circuit is a more appropriate indicator of the dip source location. So, the final 
procedure to follow in order to locate the dip source consists of the following steps: (i) 
measuring values and phase angles of voltage and current in the measurement point before 
and during the dip; (ii) determining the value of the component Icos(θ-ǂ) for a few periods 
before and during the dip; (iii) graphical representation of Icos(θ-ǂ) in the function of time 
and (iv) checking the sign of the component Icos(θ-ǂ) at the very beginning of the dip. If the 
sign is positive, the dip source is located at the lower side. On the other hand, if the sign is 
negative, the dip source is located at the upper side. 

3.7.3 Criterion employing distance protection 

Distance relays provide basic protection of HV electric power lines against all types of 
faults. The basis of their operation is measuring the impedance as "seen" from their 
terminals. Connection of all phase voltages and currents of the protected line to the relay 
analogue inputs, required for the correct impedance measurement, allows also determining 
fault location. This property of distance relays and their widespread application enable their 
use for voltage dips location [30]. 
 

 

Fig. 23. A fragment of a power system 

Fig. 23 shows busbars of substation A being a node of a power system. Each line bay at the 
substation is equipped with a distance relay “directed toward the line”. It should be 
determined whether a voltage dip occurs "upstream" or "downstream" a specified point; it is 
assumed that this point is the bay of line 2. This information could be crucial for 
determining quality indices of power transmitted to or received from the second source. The 
subject of analysis are changes in the impedance(Z2<) seen by the distance protection of line 
2 during faults F1, F2, F3, that obviously will give rise to voltage dips at the above specified 
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measurement point. Upon the occurrence of fault F2 a disturbance current will flow in the 
line 2 from the substation A busbars to the fault location. Thus the impedance seen by the 
distance protection Z2< decreases, and its phasor is situated in the first quadrant of complex 
plane. The occurrence of the faults at points F1 or F3 will cause in the line 2 a disturbance 
current flow towards busbars of the substation A. Therefore the impedance seen by the 
distance protection Z2< will also decrease, but its phasor will be situated in the third 
quadrant of a complex plane. The distance protection will select voltages and currents in 
proper phases in order to correctly determine the fault current loop impedance. Thus, the 
condition for a voltage dip occurrence upstream the protection, can be expressed as: 

 0dip before dipZ Z and Z< ∠ >  (42) 

where: 
Zbefore - the impedance seen by the distance protection prior to the fault occurrence, 
Zdip – the impedance seen by the distance protection after the fault occurrence, 

∠Zdip – argument of the impedance as seen after the fault occurrence. 

If the above condition is not fulfilled, but dip beforeZ Z< then a fault, and consequently a 

voltage dip, is localized downstream the protection. It is also possible that the line 2 is 

disconnected due to a failure, maintenance or repair. In this case the occurrence of a fault at 

points F1 or F3 does not change the impedance seen by the protection at the measurement 

point. Thus this method does not prove itself for open networks and this is major 

disadvantage. A possible solution could be to combine the described algorithm with 

observation of the voltage at the measurement point. All newly installed distance relays are 

based on microprocessor technique and their structure contains under/over voltage 

protections. If the voltage at busbars decreases and a flow of short-circuit power 

from/toward busbars does not occur (the impedance seen by the directional protection does 

not change) we can infer that voltage dip occurs downstream the protection. Where the 

busbars voltage decreases, and the impedance seen by the directional protection changes, 

the algorithm described by relation (42) is employed. 
Fig. 24 shows typical impedance characteristics of presently used directional protections. 
Most of protection zones are set in "forward" direction, usually only one zone is set in 
"reverse" direction. This results in a limited reach of correct location of voltage dips 
occurring downstream the protection since the reverse zone is set to a small distance. 
Another limitation for the use of distance relays is the method of their operation. They 
measure the impedance as seen from their terminals but the information about a change in 
the impedance is exclusively acquired by comparison with a threshold value. In other 
words, if the impedance does change but the change is not sufficient to exceed the threshold 
value, the protection will not detect it. A voltage dip caused by e.g. overloading the line 2 
(Fig. 23) may cause a voltage reduction below the limit value but, because of insufficient 
sensitivity, the distance protection will not "recognize" the impedance change, leading 
thereby to erroneous location of the voltage dip. Also voltage dips of very short durations – 
below 20 ms, may not be detected since the distance protection requires over 30 ms for its 
proper operation. The above limitations result from the fact that distance protections are 
intended and designed for faults detection and clearing, and not for voltage dips detection. 
Possible settings that would determine the information about a change in the impedance 
should be selected for the specific site at which this method is applied to voltage dips location. 
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Fig. 24. Impedance characteristics of presently used directional relays 

The advantage of the presented solution is its simplicity. The only procedure that should be 
carried out is a modification of the distance relay configuration, since all necessary electrical 
connections are already made during its installation.  
In order to prove the above method and to illustrate its drawbacks were carried out 
simulation tests of the power system configuration shown in Fig. 23. The network voltage 
was assumed 110kV and lines lengths are as follows: line 1: 50 km; line 2: 10 km; line 3: 15 km. 
The simulation was carried out for voltage dips caused by phase-to-earth and three-phase 
faults with transient resistance of the order of 1 Ω. The transient resistance values seen by 
distance protections, obtained for different locations of three-phase faults, are tabulated in 
tables 2-5. Results for phase-to-earth faults are not included because the obtained impedance 
values were, as expected, almost identical with those obtained for three-phase faults. 
Differences occurred solely in their real parts because of different values of phase-to-earth 
and three-phase fault currents and a non-zero transient resistance. Thus, without loosing 
generality of conclusions, the results for phase-to-earth faults can be disregarded. 
Considering solely the protection Z2< it is evident from data in Table 2 that this protection 
identifies correctly voltage dips at busbars of substation A caused by faults in line 2 - the 
impedance module decreases and its phasor is situated in the first quadrant of complex 
plane. Such situation occurs even after disconnection of line 2 at its end. But if the line 2 is 
disconnected and a fault occurs at the point F3, the impedance seen by Z2< does not change 
(Table 3). In this case the direction of a voltage dip can be inferred from the reduced busbars 
voltage and additional information that the line 2 is disconnected (the line current is zero). 
Tables 3 and 4 show the impedance seen by the distance protections in the event of faults at 
the origin of lines 1 and 3. In both cases a decrease in the impedance Z2< is evident and its 
phasor is situated in the third quadrant of complex plane. Although the conditions of the 
method algorithm are fulfilled, a voltage dip at busbars of the substation A will be not 
correctly located. This is because the reverse zone  pick up value shall be no greater than the 
impedance seen by this protection during a fault a the origin of line 3 (faults in lines 1 and 3 
are located by the protection Z2< in its reverse zone). Thus voltage dips at the measurement 
point, caused by faults in line 1, will be correctly located exclusively in the case of faults near 
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to the substation A busbars. This results from significant differences in the lines lengths and 
may occur in real systems. 
 

Impedance under normal 
operating conditions 

Impedance under 
disturbance conditions 

No. of the 
distance 

protection 
module 

[Ω] 
argument 

[deg] 
module 

[Ω] 
argument 

[deg] 

Z1 262.1 298.0 12.7 210.2 

Z2 57.5 27.8 2.9 22.1 

Z3 53.4 194.5 3.8 200.4 

Table 2. Fault in the middle of line (F2) 

 

Impedance under normal 
operating conditions 

Impedance under 
disturbance conditions 

No. of the 
distance 

protection 
module 

[Ω] 
argument 

[deg] 
module 

[Ω] 
argument 

[deg] 

Z1 183.7 347.1 48.2 192.6 

Z2 ∞ - ∞ - 

Z3 183.5 167.4 48.2 12.9 

Table 3. Fault at the origin of line 3 (F3) – line 2 disconnected 

 

Impedance under normal 
operating conditions 

Impedance under 
disturbance conditions 

No. of the 
distance 

protection 
module 

[Ω] 
argument 

[deg] 
module 

[Ω] 
argument 

[deg] 

Z1 262.1 298.0 13.8 48.5 

Z2 57.5 27.8 37.0 246.9 

Z3 53.4 194.5 22.0 214.7 

Table 4. Fault at the origin of line 1 (F1) 

 

Impedance under normal 
operating conditions 

Impedance under 
disturbance conditions 

No. of the 
distance 

protection 
module 

[Ω] 
argument 

[deg] 
module 

[Ω] 
argument 

[deg] 

Z1 262.1 298.0 87 209.7 

Z2 57.5 27.8 25.3 184.1 

Z3 53.4 194.5 19.9 9.8 

Table 5. Fault at the origin of line 3 (F3) 

The method correctness depends to a large extent on the system configuration and this 
dependence results from the method of operation of the distance protection.  

3.8 Vector-space approach [28] 

The testing of all these methods show that in cases of asymmetrical voltage dips, they are 
rather ineffective. Furthermore, al the discussed methods, except the energy based one, require 
computation of voltage and current phasors for the fundamental-frequency component. 
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Because voltage dips are transient disturbance events, all phasor-based methods might produce 
questionable results due to inherent averaging in the harmonic analysis of the input signals [28]. 
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where:  
uǂǃ and iǂǃ - voltage and current vectors defined in the orthogonal coordinate 
system ǂǃ 

u t( )αβ   -  norm of the voltage vector uǂǃ 

( )u u i i, ,α β α β  - components of vector uǂǃ (iǂǃ) in the orthogonal coordinate 

system ǂǃ 
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>0 → 
downstream 

dip before dipp t p t p t( ) ( ) ( )αβ αβ αβΔ = −  

Table 6. Voltage dip source detecting using vector space approach [28]  

www.intechopen.com



Single-Point Methods for Location of Distortion, Unbalance,  
Voltage Fluctuation and Dips Sources in a Power System 

 

189 

In order to overcome these difficulties vector-space approach is proposed for voltage dip 
detection. These methods are based on instantaneous voltage and current vectors and their 
transformation into ǂ,ǃ,0 Clarke’s components. In this way other methods used for voltage 
dip source detection like the system operating conditions trajectory during the dip (chapter 
3.2), the active current based method (chapter 3.7.2), impedance based methods (chapter 
3.7.1) and energy based method (chapter 3.4) can be presented in general form. 
In Table 6 are presented the generalized methods using a vector space approach. 

4. Voltage flictuations 

Voltage fluctuations are a series of rms voltage changes or a variation of the voltage 
envelope. Where only one dominant source of disturbance occurs its identification is usually 
a simple task. In extensive networks or in the case of several loads interaction, the location 
of a dominant disturbance source is a more complex process. Where large voltage 
fluctuations occur in several branch lines it may happen that measurements of flicker 
severity indices carried out at a power system node, do not indicate disturbing loads 
downstream the measurement point. The reason is a mutual compensation of voltage 
fluctuations from various sources.  
 

 

(a) 
 

 
 

 

 
(b) 

Fig. 25. An example of changes in the flicker severity and the active and reactive power ― 
phase L1 (diagram in (a)) 
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4.1 Criterion of voltage fluctuations during a fluctuating load operation and after 
turning it off 

The recorded quantities are: the flicker severity Pst and changes in the reactive power Q (also 
the active power P, if needed) at PCC. The measurements are carried out during the load 
operation and, where technically possible, after it is turned off. An example records from a 
steelwork during the arc furnace operation is shown in Fig. 25. Figure shows the results of 
one week's measurement of the flicker severity Pst, active power P and reactive power Q 
(phase L1). The dependence of flicker severity values on changes in power, caused by the 
arc furnace operation, is evident. During the periods the furnace is turned off the reactive 
power at the measurement point is capacitive due to the presence of fixed capacitor banks. 
In case several loads are analyzed the measurements have to be carried out during the 
operation of each load separately. 

4.2 Correlation of changes in the flicker severity Pst and/or changes in the active and 
reactive power 
The method consists in the analysis of mutual correlation between changes in the reactive 
power Q (and also the active power P, particularly for low-voltage networks) and the flicker 
severity value Pst. It allows define the dominant source of disturbance and assess the 
influence of a change in the load power on the voltage fluctuation in the measurement point. 
This method can also be applied for assessing the influence of disturbances in individual 
branches of the network on the total Pst at PCC. 
 

 

(a) (b) 

Fig. 26. An example of correlation characteristics of flicker severity Pst and reactive power 
changes 

Fig. 26 shows correlation characteristics of flicker severity Pst and reactive power changes. 
Characteristic (a) exhibits a strong correlation; it means that a load supplied from the 
monitored line is the dominant source of voltage fluctuation. In the case (b) the examined 
load cannot be regarded to be the dominant source. 

4.3 Examination of the U-I characteristic slope [23] 

Consider two sources of flicker which cause voltage fluctuation at the measurement location 
PCC: case 1 involves a flicker generating branch at point A and case 2 a similar at point B 
(Fig. 1). As a result of this flicker caused in the system, the voltage measured at PCC will 
fluctuate – the current at PCC will show different behaviour for these two cases, similar to 
criterion used for voltage dip localization. 
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For case 1, the measured current will be the load current at the lower voltage – the current 
measured at PCC will decrease as the voltage decreases during the flicker occurrence, and 
increase as the voltage increases (Fig. 27a). 
For case 2, the measured current will be the sum of the load current and the flicker-caused 
load current at the lower voltage – therefore, the current measured at PCC will increase as 
the voltage decreases during the flicker occurrence, and decrease as the voltage increases 
(Fig. 27b). 
These observations are presented graphically in Fig. 27. Each event is characterized by 
straight line, which represents the correlation between measured rms voltage and current. It 
can be seen that the slopes of the lines are different for the two cases. A positive slope shows 
that the flicker is from upstream and a negative slope shows that it is from downstream.  
Although the idea was conceived for a one-source system, it has been found that it is also 
valid for two-source system as in Fig. 15 [23].  
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Fig. 27. Slope characteristics for the U-I correlations 

4.4 Identification of interharmonic power direction [24] 

The method utilises two common observations: 

• interharmonics cause flicker – the fundamental and an interharmonic component of a 
voltage waveform are not in synchronous, therefore the voltage can be represented as 
the one of with modulated magnitude, which causes flicker. 

• flicker cause interharmonics – voltage variations can be treated as amplitude 
modulation of the voltage, therefore by means of Fourier analysis the voltage can be 
decomposed on harmonic and interharmonic components. 

Thus, the problem of locating flicker source can be solved by locating interharmonic source.  
If the customer appears as a source of interharmonics i.e. the active interharmonic power is 
negative, the customer is also a flicker source. If the customer appears as an interharmonic 
load i.e. the active interharmonic power is positive, the customer is not a flicker source. 
The method is applied as follows: 

• a power quality monitor is installed at the branch related to the suspected consumer, 
and records voltage and current waveforms as flicker occurs. 

• Fourier based algorithm is used to investigate main interharmonics i.e. the components 
that have the maximum magnitude. 

• for each of the interharmonic active power is calculated. 

• if the consumer produces interharmonic power, he can be identified as interharmonic 
source and consequently the flicker source. 
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The frequency of an interharmonic signal depends on operation of the customer's 
equipment, so it is almost impossible that two devices produce the same interharmonics at 
the same time. Consequently it is relatively easy to locate the source of interharmonics. This 
method is fund not to be effective for random flicker source detection. 

4.5 Examination of the "voltage fluctuation power" 

A conception similar to the method of examining the direction of dominant interharmonics 
active power flow is presented in [1,3,4]. Similarly to the definition of active power in the 
time domain there could be introduced so called “flicker power”. Lets define supply voltage 
and line current in PCC as sinusoidal waveforms with modulated amplitudes as follows 

 ( ) ( )1 1( ) ( ) cosPCC Uu t U m t tω= +         ( ) ( )1 1( ) ( ) cosPCC I Ii t I m t tω ϕ= + +    (43) 

where uPCC(t), iPCC(t) are voltage and current waveforms respectively, U1, I1 are magnitudes 
of the fundamental components, mI(t), mU(t) are amplitude modulation function of current 

and voltage respectively, ϕI is phase shift of the current with respect to the voltage, ω1 is the 
angular frequency of the fundamental component. 

The human sensitivity to flicker is a function of both modulating frequency and degree of 

modulation. That means the frequency signals ( )Um t  and ( )Im t  must be filtered according 

to how the human responds to flicker. This is achieved by using the sensitivity filter 

described in the IEC 61000-4-15. The out signals ( )UFm t  and ( )IFm t  indicate how an average 

human responds to flicker. By multiplying and integrating ( )UFm t  and ( )IFm t  a new 

quantity “flicker power” FP is achieved: 

 
0

1
( ) ( )

T

UF IFFP m t m t dt
T

=   (44) 

where T is integration time. The flicker power provides two important pieces of information: 

• the sign of FP provides information whether flicker source is placed upstream or 
downstream with respect to the monitoring point. 

• when several consumers are investigated, magnitude of FP provides information which 
outgoing line contributes most to the actual flicker level. 

Positive sign of flicker power means the same flow direction as the fundamental power 

flow. It means that voltage modulation ( )Um t  is correlated with current modulation ( )Im t  

i.e. decreasing in supply voltage amplitude results in decreasing the load current. 

Consequently the flicker source is placed upstream with respect to the measuring point. 

Negative sign of flicker power means the opposite flow direction to the fundamental power 

flow, and consequently the voltage modulation is negative correlated with current 

modulation i.e. increasing the current load results in voltage drop. Therefore the flicker 

source is placed downstream with respect to the measuring point meaning that the load is 

responsible for voltage variation. 
There could be noted, that the method is valid in a specific area of the load reactive power 
variation. 
The method gives correct results under inductive load (the current lags the voltage), and 
limited capacitive power load (the current waveform leads the voltage waveform). There is 
also possibility of misinterpretation when a load of constant power demand is considered. 
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In such a case a voltage drop results in increased current flow. When the reaction is 
considerable it could be misinterpreted as having the flicker source downstream. The 
described situations, however, seldom arises in most practical situations. 

5. Voltage asymmetry 

A three-phase power system is called balanced or symmetrical if the three-phase voltages 
and currents have the same amplitudes and their phases are shifted by 120° with respect to 
each other. If either or both of these conditions are not fulfilled, the system is called 
unbalanced or asymmetrical. 
The generator terminal voltages provided to the power system are almost perfectly sinusoidal 
in shape with equal magnitudes in the three phases and shifted by 120°. If the impedances of 
the system components are linear and equal for three phases, and if all loads are three-phase 
balanced, the voltages at any system bus will remain balanced. However, many loads are 
single-phase and some large unbalanced loads may be connected at higher voltage levels (e.g. 
traction systems, furnaces). The combined influence of such diverse loads, drawing different 
currents in each phase, may give rise to the 3-phase supply voltage unbalance. The supply 
voltage unbalance will then affect other customers connected to the same power network.  
To quantify an unbalance in voltage or current of a three-phase system the symmetrical 
components (Fortescue components) can be used. The three-phase system is thus 
decomposed into a system of three symmetrical components: direct or positive-sequence, 
inverse or negative-sequence and homopolar or zero-sequence, indicated by subscripts 1, 2, 
0. These transformations are energy-invariant, so for any power quantity computed from 
either the original or transformed values the same result is obtained. Thus, for active power 
of a three-phase system we obtain the equation: 

 sP P=  (45) 

where: A B C A A A B B B B B Ccos cos cosP P P P U I U I U Iϕ ϕ ϕ= + + = + +  

and s 0 1 2 0 0 0 1 1 1 2 2 23( ) 3( cos cos cos )P P P P U I U I U Iϕ ϕ ϕ= + + = + +  

The subscripts A, B, C denote the different phases. It should be, however, noted that phase 

active powers have positive direction (from a source to load). Active powers of the 

symmetrical components 0 1 2, ,P P P  have no physical meaning and their values depend on 

the character of the system asymmetry. It can be demonstrated that active power of the direct 

component has the same direction as the total system active power, but direction of active 

power of the inverse component depends on the system asymmetry nature. Direction of the 

inverse component may be used for identifying location of asymmetry source in the system. 
 

~

~

~
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measurement  

Fig. 28. Circuit diagram for asymmetry source location identification 
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In order to examine the method of asymmetry source locating in the analysed diagram the 
following parameters are taken (in per unit values): U = 100; Rs = Rn = R = 3.536 and Xs = 
Xn= X  = 3.536. Thus, for symmetrical conditions we obtain: I = 10 and U1 = 50. 
The following sources of asymmetry in the circuit in Fig. 25 are considered: 
- unbalanced load side parameters:      RnA = 0.1R, RnB = R,  RnC = 2R,  

     XnA = 0.1X, XnB = X, XnC = 2X 
- unbalanced system side parameters: RsA = 0.1R, RsB = R,  RsC = 2R,  

     XsA = 0.1X, XsB = X, XsC = 2X 

- unbalanced system phase voltages: 
00j

AU Ue= , 
01200,5 j

BU Ue−= , 
0120j

CU Ue=  

Results of the calculation are shown in Table 7. As can be seen, the positive sign of the 
inverse component active power indicates the system side as the source of asymmetry at the 
point of measurement (irrespective to voltage or impedance asymmetry), the negative sign 
of the inverse component active power indicates the load side as the source of asymmetry. 

6. Conclusion 

In many cases, the quantitative determination of the supplier's and customer's share in the 
total disturbance level at the point of common coupling (PCC) is also required. Seeking non-
expensive, reliable and unambiguous methods for locating disturbances and assessing their 
emission levels in power system, not employing complex instrumentation, is one of the 
main research areas which require the prompt solution. As a result, such research has 
become an important topic recently. 
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