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1. Introduction  

Genomic DNA is faithfully replicated and divided between two daughter cells in the course 
of each cell cycle. In order to maintain the inheritance of gene expression patterns, the cell 
must not only replicate the DNA, but also duplicate its chromatin structure (McNairn & 
Gilbert, 2003). Following replication, DNA is methylated and packaged into nucleosomes by 
the binding of histone octamers to form chromatin. DNA methyltransferases (DNMTs), the 
enzymes that transfer methyl (CH3) residue to CpG dinulcleotides, are coordinated with 
DNA replication to maintain the DNA methylation pattern (Fig. 1). DNMTs recognize 
methylated CpG dinucleotides on the parent strand and methylate correlating CpG 
dinucleotides on the daughter strand (Bestor et al., 1996). This heritability of the DNA 
methylation pattern, as well as histone modification patterns, is mediated by epigenetic 
machinery. 
Epigenetics was first used by Conrad Waddington in 1939 to describe “the causal 
interactions between genes and their products, which bring the phenotype into being” 
(Waddington, 1942). The current definition is “the study of heritable changes in gene 
expression that occur independent of changes in the primary DNA sequence” (Sharma et al., 
2010).  Waddington’s definition initially referred to the role of the epigenetics in embryonic 
development, in which cells develop distinct identities despite having the same genetic 
information; however, the definition of epigenetics has evolved over time as it is implicated 
in a wide variety of biological processes, including maintenance of the normal gene 
expression, carcinogenesis and genomic response to environmental stresses.  
In this chapter, we take a look at the courent understanding of epigenetic status in human 
cells, describe human diseases associated with congentital epigenetic errors, and also 
discuss how human diseases may be caused by acquired epigenetic errors as a result of 
environmental factors. We also discuss epigenetic therapies that take advantage of the fact 
that epigenetic changes are resversible. 

2. Epigenetic status in human cells 

The DNA methylation pattern is established during tissue development (Sakashita et al., 
2001). Once the pattern is established in a cell, it is stably maintained through DNA 
replications at each cycle of cell division. Therefore, cells keep distinct identities while 
containing the same genetic information. 
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Fig. 1. Maintenance of the DNA methylation pattern during DNA replication and cell 
division 

2.1 DNA methylation 

During evolution, the CpG dinucleotide, the principal site of DNA methylation, has been 
selectively depleted through conversion of methylated cytosines to thymidines via a 
deamination process. Therefore, the human genome has only 10% of the expected frequency 
of CpGs, and 70 to 80% of these are heavily methylated. Small regions of DNA (1 to 2%), 
termed CpG islands, are not CpG-depleted. CpG islands are strongly protected from 
methylation and are associated with the transcription start sites in almost half of human 
genes. The genome organization facilitated by an epigenetic pattern is only present in higher 
order eukaryotes including mammals and humans. It is absent in Drosophila, Caenorhabditis 
elegans, and yeast (Baylin, 1997).  
DNA methylation patterns closely correlate with patterns of gene expression (Fig. 2). 
Heavily methylated genomic regions are generally associated with chromatin organization 
that is inhibitory to transcription. In humans, such methylated genomic regions often 
contain highly repeated sequences; methylation may help guard against transcriptional  
 

 

Fig. 2. Epigenetic gene regulation via DNA methylation and histone modifications 

www.intechopen.com



 
Epigenetic Modifications: Genetic Basis of Environmental Stress Response 273 

expression of parasitic sequences, which were introduced into the genome over evolution by 
transposable elements and DNA viruses (Bester et al., 1996). In contrast, the unmethylated 
CpG islands of genes are associated with chromatin containing highly transcribed DNA.  

2.2 Histone modification 

Histone proteins, which comprise the nucleosomes core, contain a globular C-terminal 
domain and an unstructured N-terminal tail (Lugar et al., 1997). The N-terminal tails of 
histones can undergo a variety of posttranslational covalent modifications including 
acetylation, methylation, phosphorylation, ubiquitylation, and sumoylation (Kouzarides, 
2007). The complement of modifications is proposed to store the epigenetic memory inside a 
cell in the form of a “histone code” that determines the structure and activity of different 
chromatin regions (Jeniwein et al., 2001) (Fig. 2). 
Unlike DNA methylation, histone modifications can lead to either activation or repression 

depending upon which residues are modified and the type of modifications present. For 

example, lysine acetylation correlates with transcriptional activation (Kouzarides, 2007; 

Hebbes et al., 1988), whereas lysine methylation leads to transcriptional activation or 

repression depending upon which residue is modified and the degree of methylation. For 

examples, trimethylation of lysine 4 on histone H3 (H3K4me3) is enriched at 

transcriptionally active gene promoters (Liang et al., 2004), and trimethylation of lysine 9 on 

histone H3 (H3K9me3) and trimethylation of lysine 27 on histone H3 (H3K27me3) is present 

at gene promoters that are transcriptionally repressed (Kouzarides, 2007). A vast array of 

active and repressive histone modifications have been identified, which constitute a 

complex gene regulatory network essential for the physiological activities of cells (Sharma et 

al., 2009). 

2.3 Interplay of these epigenetic modifications 

DNA methylation and histone modifications, not only perform individually, but also 
interact with each other at multiple levels to determine expression status, chromatin 
organization and cellular identity (Cedar et al., 2009). The two histone modifications 
(H3K9me3 and H3K27me3) that constitute the silencing mechanism in mammalian cells 
work in concert with DNA methylation. Furthermore, a histone methyltransferase (HMT) 
can direct DNA methylation to specific genomic targets by recruiting DNMTs to stably 
silence genes (Tachibana et al., 2008), and a histone demethylase (HDM) stabilizes DNMT1 
protein to maintain DNA methylation (Wang et al., 2009).  
DNMTs can in turn recruit methyl-binding domain proteins (MBDs) and histone deacetylases 
(HDACs) to achieve gene silencing and chromatin condensation (Jones et al., 1998; Nan et al., 
1998) (Fig. 2). DNA methylation can also induce histone H3K9 methylation through an MBD 
(MeCP2), thereby establishing a repressive chromatin state (Fuks et al., 2003). 
The interplay of these modifications creates an epigenetic landscape that regulates the way 
the mammalian genome manifests itself in different cell types, developmental stages and 
disease states. The distinct patterns of these modifications present in different cellular states 
serve as a guardian of cellular identity (Sharma et al., 2009). 

2.4 Aberrant epigenetic modifications 

A normal epigenetic landscape is known to be disturbed in specific disease conditions. For 
example, the cancer epigenome (the whole genomic epigenetic state) is marked by genome-
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wide hypomethylation and site-specific CpG island promoter hypermethylation (Jones & 
Baylin, 2002). Global DNA hypomethylation plays a significant role in tumorigenesis and 
occurs at various genomic sequences including repetitive elements, retrotransposons, CpG 
poor promoters, introns and gene deserts (Rodriguez et al., 2006). Activation of the 
retrotransposons due to hypomethylation lead to increased genomic instability by 
promoting chromosomal rearrangements (Jones et al., 2002; Eden et al., 2003; Howard et al., 
2008). Furthermore, methylation is known to stabilize various repetitive sequences. Thus, 
hypomethylation CAG trinucleotide repeats in a DMNT1-deficient mouse display increased 
repeat instability (Dion et al., 2008). 
In contrast to hypomethylation, which increases genomic instability and activates proto-
oncogenes, region-specific hypermethylation contributes to tumorigenesis by silencing 
tumor suppressor genes, such as Rb, p16 and BRCA1 (Sharma et al., 2009). These genes are 
involved in cellular processes integral to cancer development and progression, including 
DNA repair, cell cycle regulation, cell adhesion, apoptosis and angiogenesis. Silencing of 
DNA repair genes enables cells to accumulate further genetic lesions leading to the rapid 
progression of cancer. Hypermethylation at the binding site for CCCTC-binding factor 
(CTCF), a chromatin barrier by preventing the spread of heterochromatin structures, inhibits 
CTCF binding, and leads to instablity of repetitive sequiences, which is a causing-
mechanism for varios neurodegenerative diseaases (López Caste et al., 2010). However, how 
genes are targeted for this aberrant DNA methylation is still unclear. 
Both aberrant histone acetylation and histone methylation are found in cancer cells. These 
changes associated with overexpression of HDACs and dysregulation of HMTs (Halkidou et 
al., 2004; Song et al., 2005). Alterations in H3K9 and H3K27 methylation patterns are 
associated with aberrant gene silencing in cancers. It has recently demonstrated that 
aberrant nucleosome positioning is created by a co-repressor Nerd (nucleosome remodelling 
and deacetylase) complex that recruits PML-Para (an oncogenenic transcription factor), 
polycomb repressor complex 2, DNMT3A, and MBD2, resulting in abnormal gene silencing 
in leukemia (Feng et al 2001; Morey et al., 2008).  
 Re-establishing normal histone acetylation patterns through treatment with HDAC 
inhibitors have been shown to have anti-tumorigenic effects, via reactivation of silenced 
tumor suppressor genes (Carew et al., 2008). Suberoylanilide hydroxamic acid (SAHA), 
which is an HDAC inhibitor, has now been approved for use in the clinic for treatment of 
lymphoma (Sharma et al., 2009). 

2.5 Understanding of the global epigenetic landscape 

The global epigenetic landscape that is correlated with important biological processes and 
disease state has not been comprehensively investigated for most cell types. However, 
recent advances in genomic technology, in particular high-throughput sequencing, have 
enabled genome-wide analysis of histone modifications and DNA methylation at nucleotide 
resolution (Beck, 2010). Large-scale epigenomic mapping studies have the potential to 
enhance three major areas of science: basic gene regulatory processes, cellular differentiation 
and reprogramming and the role of epigenetic regulation in disease (Satterlee, 2010). 
Understanding how the epigenomic state of human embryonic stem (ES) cells changes 
during the differentiation process is crucial for understanding normal development and 
establishing epigenomic maps of induced pluriopotent stem (iPS) cells will be essential to 
enable regenerative medicine to reach its full potential for treating diseases (Deng et al., 
2009; Ball et al., 2009; Doi et al., 2009). Genome-wide association studies have been 
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successful in identifying genetic variants associated with many different diseases. In the case 
of diseases that have a strong environmental component, epigenome-wide association 
studies based on the epigenomic maps of specific cell types that statistically correlate 
epigenetic variation with phenotypes, could be of great value (Kong et al., 2009).  
To generate epigenomic maps for cell types, large-scale epigenomics effort have already 

been initiated. The NIH Roadmap Epigenomics Program 

(http://www.roadmapepigenomics.or) will permanently archive data in the GEO database 

(Http://www.ncbi.nlm.nih.gov/epigenomics) at the US National Center for Biotechnology 

Information (NCBI), and the International Human Epigenome Consortium (IHEC) 

(http://ihec-epigenomes.org) aims to expand the number of cell types and generate 

additional 1,000 reference epigenomes (Beck, 2010) that are not being characterized in the 

NIH Roadmap Program. 

3. Human diseases associated with congentital epigenetic errors 

Epigenetic gene control is an intrinsic mechanism for normal tissue development and 

abnormalities in the molecules associated with this mechanism are known to cause various 

congenital diseases.  

3.1 Genomic imprinting diseases 

Genomic imprinting is the epigenetic phenomenon initially discovered in human diseases. 
In an imprinted gene, out of the two parental alleles, one allele is active and the other allele 
is inactive due to epigenetic mechanism such as DNA methylation (Fig. 3C). Therefore, 
defect in the active allele of the imprinted gene results in the loss of expression. This has 
been found in neurodevelopmental diseases, Prader-Willi syndrome and Angelman 
syndrome (Kubota et al., 1997). 

3.2 X-chromosome inactivation disorders 

The X chromosome has a large number of genes, whereas the Y chromosome has relatively 

few genes. Thus, females (XX) have more genes than males (XY). To minimize this sex 

imbalance, one of the two X chromosomes in females is inactivated by epigenetic 

mechanism (Kubota et al., 1998). Improper X inactivation is though to be an embryonic 

lethal condition. This hypothesis is supported by the recent findings in cloned animals 

produced by somatic nuclear transfer in which failure of X-chromosome inactivation was 

observed in the clones with embryonic abortion (Xue et al., 2002; Nolen et al., 2005).Even if 

one of the X chromosomes is extremely small due to a large terminal deletion, so that over 

dosage effect of X-linked genes is minimized, the affected female show a severe congenital 

neurodevelopmental delay(Kubota et al., 2002), indicating that proper gene suppression by 

epigenetic mechanism is essential for normal development (Fig. 3D).  

3.3 DNA methylation-associated protein diseases 

DNA methylation is a fundamental step in epigenetic gene control, and it is achieved by an 
addition of the methyl group (CH3) to CpG dinucleotides mediated by DMNTs. Defect in a 
DNMT (e.g., DNMT3B) can causes an ICF syndrome that is characterized by 
Immunodeficiency, centromere instability, facial abnormalities, and mild mental retardation 
(Fig. 3A) (Okano et al, 1999; Shirohzu et al., 2002; Kubota et al., 2004). 
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MBDs are also important molecules in the control of gene expression. Mutations in a MBD 
(e.g., MeCP2) can cause Rett syndrome, which is characterized by seizures, ataxic gait, 
language dysfunction and autistic behavior (Amir et al, 1999; Chunshu et al., 2006). 
Therefore, it has been thought that MeCP2 dysfunction leads to aberrant gene expression in 
the brain associated with neurological features of the disease. Recent studies have shown 
that MeCP2 controls a subset of neuronal genes (Chen et al., 2003; Martinowich et al., 2003; 
Horike et al., 2005; Itoh et al., 2007), suggesting that epigenetic dysregulation of the neuronal 
genes may cause neurological features of the disease (Fig. 3B).  
 

 

Fig. 3. Abnormal epigenetic patterns in human congenital diseases 

4. Proposed human diseases associated with acquired epigenetic errors 
caused by environmental factors 

Health or diseases is shaped for all individuals by interactions between their genes and the 
environment. How the environment changes gene expression and how this can lead to a 
disease are being explored in a fruitful new approach to environmental health research. If 
these causal relations become clear, they offer new avenues for risk assessment for diseases 
(Edwards & Myers, 2007). 

4.1 Social background 

The Ministry of Health, Welfare, and Labor in Japan has recently reported that the number 
of children with mild neurodevelopmental disorders, such as autism, is increasing by 10,000 
cases per year (Basic report, 2005). Similar trends are found in other countries, including the 
US (Yeargin-Allsopp et al., 2003; Holoden, 2009; Fombonne, 2009), in which the increase is 
partly attributed to social factors, such as diagnostic substitution in which children formerly 
diagnosed with mental retardation or learning disabilities are now diagnosed with autism. 
However, the increase in cases cannot be fully attributed to such diagnostic substitutions, 
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and it is possible that biological changes in the brains of the children are also involved in 
this increase. Thanks to advances in genomic research, several genetic factors for autism 
have been identified. Mutations in genes encoding synaptic molecules have been identified 
in a subset of autistic children (Zoghbi, 2003; Persco & Bourgeron, 2006). However, the 
increase in autism cannot be solely attributed to genetic factors, because it is unlikely that 
mutation rates suddenly increased in recent years. Therefore, environmental factors are 
more likely to be involved in this increase. Epingenetic modifications repreent one 
mechanism by which enviromental factors can lead to health effects (Qiu, 2006). 

4.2 Acquired neurodevelopmental diseases 

It is known that either a mutation, deletion or a duplication of a specific-neuronal gene 

causes a neurological disease. In other word, loss-of function, deficiency, or over-dosage can 

result in the same disease phenotype. For examples, Pelizaeus-Merzbacher disease, a severe 

child onset disorder, is caused by either a mutation, deletion or a duplication of the PLP1 

gene (Inoue et al., 2001), lissencephaly syndrome, a child-onset migration disorder, is caused 

by either a mutation, deletion or a duplication of LIS1 (Reiner et al., 1993; Bi et al., 2009), 

Charcot-Marie-Tooth disease, an adult-onset neuromuscular disorder, is caused by either a 

mutation, deletion or a duplication PMP22 (Roa & Lupski, 1993), and Perkinson disease is 

caused by either a mutation, deletion or a duplication the α-synuclein gene (Obi et al., 2008). 

This suggests that the brain is sensitive to the dosage of gene products that requires a strict 

control system for gene expression. In fact, congenital diseases with defects in epigenetic 

gene regulation usually show neurological features and mental retardation.  
It has recently been reported that short-term mental stress after birth can alter the epigenetic 
status in the brain, resulting in abnormal behaviour (Weaver et al., 2004). In rats, when the 
offspring is separated from the mother for a couple of weeks, DNA methylation at the GR 
(glucocorticoid receptor) gene is increased in the hippocampus in the brain, and this change 
suppresses gene expression. This study is now considered as an animal model for cuelty in 
childhoood in human, because hypermethylation of the neuron-specific glucocorticoid 
receptor promoter, in combination with decreased levels of its expression, have been found 
in human postmortem hippocampus obtained from suicide victims with a history of 
childhood abuse (MacGowan et al., 2009), suggesting that adverse effects of early-life stress 
last life-time long on the DNA methylation programs (Margatroyd et al., 2009). It raise the 
question of whether neurodevelopmental problem may be the result of epigenetic 
dysregulation caused by environmental factors in the early life.  

4.3 Environmental factors in fetal period 

Another social issue in Japan is that birth weight has decreased during the past 20 years. 
This trend is thought to be caused by the popularity of dieting among young women and 
obsteric physicians’ recommendations to minimize pregnacy weight gain in order to reduce 
the risk of diabetes mellius (Gluckman et al., 2007). Based on current epidemiological 
studies for famines in the Netherland and China (St Clair et al., 2005; Painter et al., 2006), the 
generation with lower birth weight is expected to have increased risk for obesity and adult 
diseases in the future in Japan. This hypothesis is referred to as “Developmental Origin of 
Health and Diseases (DOHaD)“(Gillman et al., 2007; Silveira et al., 2007). Recent animal 
expreriments suggest that the developmental basis of adult diseases is due to a change of 

DNA methylation status of the PPARα gene, a thrifty gene, in the liver due to malnutrition 
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in the fetal period(Lillycrop et al., 2005; Lillycrop et al., 2008) (Fig. 4). Such DNA 
methylation alterations have been confirmed in individuals who suffered malnutrition 
during a period of faminine (Tobi et al., 2009). 
 

 

Fig. 4. Epigenetic mechanism proposed in the “Developmental Origin of Health and 
Diseases“ hypothesis 

4.4 Drugs and chemicals affecting epigenetic status 

Drug addiction is an example of mental diseases acquired via epgenetic change. Cocaine 
and alcohol alter the epigenetic state (chromatin structure) on a subset of neuronal genes, 
inducing a drug addiction state(Kumar et al., 2005; Pacual et al., 2009). Chemical 
compounds related to plastics alsopotentially affect the epigenetic status of genes in the 
brain (Yaoi et al., 2007).  
Imipramine, a major antidepressant, in turn has recently been found to retore a depressive 
state by altering the epigenetics (histone modification) of the Bdnf gene in the hippocampus 
(Tsankova et al., 2006). Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is 
another drug that alters the epigenetic state. VPA normalizes histone acetylation of genes in 
the hippocampus, which leads to suppression of seizure-induced cognitive impairment by 
blocking seizure-induced aberrant neurogenesis (Jessbrger et al., 2007). These observations 
indicate that chemicals that alter epigenetic gene expression, such as HDAC inhibitors, may 
become candidates for the treatment of neurodevelopmental diseases (Renthal et al., 2008).  
 The findings above are mainly obtained from animal experiments, and there is little evidene 
from human studies. However, epigenetic differences increase with age in monozygotic 
twins (Fraga et al., 2005), suggesting that epigenetic status may be altering during aging by 
environmental factors in humans. 
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5. Epigenetic therapies 

Because epigenetic modifications are a reversible mechanism unlike mutations 
(substitutions of nucleotides), correction of the epigenetic deffect is potentially easier than 
correction of the mutations (Fig. 5). 

5.1 DNA methylation donor 

Folic acid is the methyl-donor for transfer to cytosine. Therefore, in order to maintain DNA 
methylation, sufficient intake of folic acid is essential. Folic acid deficiency during 
pregnancy is now increasing in Japan. This increases the risk of having babies with neural 
tube defects (Watanabe et al., 2008). As mentioned above, inappropriate supply of nutrients 
from mother to the fetus also increases the susceptibility of fetus to develop diabetes 
mellitus due to epigenetic changes (Park et al., 2008). However, supplementation of folic 
acid during pregnancy protects the fetus by enriching DNA methylation of the promoter 

regions of PPARα and glucocorticoid receptor genes in the liver, leading to suppress gene 
expression (Buedge et al., 2009). These findings indicate that proper nutrient intakes may 
alter the phenotype of the offspring through epigenetic changes.  
Since 1980s, folic acid has empirically been used for the treatment of autistic children and 
adults with mental diseases, and several studies have shown that folic acid is effective in a 
subset of patients (Rimland, 1998; James et al., 2004; Moretti et al., 2005). Although the 
precise mechanism is not known, it is also possible that folic acid administration may correct 
the DNA methylation status in genes.  

5.2 Nutrition 

A honey bee secretion known as royal jelly can cause phenotypic change in genetically 
identical female honeybees to induce the development of a fertile queen. This effect may be 
mediated by epigenetic changes. A recent study showed that royal jelly removes global 
DNA methylation, silencing the expression of Dnmt3 during larval development (Kucharski 
et al., 2008). The phenotypic change from a worker bee to a queen is reproduced by using 
siRNA that inhibit Dnmt3 (Kucharski et al., 2008). More recently, many kinds of nutrition 
have been shown to have epigenetic effects and epigenetic therapeutics have been approved 
by the US Food and drug Administration for treating specific cancers and seizure disorders 
(Mack, 2006; Sharma et al., 2010). 

5.3 Gene-specific therapy 

Folic acid is relatively safe, since it is a nutrient. However, its effect is global, and it is not 
specific to a certain gene. It may be better if epigenetic correction is made only to a specific 
gene that is associated with a disease state. This kind of therapy can be achieved using 
pyrrole-imidazole (PI) polyamides, small synthetic molecules that recognize and attach to 
the minor groove of DNA, thereby inhibiting gene transcription by blocking transcription 
factor binding in a DNA sequence specific manner (Matsuda et al., 2011). Furthermore, PI 
polyamide conjugated with SAHA, a HDAC inhibitor, can alter the histone modification in a 
gene-specific manner, resulting in up-regulation of the target gene (Ohtsuki et al., 2010).   

5.4 Exercise and environmental enrichment 

It has recently been discovered that DNA sequence is different in each neuron (Coufal et al., 
2009), and that epigenetic change underlies the somatic change (Muotri et al., 2005).. This 
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phenomenon is based on retrotransposition, in which a repetitive L1 sequence is inserted 
into various genomic regions when it is hypomethylated, potentially altering expression of 
adjacent genes. Retrotranposon insertion is activated by deficency of MeCP2 (Muotrri, etal., 
2010). Interestingly, the retrotransposition is also activated by voluntary exercise (running) 
in mice (Muotri et al., 2009), suggesting that exercise may alter the DNA methylation status 
in neurons. 
Studies using a Rett syndrome mouse model that lacks MeCP2 show that environmental 
enrichment (e.g., availability of stimulating toys) during early postnatal development 
produces effects on neural development and ameliorates the neurological phenotypes 
associated with Rett syndrome (Lonetti et al., 2010; Kerr et al., 2010). This suggests that DNA 
methylation status may be corrected by an apprpriate environment, conpensating for the 
insuffient MeCP2 function. 
 

 

Fig. 5. Overview of epigenetic change and environmental factors in the brain 

6. Conclusion 

Epigenetics is a genetic code, not within the DNA but upon the DNA. Until recently, it has 
been believed that the epigenetic code is faithfully maintained at the step of DNA 
replication. However, various environmental factors potentially rewrite the epigenetic 
codes, which can lead to a disease condition. Moreover, a recent animal study has shown 
that mental stress not only rewrite the epigenetic code in the brain but also in the gerrmline. 
Hence, the altered epigenetic code can be transmitted to the next generation, escaping the 
erasure of epigenetic marks that typically occurs during gametogenesis (Franklin et al., 
2010). However, epigenetics is a reversible mechanism, and thus, epigenetic changes are 
treatable. Therefore, if the transgenerational inheritance of the epigenetic code is true in 
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humans and we transmit our own altered epigenetic code to our children, the code can be 
restored with the offer of appropriate environment and treatment. Although the number 
and kinds of environmental factors that can alter the epigenetic code are increasing, the 
precise mechanism is stll largely unknown. Further understanding of how epigenetic 
modications are changed during DNA replication is warranted in order to elucidate the 
genetic basis of environmental stress response. 
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