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1. Introduction  

Neuropeptides are a class of regulatory peptides with effects in nearly all physiological 

systems and processes. They are important in facilitating neuroendocrine immune 

interatctions. Bi-directional communication between these two systems in both the central 

nervous system (CNS) and the periphery are arbitrated by the presence of these peptidergic 

innervations. These innervations interacting through unique ligand receptor binding 

complexes have immunomodulatory effects that preserve neuroendocrine and 

neuroimmune health. A vast majority of neuropeptides are contained within the lymphoid 

organs and these include calcitonin-gene-related peptide, somatostatin, glanin, neurokinin, 

substance P, neuropeptide Y and vasoactive neuropeptides (VNs) (Felten et al., 1987; Felten 

et al., 1992; Fink and Weihe, 1988; Nohr and Weihe, 1991; Weihe et al., 1991). The two most 

important VNs, associated with most neuro-immune disorders, are vasoactive intestinal 

peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP). VNs are 

widespread throughout the mammalian body including areas such as central nervous 

system (CNS), peripheral nervous system (PNS) and other organs. They therefore perform a 

wide spectrum of activities in the body which are required for the regulation of 

physiological processes. A number of autoimmune disorders with compromises to 

physiological activities involving the neuroendocrine and immune systems have been 

shown to be associated with VNs, hence, VNs may have a role in the progression of these 

autoimmune disorders. Importantly, VIP and PACAP have G-protein coupled receptors 

(GPCRs) receptors. Binding and ligation of these receptors triggers GPCR reactions resulting 

in cAMP production. Downstream signalling activities of cAMP can either be advantageous 

or detrimental to neuroimmune homeostasis especially in diseased states. This chapter 

therefore examines the vital role of VIP and PACAP in the mechanism and progression of 

autoimmune disorders including Rheumatoid Arthritis (RA), Multiple Sclerosis (MS), 

Alzheimer‘s Disease (AD), and Parkinson’s Disease (PD). 
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2. Vasoactive neuropeptides and their receptors 

Vasoactive neuropeptides (VNs) similar to other neuropepties are essential and contribute 

to the maintenance and synchronization of overall physiological processes. Their 

involvement in almost all physiological processes attests for their unique and critical role in 

the mammalian body. The two most important VNs reviewed in this chapter have a 

function in most neuro-immune disorders. These are vasoactive intestinal peptide (VIP) and 

pituitary adenylate cyclase activating peptide (PACAP). The discovery of VIP was first 

noticed in the lungs as the name implies, it was shown to regulate vasodilation (Said and 

Mutt, 1969), PACAP on the other hand was first recognized in the rat anterior pituitary cells 

(Miyata et al., 1989). 

Over the years knowledge of these peptides and their receptor functions have expanded. 
They are now known to be prevalent in the central nervous system (CNS), endocrine, 
skeletal, respiratory, cardiac and lymphoid systems specifically in the cortex, thymus, 
spleen, lymph nodes, hypothalamus, colon, pituitary gland, neurosecretory fibers, gonads, 
adrenal, germ cells, gastrointestinal tract, ganglia, neurons and muscle fibers (Arimura and 
Shioda, 1995; Arimura et al., 1991; Bellinger et al., 1996; Bellinger et al., 1990; Dey et al., 1981; 
Furness and Costa, 1980; Ganea and Delgado, 2002; Hannibal et al., 1998; Kimura et al., 1994; 
Koves et al., 1993; Shioda et al., 1994). Their presence in these areas can be translated in to 
the modulation of inflammatory activities (Delgado et al., 2003), apoptosis (Delgado and 
Ganea, 2000b), hypoxia and nitric oxide (NO) (Cohen et al., 2002; Larocca et al., 2007), co-
neurotransmitter functioning of cholinergic and catecholamine transmitters (Hamelink et al., 
2002), cerebellar development (Allais et al., 2007) and integrity of the blood brain/blood 
spinal barrier (BBB/BSB) (Benagiano et al., 1996).   
Immune related activities of VIP and PACAP include regulation of chemokine (CCL2, 

CCL5, CCL9, CXCL1, CXCL2, CXCL3, CXCL8, and CX3CL1) release for the recruitment of 

monocytes and neutrophils to sites of infections (Delgado et al., 2004a). They also activate 

anti-inflammatory mechanisms that repress macrophage related activities such as 

chemotaxis, phagocytosis and induction of respiratory burst, thereby limiting excessive 

lymphocyte recruitment and secretion of pro-inflammatory factors (Abad et al., 2005; Ganea 

and Delgado, 2002; Gomariz et al., 2001). VIP and PACAP modulate inflammatory immune 

equilibrium by decreasing IL-12 and IL-2, IL-12 promotes expansion of CD4+T cells 

specifically those classified as pro-inflammatory, Th1 cells, while IL-2 is required for the 

survival and dominance of these cells (Murphy and Reiner, 2002). Antigen induced cell 

death (AICD) of CD4+ T lymphocytes can also be aborted by VIP and PACAP (Delgado and 

Ganea, 2000a). This is done where activation of VIP and PACAP produces cAMP which acts 

as a second messenger to inhibit the transcription of nuclear factor kappa B (NFκΒ), nuclear 

factor of activated T cells (NFAT), Egr2 and 3. The outcome of this is a reduction in the 

expression of Fas ligand (FasL). 

An important characteristic of PACAP and VIP is their role as anti-inflammatory effectors. 

They are able to induce the generation of Th2 type cytokines and chemokines thereby 

regulating inflammation (Delgado et al., 1999c; Martinez et al., 1996; Wang et al., 1999). This 

preferential selection enhances Th2 type cytokines and is protective in preventing 

autoimmunity. In this regard, PACAP and VIP interactions with other cells such as CD4+T 

lymphocytes has antagonistic effects on Th1 cells through suppression of chemoattractant 

molecules CXCL10, while enhancing Th2 homing in up-regulating the release of CCL22 
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from innate immune cells responsible for attracting these cells to sites of infection (Jiang et 

al., 2002). VPAC1 inhibits excessive production of pro-inflammatory markers from 

macrophages and microglia cells while VPAC2 sustains Th2 survival and endorses anti-

inflammatory effectors (Feldmann et al., 1996). These anti-inflammatory effectors include IL-

10, IL-4, IL-5 and IL-1Ra (Delgado et al., 1999a; Delgado et al., 2004b; Feldmann et al., 1996). 

Anti-inflammatory responses are highly necessary to restore immune balance after an 

infection or inflammatory episode has been resolved. Usually inflammation initiates a 

sequence of events that activates pattern recognition receptors, releasing pro-inflammatory 

molecules (chemokines and cytokines). Thus activating molecules that allow for the 

recognition and effective elimination of the pathogens. In some instances when recognition 

of self antigens fails non-specific activation of inflammatory pathways can override or 

weaken normal immune homeostasis prompting auroreactivity. VIP and PACAP can 

prevent these reactions occurring in the absence of injury or pathogenic influence. VIP and 

PACAP also contribute to Treg expansion and suppressive activities in an attempt to 

maintain homeostasis (Chorny et al., 2006). VIP and PACAP deficits have been recognized in 

autoimmune diseases such as Rheumatoid Arthritis, Multiple Sclerosis and Parkinson’s 

Disease (Gomariz et al., 2006), where compromises in their function lead to disequilibrium 

in the Th1/Th2 effector responses (Staines, 2004). However, in therapeutic instances, cells 

generated as a consequence of VNs therapy, are more likely to be vigilant and highly 

antigen specific thus ensuring effective targeting of autoreactive immune responses.  

VIP and PACAP act through G-protein coupled receptors (GPCRs), VPAC1, VPAC2 and 

PAC1. These are seven transmembrane receptors with a diverse range of ligand receptor 

binding complexes involving proteases, ions, peptides, glyocoproteins, and amines 

(Harmar, 2001). The diversity in superfamilies and subfamilies enables these receptors to 

bind to a range of ligands and therefore have effects in all areas of the body. VIP and 

PACAP receptors belong to the GPCRs class II, these receptors have moderate levels of 

amino acid sequences (Nicole et al., 1998). G-proteins can usually form complexes with 

more than one receptor, hence, VIP binds with high affinity to VPAC1 and VPAC2  but not 

PAC1,  PACAP on the other hand is able to bind to all three receptors (Harmar et al., 1998). 

In the periphery monocytes, macrophages, T lymphocytes and mast cells secrete VIP and 

PACAP and express receptors VPAC1, VPAC2 and PAC1 on their cell surfaces (Gomariz et 

al., 1994). VIP and PACAP communications with these receptors activates Gǂs subunit of the 

GPCR protein this transforms GDP to GTP and the ǃǄ subunit dissociates from the complex 

(Figure 1). GTPǂ complex incites adenylate cyclase (AC) to catalyse ATP to produce cAMP. 

cAMP binds to regulatory protein kinase A (PKA) phosphorylating cAMP-regulatory 

element and binding proteins (CREB) (Ganea and Delgado, 2002; Leceta et al., 2000) and 

other signalling pathways. These interactions can also control the action of other second 

messenger systems including calcium ions, diacyglycerol and inositol phosphates (Harmar, 

2001). Phosphorylation of CREBB generates downstream effects that can either be 

antagaonistic or agonistic to the host (Christophe, 1993; Vaudry et al., 2000). VPAC receptors 

have one polypeptide chain with an N-terminal and a C-termnial  with adenylate cyclase 

activity (Laburthe et al., 1994). Thus VIP and PACAP acting through their receptors can 

inhibit pro-inflammatory cytokines specifically IL-6, IL-12, TNF-ǂ and nitric oxide (NO) 

production in microglias, macrophages and T lymphocytes (Delgado et al., 1999b; Delgado 

et al., 1999c; Martinez et al., 1998). 
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3. Role of VNs in autoimmune disorders 

3.1 Rheumatoid arthritis 

In healthy individuals, the joints are covered by a bilayer of synovium. This synovium is 
made up of an intimal synovial fluid filled layer and sublining layers. The synovium 
envelopes the joint and acts as a source of nutrients and lubricant to the cartilage and 
surface of joints respectively (Katrib et al., 2002). The synovium is a structure comprised of a 
series of cells and an extracellular matrix containing collagen fibrils and matrix proteins. 
These cells can be classified as either macrophage like synovial (MLS) cells or fibroblast like 
synoviocytes (FLS) (Bartok and Firestein, 2010; Chang et al., 2010). The former are 
hematopoietic cells and have similar properties to macrophages in other tissues and thus 
have similar markers which include CD11b, CD68, Cd14, CD163 and FcRǄ while the FLS are 
in many ways similar to fibroblasts as they also express CD90, vimentin, type IV and V 
collagens (Zimmermann et al., 2001). 
Severe inflammation of the synovial tissues with incidences of joint obstruction in the hands 
and feet, presenting in the form of pain redness or dystrophy results in RA. These 
symptoms usually ensue when the synovial tissue is overpopulated by excessive migration 
of immune cells and production of inflammatory factors. Hypercellularity in the joints 
results in autoimmunity and inflammation. Cells responsible for these events are activated 
macrophages, neutrophils and MLS of the innate immune system and T cells of the adaptive 
immune system and FLS. The increase in the concentration of these cells in the synovial 
tissues stimulates a cascade of events that promote inflammation in the joints. Importantly, 
the influx of these cells into the joint areas occurs due to the release of chemoattractant 
molecules such as IL-8 which successively attract more cells to the synovial tissues 
(Georganas et al., 2000). Under normal physiological conditions a healthy joint contains 
immune cells that release a balanced amount of both pro and anti-inflammatory factors that 
assist in maintaining inflammatory homeostasis in the joint. In the synovial tissues of RA 
patients, the cells emit a plethora of pro-inflammatory cytokines including IFN-Ǆ, TNF-ǂ, IL-
1 and IL-6, chemokines and growth factors (Kokkonen et al., 2010). These molecules 
stimulate the FLS and in succession these cells also secrete IL-6, matrix metallo-proteinases 
(MMP) and prostanoids (Fiedorczyk et al., 2005). Heightened activation of cells in the joints 
also prompts skewness in the cytokine balance, mostly favouring a predominant pro-
inflammatory immune profile (Boissier et al., 2008; Ruschpler and Stiehl, 2002). These events 
are cyclical and as these molecules are continuously being produced the extracellular 
matrix, cartilage and bone are destroyed.  
FLS are present in large quantities in the intimal lining (Takemura et al., 2001). The ability of 

these cells to thrive and cause damage relates to their resilience to apoptosis which has been 

attributed to the presence of NF-κΒ and sentrin-1 (Franz et al., 2000; Han et al., 1998). 

Additionally, although various death receptor pathways are present in the synovium the 

percentage of synviocytes that undergo apoptosis is minimal. In the RA synovium, p53 

protein in the synoviocytes is to some extent functionally unresponsive due to somatic 

mutations (Firestein et al., 1997; Han et al., 1999; Yamanishi et al., 2002) thus preventing 

apoptosis and rather increasing proliferation and survival of these cells in the joints. Other 

inflammatory molecules produced by FLS including cytokines such as IL-6, IL-18, IL-33, IL-

32 (Brennan and McInnes, 2008), colony stimulating factors (CSF) and type I interferons 

(IFNs) (Alvaro-Gracia et al., 1989; Genovese et al., 2004) collectively assist in breaking down 

the extra cellular matrix (Muller-Ladner et al., 1996).  
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The severity and prevalence of RA in patients may have an association with VNs. VNs, in 
particular VIP function has been shown to be downregulated in FLS of patients with RA this 
consequently encourages persistence increase in inflammation. As previously indicated, VIP 
exerts anti-inflammatory effects through VPACR2 and VPACR1 (Juarranz et al., 2008). 
Reduced VPACR1 in immune cells produces a predominant Th1 immune response 
(Delgado et al., 2008a) suggesting that the Th1 profile noticed in RA may be attributed to 
compromises to these VPAC receptors. Especially the VPACR1 expression in the periphery 
and the joint is deficient in RA the outcome of this is a dampening of anti-inflammatory 
molecules, thus increasing the persistence of Th1 cells and pro-inflammatory molecules in 
RA (Delagado et al., 2001). These observations were correlated with a decrease in cAMP an 
important immunosuppressive agent involved in the VPACR activation pathway (Foey et 
al., 2003). VPACR1 and VPACR2 act together to maintain immune tolerance. These 
protective mechanisms usually involve a decrease in IL-6, TLR4, CCL2 and CCL5 (Arranz et 
al., 2008). VIP decreases TLR-4 signalling by inhibiting molecules required for TLR-4 
directed effects, these may include Pellino 1 and 2, TRAM, TIRAP and TRIF which VIP 
suppresses. These effects may also be attributed to the negative regulation of VIP on TLR 
and MyD88 pathways. Incidentally, VIP reduces the effects of MyD88 by suppressing the 
phosphorylation process associated with IRAK-TRAF6 signalling complex and thereby 
preventing interactions between IRAK1 and TRAF6 and as a consequence loss of TLR-4 
signalling (Arranz et al. 2000).  
Similarly, VIP decrease disease severity especially as observed in the experimental model of 

RA, that is the collagen induce arthritis (CIA). This mainly occurs through the recruiting and 

induction of CD4+CD25+Tregs while at the same time inhibiting the effects of pro-

inflammatory Th17 and Th1 cells (Deng et al. 2010). An increase in CD4+CD25+Tregs also 

correlates with increases in Foxp3 levels (Chen et al., 2008). Similarly, PACAP is also able to 

reverse predominant Th1 pro-inflammatory reactions in RA towards Th2 anti-inflammatory 

influences by inhibiting the expression of TNF-ǂ and IL-6 and encouraging the production 

of IL-10 (Abad et al., 2001; Delgado et al., 1996; Garrido et al., 1996).  VIP and PACAP are 

thus very important in immunoregulation in RA, as they are necessary in reinforcing the 

Th1/Th2 cytokine balance and ensuring that shifts in cytokines are not skewed 

predominantly towards Th1 cells. Hence, in RA VNs, VIP and PACAP administration may 

therefore be both therapeutic and protective against heightened autoreactive inflammatory 

reactions that can severely damage the joints. 

3.2 Multiple sclerosis 

MS is a heterogeneous and multifactorial disease characterised by severe inflammation to 
the central nervous system. The reported prevalence rate worldwide in 2002 was said to be 
between 1.1 and 2.5 million (Pugliatti et al., 2002). MS is both an autoimmune and 
neurodegenerative disorder which affects the brain and spinal cord and manifests itself in 
the form of chronic inflammation, axonal degradation, myelin loss, gliosis, breach in the 
blood brain barrier (BBB) and abnormal immune regulation. MS patients also experience 
loss in sensory function, vision and motor skills (Mattle, 2005). MS can be subdivided in to 
three categories based on the clinical progression of the disease, these include relapsing-
remitting MS, secondary progressive MS and primary progressive MS (Hauw et al., 1999). 
There are many theories on the aetiology of MS, although MS has been shown to have both 
environmental and genetic components. Susceptibility to MS may be associated with genetic 

www.intechopen.com



 
Autoimmune Disorders – Current Concepts and Advances from Bedside to Mechanistic Insights 

 

460 

variation, environmental factors, intrinsic factors and epistatic factors (Ewing and Bernard, 
1998; Granieri, 2000; Hutter and Laing, 1996; Oksenberg and Barcellos, 2000). 
The BBB is specialized to protect the CNS against infiltrates such as autoreactive T cells. In 

MS, BBB destruction occurs as a consequence of infiltration and permeation of the barrier by 

leukocytes, in particular autoreactive T cells. Increasing the permeability of the BBB 

enhances autoreactive reactions and destabilises neuroimmunological processes. There are 

many cells that are affected in MS pathology these include cells of the innate and adaptive 

immune system. Most of these cells are highly activated, importantly, dendritic cells are 

highly activated in MS and also contribute to the skewness towards Th1 immune profile in 

MS. Autoreactive T cells obstruct proteolipid protein, myelin oligodendrocyte glycoproteins 

and myelin basic proteins (Zhang et al., 2008). Additionally, both Th1 and Th17 cells tend to 

drive the disease towards pro-inflammation as these cells produce strong secretions of IFN-

Ǆ and IL-17. IL-17 promotes inflammation as they are able to invade and move into the CNS, 

they can also be found in high levels in the peripheral circulation in cases of severe MS 

symptoms (Kebir et al., 2007). The ability of pro-inflammatory cells to thrive and secrete 

inflammatory cytokines can be as a result of a decrease in anti-inflammatory cellular 

functions. In particular, although Treg cell numbers in MS remain relatively unchanged 

when compared to non-MS individuals, the suppressive nature of these cells are 

significantly reduced. Foxp3 expression is also decreased in MS especially in those with 

secondary relapsing MS (Huan et al., 2005). CD8+T cells despite being functional in MS act 

to inhibit CD4+T and glial cells by releasing cytotoxic molecules that suppress the 

proliferation of these cells.  

VIP has important regulatory effects in MS, in animal models of MS such as in Experimental 
autoimmune encephalomyelitis (EAE), the presence of VIP in circulation reduces pro-
inflammation and restores the Th1/Th2 cytokine balance. The anti-inflammatory effects of 
VIP/PACAP are important in both the adaptive and innate immune system. In MS, VIP and 
PACAP prevent heightened immune reactions by decreasing pro-inflammatory molecules 
produced by macrophages, microglia, dendritic cells, Th1 and Th17 cells. VIP when 
administered acts to decrease the progression of EAE, prevent neurological damage and 
relapses (Gonzalez-Rey et al., 2006). PACAP on the other hand represses antigen presenting 
cell activities initiated by macrophages and dendritic cells (Kato et al., 2004). In the CNS 
these anti-inflammatory reactions induced by VIP and PACAP are protective in the MS 
environment where anti-inflammatory reactions are minimal (Gozes et al., 1997; Gressens et 
al., 1997). Additionally damaged neurons of the CNS may release VIP and PACAP perhaps 
as a restorative mechanism, in an attempt to rescue homeostasis in the CNS and this has 
been confirmed by down regulation of molecules such as, TNF-a, IL-6,  IL-1ǃ and overactive 
microglia (Delgado et al., 2002). Hence, destructive effects of overactive microglia causing 
demyelination and axonal loss may be as a consequence of impaired VIP and PACAP 
activities. RANTES is another chemokine molecule that is implicated in the pathogenesis of 
EAE as it has the ability to also elevate inflammation in the CNS, however, VIP via the 
VPAC1 can dampen NF-kB and effectively RANTES (Li et al., 2006). Thus, suppressing 
leukocyte infiltration and inflammation in the CNS. VIP has been observed in lymphoid 
organs and in immune cells such as T and B cells where they increase immune related 
activities (Delgado et al., 2004b; Pozo, 2003) such as acting on APC through the inhibition of 
IL-12 produced by macrophages while endorsing the expression of B7-2, favouring a 
predominant Th2 immune cell profile. As previously stated Treg function is reduced in MS 
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patients and VIP induces the development of CD4+CD25+Tregs, these VIP-Tregs have more 
efficient suppressive effects owing to the high expression of CTLA-4 (Fernandez-Martin et 
al., 2006). They suppress autoreactive T cells and decrease the severity of the disease 
(Chorny et al., 2006).  
VIP effects are thought to be either via VPAC1 or VPAC2 receptors. VIP binding to VPAC1 

relates to an induction of Tregs while binding or activating of the VPAC2 receptor is 

associated with Th2 cell activation (Delgado et al., 2005b; Delgado et al., 2004b; Pozo and 

Delgado, 2004). VIP and PACAP receptors also play an important role in MS. VPACR2 is 

necessary to ensure balance between the Th1 and Th2 cytokine profiles by promoting the 

prevalence of Th2 cells. In MS VPACR2 is compromised owing to the limiting number of 

receptors that are expressed on immune cell surfaces, this increases the dominance of Th1 

cells and cytokines. This compromise to VPAC2 in MS patients may also occur at the 

molecular level where mRNA expression levels of VPACR2 are down regulated. 

Additionally, the formation of the VIP ligand receptor complex stimulates cAMP/PKA 

downstream effects which ultimately dampen IFN-Ǆ and stimulates the generation of 

GATA3 (Sun et al., 2006). This in effect increases the expression of Th2 immune cells. 

PACAP also acts directly to reduce pro-inflammatory cytokines IFN-Ǆ, TNF-ǂ, IL-1ǃ and IL-

12 released from macrophages and microglia cells in areas of neurological breakdown in the 

CNS, preventing oligodendrocyte death while increasing the expression of CCR4 on Tregs 

(Kato et al., 2004). T cells in the presence of these VNs produce brain derived neurotrophic 

factors that allow for the increase in axonal growth remyelination, neuronal regeneration 

and decreases neuronal degeneration. VIP also induces astrocytes to produce neurotrophic 

factors. Thus VIP and PACAP confer both anti-inflammatory and neuroprotective effects on 

neurons and cells of the neuroimmune system. In other animal models of MS such as in the 

myelin/oligodendrocyte glycoprotein (MOG) deficient mice, PACAP administration 

prevents elevations in the severity of MS by decreasing the effects of autoreactive microglia 

and macrophages (Cunningham et al., 2007). VIP also inhibits co-stimulatory molecules 

such as CD40, CD80 and CD86 required and produced by over stimulated dendritic cells, 

microglia and macrophages (Delgado et al., 2005a; Gonzalez-Rey et al., 2007).  

3.3 Alzheimer disease 

Dementia is a well known disorder of the CNS and about 50% of all dementia are associated 
with AD (Pasquier, 2000). AD is a disease of the CNS characterised by progressive loss in 
memory and cognition. The current prevalence rate is between 2.8 and 56-56.1 enduring for 
about 8-10 years following diagnosis (Koedam et al., 2010). There are two subtypes of AD 
defined based on age of onset, that is, early and late onset. 5% of all cases of AD are 
associated with early onset (Koedam et al., 2010). Most early onset of AD are autosomal 
dominant and passed on within families. Similar to MS, AD has a genetic component and 
mutations in a number of genes have been proposed to underlie some cases of AD. Among 
these are mutations in the presenilin (PSEN) 1 and 2 (Avila-Gomez et al., 2008) and amyloid 
precursor protein (Miar et al., 2011). The presence of apolipoprotein E (APOE) specifically 
APOEε2 and APOEε4 alleles on chromosome 19 may potentially predispose an individual to 
developing late on set AD (Vemuri et al., 2010).  
Diagnosis of AD is based on the observation of neurofibrillary tangles and myeloid plaques 
in various areas of the CNS (Bierer et al., 1995). These plaques also known as senile plaques 
occurring in various brain regions are caused by deposition of extracellular fibrillar ǃ-

www.intechopen.com



 
Autoimmune Disorders – Current Concepts and Advances from Bedside to Mechanistic Insights 

 

462 

amyloid (Aǃ) peptides (Selkoe, 1998). Aǃ is a derivative of the proteolytic amyloid precursor 
protein (Maccioni et al., 2001). The presence of Aǃ in the brain or fibrils results in the 
activation of microglia and the secretion of vast amounts of pro-inflammatory cytokines 
causing neuronal damage and neuronal loss in the temporal and parietal regions (McGeer et 
al., 1994). Other brain areas that are affected include the hippocampus and neocortex (Scheff 
et al., 1996; Scheff et al., 1993). These detrimental effects manifest in the form of loss in 
cognitive function, memory and cognition. The scope of neurofibrillary tangles in most cases 
of AD is associated with the level of dementia and the length of the disease as these may 
have severe effects on neurological function (Arriagada et al., 1992; Bierer et al., 1995).  
As the CNS is under constant surveillance by these cells health of the CNS is maintained. 

Importantly, microglias interact with neurons, glia cells, tissues, vessels and synapses, thus 

they are able to remove unwanted material, dead cells and repair damaged tissues and 

synapses (Wake et al., 2009). Microglias upon activation induce the release of cytokines, 

chemokine, free radicals and acute phase proteins which are important in eliminating 

foreign pathogens. Nonetheless, the regulation of microglia activation may also be 

important for maintaining neurological homeostasis. Reduced activation of microglia in the 

normal brain occurs via interactions with chemokine receptors present on the microglia 

hence as microglias survey the neuro-environment they bind to molecules on the neurons 

which inhibit their activation (Randsohoff et al. 2007). Similarly, excessive secretion of pro-

inflammatory mediators is prevented through ligand binding between CD200L on the 

microglia and CD200 on the neuronal cells (Biber et al., 2007). In AD microglias function is 

to some extent impaired. Senescence may play a role here, as it has been observed that aged 

microglias or microglia from elderly patients tend to be obscured in their function and have 

reduced motility (meyer-leuhmann et al., 2008; Streit et al., 2008). However, in most 

instances microglia function is related to their localization in a particular site, hence, they 

transform their functions to suite their particular location in the CNS. Development of senile 

plaques in AD induces the development of microglia phenotype that is associated with 

plaque formation. These microglias are therefore highly activated and more reactive in 

response to amyloid deposition (Yan et al. 2009; Bornemann et al., 2001).  

The most predominant receptors on microglias are the pattern recognition receptors which 

include Toll-like receptors (TLRs). Using these receptors, microglia recognise damage 

associated molecular patterns (DAMPs) molecules and pathogen associated molecular 

patterns (PAMPs) released from damaged tissues and pathogens respectively. Detection of 

these molecules elicits an inflammatory response from these microglias. TLR2 and TLR4 are 

the most influential receptors related to AD. They detect fibrillar Aǃ and their interactions 

with these molecules activate the microglia. TLRs also communicate with other receptors 

that interact with fAǃ such as scavenger receptor A, CD36, CD47, ǂ6ǃ1 integrin. Thus this 

phenotypically different microglia in areas of plaque formation form as a consequence of 

engaging with fAǃ using the TLRs activating pro-inflammatory Th1 immune responses and 

produce reactive oxygen species (Mantovani et al. 2004). As with other neurological 

diseases, activation of microglias results in the secretion of high levels of cytokines and pro-

inflammatory factors. Thus increasing neurotoxicity in the CNS and further weakening the 

neuro-immune environment. This is in contrast to their normal function where they interact 

with other neurons and glia to decrease their activation brought on by the presence of pro-

inflammatory factors and also redundant immune activation (Colton, 2009).  
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Microglias in the AD patients are abundant in the cortex, this has been shown to be 
associated with a reduced cognitive function in these patients (Edison et al. 2008). However, 
this may not be present in all patients with AD. Induction of the ǂ-secretase pathway 
enhances the protective effects of PACAP via the PAC1 receptor and also the production of 
amyloid precursor protein alpha (APP-ǂ) thus decreasing the prevalence of Aǃ in AD. 
Hence, PACAP and PAC1 prevent apoptosis of neurons enhancing their survival (Dejda et 
al., 2005; Onoue et al., 2002). Autoreactivity, due to Aǃ can also be averted in the presence of 
PACAP as these neuropeptides are able to modulate the proliferative properties of these 
cells and induce them to produce gliotransmitters and gliopeptides which are protective 
against neuronal degradation and death (Masmoudi-Kouki et al., 2007). PACAP is able to 
enhance memory creation in animal models (Sacchetti et al., 2001). By binding to its receptor 
PAC1 it encourages the release of ǂ-secretase and stimulates the release of APLP-2. APLP2 
in turn induces the growth of neurons (White et al., 1998). VIP also exerts neuroprotective 
effects in AD as it its able to dampen the effects of migroglai cells that have been activated 
by Aǃ and thus dampening, the secretion of neurotoxins TNF-ǂ, IL-1ǃ and NO and 
reducing neuronal death. These effects of VIP are enable through the VPAC1 receptor. VIP 
binding to VPAC1 sets off a cascade of reactions involving the cAMP/PKA pathway which 
in sequence activates neurotrophic dependent factors to enhance neuroinal survival (Gozes, 
2001). VIP also inhibits IKK, p38 and p42 responsible for NFκB activation and pro-
inflammaotry cytokine release (Delgado et al., 2008b). 

3.4 Parkinson’s disease 

Aggressive loss of neurons of the striato-nigral centres, nucleus basalis, raphe nuclei, locus 
coeruleus, autonomic ganglia, amygdala, hippocampus, cingulated, temporal cortex and the 
olfactory bulb are associated with Parkinson’s disease (PD). Neurotransmitters also become 
deficient in PD, and this has been shown to be the single most important factor causing 
considerable defects in muscle and manifesting in the form of rigidity, akinesia and tremors 
(Lee, 1989). The symptoms of PD are therefore comprised of loss in attention cognitive and 
motor function (Lippa, 2010). PD can either be sporadic or familial. The illness starts off later 
in life and progressively worsens with death occurring a few years after onset of disease 
(Doudet, 2001). It is an adult onset disease that affects individuals between the ages of 20 to 
75 years with a prevalence rate of 13.4 per 100,000 (Van Den Eeden et al., 2003). 
In the periphery total lymphocytes especially CD3+ and CD4+CD3+ and B cells tend to be 

reduced in PD patients compared to healthy controls, similarly diminished levels of 

memory T cells have been observed while activated T cells are elevated (Bas et al., 2001; 

Fiszer et al., 1994; Offen et al., 1996). Patients may also demonstrate reduced CD8+T, CD4+: 

CD8+ T, cell ratios, CD4+CD25+T cells and an increase in IFN-Ǆ and IL-4 T cells (Gruden et 

al.), with shifts in cytokines towards pro-inflammatory cytokine profile thus causing 

potential heightened inflammation in the brain. Microglia in the neuro-inflammed CNS 

facilitates the excessive production of cytokines, neurotrophins, reactive oxygen and 

nitrogen species (ROS and RNS). In PD, the affected CNS regions include dopaminergic, 

cholinergic, serotonergic and noradrenergic neurons and their neurotransmitters are 

implicated in the mechanism of PD (Bosboom et al., 2004). Regions of lewy bodies are 

dispersed throughout the regions of neuronal loss, these contain alpha–synuclein and 

ubiquitin and are more prominent in the dopamine neurons of the substantia nigra (Kosaka, 

2000; Kosaka and Iseki, 2000).  
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Additionally, microglia are also compromised in PD, they tend to produce high levels of 
MHCII antigen leukocyte antigen-DR (HLA-DR) and inflammatory molecules including IL-
1ǃ, IL-6 and TNF-ǂ and express ICAM-1 and LFA-1 (McGeer and McGeer, 2008; McGeer et 
al., 2001). The activated microglia portray high levels of ICAM-1 and LFA-1, thus these 
molecules in SN may also be implicated in the influx of immune cells in the affected areas 
(Imamura et al., 2003). In the CNS microglia are responsible for, antigen presentation, 
removal damaged and apoptotic cells and secretion of pro-inflammatory and neurotrophic 
factors. These factors can either be protective or toxic to the CNS environment (Sawada et 
al., 2006), thus microglias have two contradictory roles in the CNS, depending on the CNS 
environment. Microglia become activated when they come into contact with damaged or 
lingering neuron when this occurs the microglia will assist in repairing and restoring these 
damaged neurons. These microglia express TNF-ǂ and IL-6, these cytokines have 
neurotrophic components (Diogenes and Outeiro, 2010; Gash et al., 2007; Reale et al., 2009). 
Neurotoxic effects of microglias underlie some of the detrimental effects conferred on 
neurons in the CNS, neurotixic microglia increase the levels of pro-inflammatory cytokines, 
neurotrophins, reactive oxygen species and reactive nitrogen species (Long-Smith et al., 
2009). They can become harmful when they synthesise and secrete molecules that increase 
synaptic overactivity and thus increase the damage already present. They may also alter 
excitotoxicity, abort apoptosis and encourage the growth of neurite in the injured CNS 
(Barger et al., 1995; Berezovskaya et al., 1995; Imamura et al., 1990; Lazarov-Spiegler et al., 
1996; Prewitt et al., 1997; Rabchevsky and Streit, 1997; Toku et al., 1998). Activated 
microglias are present in other areas of the CNS and therefore initiate and promote 
inflammation in different brain regions including the putamen, substantia nigra and 
cingulated cortex where they are responsible for the generation of lewy bodies (Li et al., 
2010; McKeith and Mosimann, 2004; Varani et al., 2010). TNF-ǂ and IL-1ǃ have similar 
signalling mechanisms and induce neurodegeneration in the CNS by activating NKFκB, 
thus facilitating oxidative damage and consequently neuronal damage (Wahner et al., 2007). 
The toxic effects of IL-1ǃ and TNF-ǂ can also be attributed to their ability to increase the 
expression of leukocyte adhesion molecules on the surfaces of the endothelial cells. This 
elevates inflammation in the CNS affecting neuronal survival (Whitton, 2007). At the 
molecular level mitochondrial and cytoskeletal dysfunction, oxidative damage, 
neuroinflammation and abnormal protein accumulation contribute to the progression of PD 
(Winner et al., 2009).  
Inducible nitric oxide synthase (iNOS), and NADP-oxidase secreted by activated microglia 
increase the production of NO and reactive oxygen species causing neurodegeneration. VIP 
is able to reduce microglial activation thereby preventing the release and damaging effects 
of these factors (Delgado and Ganea, 2003). Additionally in the CNS, the release of IFN-Ǆ by 
activated microglia tends to be rather harmful. IFN-Ǆ binds to its receptor sets off a cascade 
of events involving transphosphorylation of the receptor-associated janus tyrosine kinases 
(Jak)1 and 2. This facilitates the recruitment and phosphorylation of signal transducer and 
activator of transcription (STAT1) (Dell'Albani et al., 2001). These sequences of events 
stimulate IFN-Ǆ, inducible protein 10, iNOS, CD40 and IL-12. VIP and PACAP together 
reduce microglia pro-inflammatory activities through VIP and PACAP binding to VPAC1 
and dampening the phosphorylation and formation of the Jak1-2/STAT1 complex. This 
prevents the synthesis of IRF-1, and inhibits IFN-Ǆ and iNOS expression from microglia in 
the striatum and also in the substantia nigra. These inhibitory effects are facilitated by the 
cAMP pathway (Delgado, 2003). 
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TNF-ǂ released in the CNS encourages gliosis, preventing the uptake of glutamate by 

astrocytes and apoptosis in oligodendrocytes (Kim et al., 2000). When VIP or PACAP is 

applied to microglia stimulated by LPS from rats in culture it was noticed that VIP and 

PACAP substantially decreased the expression of TNF-ǂ. These inhibitory effects were 

facilitated via cAMP pathway (Delgado et al., 1998; Kim et al., 2000). VPAC1 and PAC1 

receptors are present on microglial cells therefore they are able to directly act on overactive 

microglia cells efficiently reducing their neurotoxic effects upon Ligand receptor binding 

(Kim et al., 2000). Although TNF-ǂ may have detrimemmntal effects on the microglia, in 

some cases they have been shown to be protective as they release reactive oxygen species 

that act to protect neurons from harm and stimulate an increase in anti-inflammatory IL-10 

(Cheng et al., 1994; Sheng et al., 1995). VIP and PACAP also act to inhibit the presence of 

macrophage inflammatory protein (MIP-1alpha, 1 beta), macrophage chemoattractant 

protein (MCP-1) and RANTES, chemokine released by microglia cells (Zhang et al., 2000). 

PACAP protects neurons in quinolinic acid- and 6-hydoxydopamine-induced lesions 

(exprimental model of PD), which correlates with the less severe behavioral symptoms 

(Tamas et al., 2006). VIP ameliorates dopamine induced cell death and neuronal cell loss of 

striatal dopaminergic fibers (Offen et al., 2000). These peptides present in the compromised 

CNS can have important benefits for individuals affected. Although these peptides may not 

necessarily completely clear the disease, they may prolong the life and function of PD 

patients. 

4. Conclusion 

In summary, it is apparent that VIP and PACAP are vital for the enhancement of anti-

inflammatory reactions in autoimmune diseases with compromises to neuro-endocrine- 

immune mechanism. These fundamental anti-inflammatory responses assist in decreasing 

pro-inflammatory reactions observed in most autoimmune diseases including RA, MS, PD 

and AD. Thus VIP and PACAP are important in suppressing elevated amounts of IFN-Ǆ, 

TNF-ǂ, IL-6 and IL1ǃ. Modulation of these factors to optimal levels promotes and preserves 

the survival of cells and tissues affect these diseases. A decrease in their receptors is a 

common finding in most autoimmune disorders and this is often correlated with decreases 

in cAMP. Additionally, Th1/Th2/Th17 disequilibrium is noticed in the above mentioned 

diseases. VIP and PACAP are able to reverse and regulate these shifts in inflammatory 

cytokines. Their ability to maintain both peripheral and CNS homeostasis highlights their 

importance in physiological processes. 

VIP and PACAP are therefore potential candidates for treating autoimmune disorders. Their 

administration may substantially reduce symptoms and improve the quality of life of 

patients with RA, MS, PD and ALS. As VIP and PACAP activate cAMP pathways, therapies 

that remove inhibitors of cAMP may be important. These inhibitors include 

Phosphosdiesterase enzymes. Phosphosdiesterase enzymes inhibitors (PDEIs) may have 

potential advantage in the treatment of autoimmune disorders. PDEIs may also increase the 

effectiveness of these VNs as they can increase the intracellular cAMP and therefore initiate 

anti-inflammatory mechanisms. Incidentally, PDEIs are known to prolong life and reduce 

cytokines, demyelination and inflammation. Hence further studies are required to examine 

the most effective therapies for these autoimmune disorders.  
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