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1. Introduction 

Progression of DNA replication forks is hindered by various reasons such as DNA-binding 

proteins, DNA damage, and dNTP depletion. The minichromosome maintenance (MCM) 

complex, which comprises of Mcm2–7 subunits, is the DNA helicase that plays the central 

role in the progression of replication forks. MCMs are loaded onto specific sites of 

chromosomes called origins to create pre–replication complexes (pre–RCs). At the onset of 

the S–phase, MCM forms a complex with GINS and Cdc45, and starts unwinding the 

double-stranded DNA providing template strands to polymerases. Even after the fork 

encounters replication stress, the DNA unwinding continues to some extent and causes an 

extended length of single-stranded DNA to be exposed, which in turn induces the activation 

of checkpoint pathways. However, unregulated translocation of MCM may cause re-

annealing of two complementary single-strands behind the fork and destabilize the stalled 

replication machinery. Thus, DNA helicase activity needs to be tightly regulated under the 

stress conditions in order to preserve the replication machinery. It appears that the proteins 

associated with the replication forks including Mrc1/Claspin, Tof1/Swi1/Tim1, 

Csm3/Swi3/Tipin, Ctf4/Mcl1/AND-1 mediate the interaction between the MCM helicase 

and DNA polymerases, and are required for coupling of DNA unwinding with DNA 

synthesis. The evolutionally conserved C-terminal domain (CTD) of Mcm4 is also involved 

in the regulation of the MCM helicase activity. The checkpoint kinase, cyclin-dependent 

(CDK), Dbf4-dependent kinase (DDK) and Polo-like kinase (PLK) kinase phosphorylate and 

regulate the function of the MCM helicase. Here we review the recent findings in regard to 

the MCM regulation in response to replication stress, and discuss how DNA synthesis and 

unwinding are coordinated to maintain the genome integrity. 

2. Formation of the replication machineries on eukaryotic chromosomes 

2.1 Assembly of pre-Replication Complex (pre-RC) 
A single round of replication of chromosomal DNA in every cell cycle is important for 

faithful transmission of the genetic information to daughter cells. G1-phase of the cell cycle 

is marked as the growth phase, which prepares the cells for the S-phase (replication) 

(Pardee, 1989). The initiation sites of DNA replication on chromosomes are called replication 
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origins. A series of proteins that are specifically required for chromosome replication, 

shown in Table 1, are assembled on each origin for the initiation. Essentially, all of the 

replication proteins are conserved from yeasts to humans, making yeast an excellent model 

system to understand the molecular mechanisms of DNA replication. The origin recognition 

complex (ORC), which consists of Orc1-6 subunits, has been identified as the protein 

complex that binds to the origin DNA in an ATP-dependent manner (Bell & Stillman, 1992). 

The minichromosome maintenance (MCM) complex, that forms a ring-like structure 

consisting of Mcm2-7 subunits each of which contains the AAA+ motif (Neuwald et al, 

1999), has been originally identified by a genetic screening for the budding yeast mutants that 

affect autonomous replication sequence (ARS) activity on episomal plasmids (Maine et al, 

1984). MCM proteins were independently identified from Xenopus egg extracts as the factor 

that binds to chromosomes, licensing the initiation of DNA replication (Blow & Laskey, 1986; 

Kubota et al, 1995). In 1997, DNA helicase activity associated with MCM was first reported by 

using Mcm4-6-7 sub-complex in an in vitro assay (Ishimi, 1997). Using conditional degron 

system, it has been shown that MCM is essential for the initiation as well as the elongation 

phases of DNA replication (Labib et al, 2000). From late M to G1 phase, MCMs are loaded onto 

the origins depending on Cdt1 and Cdc6, resulting in the formation of pre–replicative 

complexes (pre–RCs) (Diffley et al, 1994; Donovan et al, 1997; Liang et al, 1995; Nishitani et  

 

 

Table 1. DNA replication proteins are conserved from yeasts to humans. 
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Fig. 1. Stepwise formation of DNA replication forks in eukaryotes. 

al, 2000; Remus et al, 2009). The pre–RC is an important landing pad for the replication 
initiation, because it is prerequisite for the assembly of other factors that are essential for 
replication. Being connected via their N-terminal domains, head-to-head double hexamers 
of Mcm2-7 are stably and exclusively formed on the origin DNA (Evrin et al, 2009; Gambus 
et al, 2011; Remus et al, 2009). Each of the double hexamers may be involved in bi-
directional replication from a single initiation site. Although DNA replication initiates from 
the single replication origin oriC in E. coli (Kaguni et al, 1982), there are large number of 
origins where pre-RCs are assembled onto each chromosome of eukaryotes. In both budding 
and fission yeasts, there are hundreds of origins per genome of about 14-Mb (Hayashi et al, 
2007; Wyrick et al, 2001). Under the unperturbed condition, replication starts from only a 
subset of these origins. The dormant origins serve as the replication initiation sites under the 
stressed conditions (see below). In multicellular organisms, the origins that fire in early S 
phase differ during development or between different cell types (Goldman et al, 1984). It is 
also important for normal development that many pre-RCs are produced in the genome, 
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because mutations in ORC, Cdc6, or Cdt1 have been found in the patients of Meier-Gorlin 
syndrome (Bicknell et al, 2011a; Bicknell et al, 2011b; Guernsey et al, 2011), which is a rare 
autosomal recessive genetic condition whose primary clinical hallmarks include small 
stature, small external ears and small or absent patellae.  

2.2 Assembly of pre-Initiation Complex (pre-IC) 
The choice of the origins to be used is determined by the loading of additional replication 
proteins onto pre-RCs to form pre-initiation complexes (pre-ICs). Among the components of 
pre-IC, it seems that Sld2/Drc1/RecQ4/RecQL4 (Kamimura et al, 1998; Sangrithi et al, 2005; 
Wang & Elledge, 1999), Sld3/Treslin (Kamimura et al, 2001; Kumagai et al, 2010; Nakajima 
& Masukata, 2002; Sansam et al, 2010), and Dpb11/Cut5/Rad4/TopBP1 (Araki et al, 1995; 
Saka & Yanagida, 1993; Yamane et al, 1997) are essential for the initiation but not for the 
elongation phase of replication. Two classes of protein kinase that are active in the S phase: 
Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) play important roles in 
the assembly of pre-IC and ensure that only a single round of DNA replication takes place in 
each cell cycle. Mcm2, 3, 4, and 6 subunits can be phosphorylated by DDK in vitro (Lei et al, 
1997), and the phosphorylation of Mcm4 appears to be critical for loading of Cdc45 onto  
pre-RCs (Masai et al, 2006; Sheu & Stillman, 2006; Sheu & Stillman, 2010). In fission yeast, 
loading of Sld3 onto origins occurs in a DDK-dependent but CDK-independent manner 
(Yabuuchi et al, 2006). And, Sld3 and DDK are required for the loading of Cdc45 as well as 
GINS complex (Yabuuchi et al, 2006; Yamada et al, 2004). Thus, it is tempting to argue that 
the loading of Sld3 is mediated by the phosphorylation of MCM proteins by DDK. It has 
been established that Sld2 and Sld3 are the two major substrates of CDK-dependent 
phosphorylation that are essential for replication in budding yeast (Masumoto et al, 2002; 
Tanaka et al, 2007; Zegerman & Diffley, 2007). The phosphorylation of Sld2 and Sld3 
enhances their interaction with Dpb11 that contains multiple copies of the BRCT motif, 
which is the phosphopeptide-binding module found in many other proteins including 
BRCA2 (Glover et al, 2004). As both Sld2 and Sld3 are essential for stable association of 
Dpb11 to replication origins, the phosphorylation-mediated interaction between them is 
required for the Dpb11 loading onto pre-RCs. The CDK-mediated regulation for the 
assembly of Sld2 and Sld3 with the BRCT-motif-containing protein, Dpb11/Cut5/TopBP1 
appears to be an evolutionally conserved mechanism, as the fission yeast homolog of Sld2, 
Drc1 is phosphorylated by Cdc2 kinase, and the Drc1 phosphorylation appears to be 
important for interaction with the homolog of Dpb11, Cut5/Rad4 in a CDK-dependent 
manner (Fukuura et al, 2011; Noguchi et al, 2002). Furthermore, it has been shown that the 
mammalian homolog of Sld3, Treslin associates with TopBP1 in a Cdk2-dependent manner 
and is essential for the initiation of DNA replication (Kumagai et al, 2010). Dpb11 forms a 

complex with DNA polymerase ε฀(Masumoto et al, 2000), and is required for the loading of 
the Sld5-Psf1-Psf2-Psf3 (GINS) complex (Kanemaki et al, 2003; Kubota et al, 2003; Takayama 
et al, 2003) and Cdc45 (Muramatsu et al, 2010) onto pre-RCs. Mcm10 protein also binds to 
subunits of Mcm2-7 complex, and is essential for the initiation and elongation of replication, 
although its mechanism of action remains elusive (Aves et al, 1998; Heller et al, 2011; Izumi 
et al, 2000; Solomon et al, 1992). In the S phase, MCM proteins and Cdc45 dissociate from 

origin and travel along DNA, concerted with DNA polymerase ε (Aparicio et al, 1997). The 
traveling along DNA has also been observed for GINS (Kanemaki et al, 2003; Takayama et 
al, 2003). Purification of proteins from yeast cells in the S phase identified the complexes 
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containing Cdc45, GINS and Mcm2-7 (Gambus et al, 2006). Xenopus Cdc45, GINS and 
Mcm2-7 were also identified at the replication fork (Pacek et al, 2006). In vitro 
experiments showed that the Cdc45/Mcm2–7/GINS (CMG) complexes purified from 
Drosophila cells exhibit robust DNA unwinding activity, and that the CMG complex 
translocates on DNA in a 3’ to 5’ direction (Moyer et al, 2006). Association with Cdc45 and 
GINS enhances ATP hydrolysis, DNA binding and the helicase activity of Mcm2–7 (Ilves 
et al, 2010). These studies show that the CMG complex functions as the DNA unwinding 
complex in the replication machinery. Replication may begin such that two forks originate 
from a single origin moving in opposite directions (bi-directionally) behind the CMG 
complex, which unwinds DNA to provide single-stranded DNA (ssDNA) templates to the 
polymerases for duplication. To sum up, CMG complex is the motor of the replication 
fork that unwinds double-stranded DNA (dsDNA), providing template ssDNA for 
polymerases that synthesize new strands. Therefore, it is important to understand the 
formation and the regulation of the CMG complex to elucidate the molecular mechanism 
of DNA replication. 

3. Blockage to the progression of DNA replication forks 

DNA replication forks may encounter certain impediments such as DNA damage, dNTP 
depletion, the proteins that tightly bind to DNA, or epigenetic status of nucleosomes. In 
order to replicate the entire genome within a limited period of time, such aforementioned 
blocks are necessary to be removed or tolerated. Failures to respond to these replication fork 
blockages lead to genome instability such as gross chromosomal rearrangements (GCRs), 
consequently leading to cell death or genetic diseases including cancer in multicellular 
organisms. 

3.1 Inhibitors to the replication fork progression 
Replication is an eventful process liable to encounter odds during its procession. Various 
exogenous substances have been recognized to obstruct this process in their own specific 
mode of action. Hydroxyurea (HU) is a specific inhibitor of the enzyme ribonucleotide 
reductase (RNR) that is essential for production of deoxyribonucleotides (dNTPs) (Young et 
al, 1967). Thus, treatment of cells with HU inhibits DNA synthesis by depleting dNTPs. 
Aphidicolin is a tetracyclic diterpene tetraol, obtained from C. aphidicola and certain other 
fungi (Bucknall et al, 1973). It is a specific and direct inhibitor of DNA polymerase α and 

also δ, two of the three DNA polymerases (i.e. DNA Pol α, δ, and ε) that are essential for 
chromosomal DNA replication (Goscin & Byrnes, 1982; Ikegami et al, 1978). Thus, treatment 
of cells with either HU or aphidicolin inhibits the progression of replication forks. Chemical 
adducts on DNA have the potential to impede the fork progression. Methyl 
methanesulfonate (MMS) is one such well-characterized DNA alkylating agent. The 
predominant adduct in dsDNA resulting from MMS exposure is 7-methylguanine (N7-meG) 
followed by 3-methyladenine (N3-meA) (Lawley & Brookes, 1963). The methylation of DNA 
physically impedes the progression of replication forks, leading to the formation of DNA 
double-strand breaks (DSBs) during S phase (Groth et al, 2010). Camptothecin (CPT) is a 
specific inhibitor of DNA topoisomerase I (Top1) capable of removing DNA supercoils 
during replication as well as transcription. CPT blocks both the DNA cleavage and re-
ligation reactions of Top1 (Kjeldsen et al, 1992). Inhibition of the initial cleavage step leads to 
the accumulation of supercoils ahead of the replication fork that induces potentially lethal 
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DNA lesions (Koster et al, 2007). Blocking the rejoining step accumulates the reaction 
intermediates in which Top1 is covalently attached to the end of DNA (Hsiang et al, 1985). 
When replication forks reach these DNA nicks, they will be converted to one-ended DSBs. 
CPT analogues have significant activity against solid tumours, and have gained US Food 
and Drug Administration approval for the treatment of ovarian and lung cancer (Stewart, 
2004). DNA interstrand cross-links (ICLs) also block the fork progression, by preventing the 
two DNA strands from separating. Antitumor drugs such as cisplatin, psoralen, nitrogen 
mustard or mitomycin C as well as endogenous agents formed by lipid peroxidation induce 
ICLs (Niedernhofer et al, 2003). There are different types of chemicals that block the 
progression of replication forks, and they do so by distinct mechanisms. 

3.2 Replication fork pausing sites on chromosomes 
Progression of replication forks is affected either by protein-DNA complexes or the torsional 
stress around the fork. It has been estimated that there are >1,000 discrete sites in the 
budding yeast genome that impede normal fork progression, including tRNA and rDNA 
genes, dormant origins, silent mating-type loci, centromeres and telomeres (Ivessa et al, 
2003). Non-nucleosomal and nucleosomal protein-DNA complexes impede the fork 
progression (Deshpande & Newlon, 1996; Ivessa et al, 2003). Replication fork barrier (RFB) 
present in the rDNA gene is one of the well-characterized pausing sites in the genome. The 
RFBs block fork progression in an orientation dependent manner. The 3’ end of the 35S 
rRNA transcription unit in rDNA acts as a barrier to replication forks moving in the 
direction opposite to RNA polymerase I (Brewer & Fangman, 1988). The arrest of replication 
forks at the RFB site occurs independently of transcription but is mediated by the Fob1 
protein that binds to the specific sequence of ~100 bp in the RFB site (Brewer et al, 1992; 
Kobayashi et al, 1992; Kobayashi & Horiuchi, 1996). However, the Fob1 binding to the RFB 
site is not sufficient for the transcription-independent fork arrest (Calzada et al, 2005). Tof1, 
Csm3, and Mrc1 are the luxury members of the replication machinery that are associated 
with the CMG complex (Katou et al, 2003). Among them Tof1 and Csm3 are required for the 
pausing at the RFB in rDNA of budding yeast (Calzada et al, 2005). The fission yeast 
homologs, Swi1 and Swi3, are also required for the fork arrest at the RFB site in rDNA and 
at another orientation-dependent fork barrier site present in the mating-type switch locus, 
RTS1 (Dalgaard & Klar, 2000). Thus, it is possible that the proteins that bind to the barrier 
sites are not simple obstacles to the fork movement rather they negatively regulate the CMG 
activity via a specific interaction with the fork components.  
In the absence of RFB in the rDNA locus, DNA and RNA syntheses simultaneously advance 
on the same template DNA, the 35S rRNA gene, making a collision between oppositely 
traveling replication and transcription machineries. When transcription occurs frequently, 
this collision slows down the progression of replication forks (Takeuchi et al, 2003). The fork 
pausing by the collision between transcription and replication machineries is also observed 
in other regions of chromosomes. Some of the highly transcribed tRNA genes and RNA 
polymerase II genes also impede the progression of replication forks. Genome-wide 
analyses of DNA Pol2–binding sites, which are indicative of the position of replication forks, 
showed that the fork arrest takes place regardless of whether replication and transcription 
move in the same or opposite directions (Azvolinsky et al, 2009). Direction-independent 
collision was confirmed by similar experiments that mapped the position of the Psf2 subunit 
of the GINS complex (Sekedat et al, 2010), suggesting that replication forks arrest at highly 
transcribed genes because the transcription and replication machineries are not allowed to 
occupy the same DNA at the same time. 
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DNA supercoils produced ahead of advancing replication forks are resolved by a 
coordinated action of Top1 and Top2. In the absence of functional topoisomerases, the 
replication fork-related topological constrains are accumulated, leading to fork collapse and 
DNA damage checkpoint activation (Bermejo et al, 2007; Brill et al, 1987; Kim & Wang, 
1989). Behind the replication fork, intertwining of sister chromatid DNA takes place. Top2 
activity is essential for the separation of intertwined chromosomal DNA molecules before 
the onset of anaphase (Holm et al, 1985). Expression of catalytically inactive Top2 prevents 
completion of DNA replication and induces DNA damage checkpoint response (Baxter & 
Diffley, 2008), suggesting that the processing of catenation of sister chromatids behind the 
fork may also affect the fork progression. 

The replication pausing sites are chromosome fragile sites. γ-H2A or γ-H2AX is one of the 
well-characterized histone modifications that occur around DNA damage sites in the 
checkpoint kinase dependent manner (Downs et al, 2000). By using DNA microarray, recent 

studies mapped the localization of γ-H2A on budding or fission yeast genomes in 
unperturbed S phase (Rozenzhak et al, 2010; Szilard et al, 2010). In budding yeast, they 

found the accumulation of γ-H2A to occur in repressed genes and that is dependent on the 

activity of a histone deacetylase (HDAC). In fission yeast, γ-H2A and the Brc1 protein that 

recognizes γ-H2A through a pair of BRCT domains were localized at heterochromatin 
regions of chromosomes such as silent-mating type loci, centromeres and telomeres. They 

also showed that the S-phase specific localization of γ-H2A and Brc1 is dependent on Clr4, 
which is responsible for the methylation of histone H3 9th Lys. Thus, HDAC- and/or 
H3K9me-mediated heterochromatin seems to impair the stability of replication forks when 
they pass through, although how the chromatin status affects the fork progression remains 
to be elucidated. 

4. Checkpoint response to replication problems 

Replication problems such as replication fork stalling or collapse are detected by the 
surveillance system called checkpoint. The replication checkpoint pathway is activated in 
response to replication stalling, while the DNA damage checkpoint will be activated when 
DSBs are formed. These checkpoint pathways temporarily halt the cell cycle progression, 
giving time for cells to solve the replication problems before entering into mitosis.  

4.1 Checkpoint activation in response to replication problems 
Extended lengths of ssDNA formed at stalled forks is the key DNA structure that induces 
the replication checkpoint response. The ssDNA never exists naked in vivo and is 
immediately coated by ssDNA-binding proteins: replication protein A (RPA). The ssDNA–
RPA complex recruits the most upstream checkpoint kinase the ATR-ATRIP complex in 
mammals (Choi et al, 2010; Zou & Elledge, 2003). Primer-template junctions present right 
next to the ssDNA–RPA complex in the context of stalled forks are also important for the 
ATR activation (MacDougall et al, 2007). The proliferating cell nuclear antigen (PCNA)–
related checkpoint clamp, the Rad9–Rad1–Hus1 (9–1–1) complex is recruited to stalled forks 
with the aid of the checkpoint-specific clamp loader (Bermudez et al, 2003; Ellison & 
Stillman, 2003; Zou et al, 2002). Intriguingly, the essential replication initiation protein 
Dpb11/Cut5/TopBP1 is again recruited to the stalled fork depending on the protein 
phosphorylation induced by the ATR kinase, and is required for the activation of replication 
checkpoint (Delacroix et al, 2007; Furuya et al, 2004; Kumagai et al, 2006; Lee et al, 2007), 
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suggesting a mechanistic similarity between the replication initiation and the checkpoint 
activation. Tof1/Swi1, Csm3/Swi3, and Mrc1 form the protein complex associated with the 
CMG complex (Bando et al, 2009; Katou et al, 2003; Noguchi et al, 2004; Shimmoto et al, 
2009). Tof1/Swi1 and Csm3/Swi3 form a relatively stable complex and are required for the 
association of Mrc1 with the replication fork. Although this fork protection complex is 
dispensable for DNA replication, it is required for the activation of the replication 
checkpoint effector kinase such as fission yeast Cds1 (Alcasabas et al, 2001; Murakami & 
Okayama, 1995; Noguchi et al, 2003; Tanaka & Russell, 2001; Unsal-Kacmaz et al, 2007), 
indicating that the substrate specificity of the most upstream checkpoint kinase is 
modulated by the proteins associated with the CMG complex. 
As mentioned above, the extension of single-stranded region at times of replication stress  
is crucial to induce a cascade of checkpoint responses. Even after DNA polymerases come to 
a halt, the CMG complex continues to execute its job as a helicase to a considerable length  
to produce the single-strand region sufficient to activate the checkpoint. Inhibition of 
Cdc45 or Mcm7 after the replication initiation blocks accumulation of RPA on chromatin 
and the checkpoint activation (Byun et al, 2005). Thus, DNA unwinding activity of the 
CMG complex is required not only for DNA synthesis under unperturbed condition, but 
also for the activation of the replication checkpoint at times of replication stress.  
The interactions between the CMG complex and the checkpoint proteins may also 
contribute to the activation of replication checkpoint (Tsao et al, 2004). There is an 
intimate link between the CMG complex and the replication checkpoint. However, when 
stalled forks are collapsed to create DSBs, the damage checkpoint will be activated. The 
Mre11-Rad50-Nbs1/Xrs2 (MRN/MRX) complex recognizes DSBs and leads to the 
activation of the damage checkpoint kinase ATM/Tel1 (Lee & Paull, 2004; Lee & Paull, 
2005; Usui et al, 2001).  

4.2 Checkpoint response to replication stress 
In addition to the cell cycle regulation, the activated checkpoint pathways regulate gene 
expression through modification of transcription factors (Huang et al, 1998), and inhibit the 
replication initiation from late origins (Santocanale & Diffley, 1998; Shirahige et al, 1998). 
The inhibition of late origins is mediated by the checkpoint kinase-dependent 
phosphorylation of two of the essential replication initiators, DDK and Sld3 (Lopez-
Mosqueda et al, 2010; Zegerman & Diffley, 2010). This output of the checkpoint response 
may contribute to the genome integrity by preventing the formation of additional number of 
stalled forks (Lopez-Mosqueda et al, 2010). The replication checkpoint kinases prevent 
stalled replication forks from breaking down (Desany et al, 1998; Lopes et al, 2001; Tercero & 
Diffley, 2001). In fission yeast, the Rad3 kinase is activated in response to replication stress, 
and it phosphorylates the downstream Cds1 kinase, which in turn phosphorylates various 
downstream target proteins including the structure-specific nuclease Mus81 (Boddy et al, 
2001; Kai et al, 2005). The phosphorylation of Mus81 by the Cds1 kinase results in 
dissociation of Mus81 from chromatin, preventing it from cleaving the stalled fork. Another 
example of the checkpoint target is Rad60, which is required for recombinational repair 
probably through the regulation of the Smc5/6 complex (Miyabe et al, 2006; Morishita et al, 
2002). The checkpoint kinase phosphorylates Rad60, leading to its delocalization from the 
nucleus after replication stress (Boddy et al, 2003; Miyabe et al, 2009). These observations are 
consistent to the idea that the replication checkpoint prevents recombinational repair to 
occur as long as the stalled forks are able to keep the checkpoint activated. Intriguingly, the 
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MCM proteins are phosphorylated in response to replication stress through the checkpoint 
kinases (Bailis et al, 2008; Cortez et al, 2004b; Ishimi et al, 2003; Randell et al, 2010; Yoo et al, 
2004b). The phosphorylation of the MCM proteins may increase the stability of the complex 
in the stalled condition (Randell et al, 2010). 

5. Regulation of the replication initiation to maintain the genome integrity 

Many pre-RCs are assembled on each chromosome in late M to G1 phases, but replication 
initiates recurrently from only a subset of them leaving the rest of them dormant. However, 
when replication forks are collapsed, replication initiates from the nearby dormant origins 
(Doksani et al, 2009), indicating the importance of the dormant origins under the stressed 
condition. Even under the normal growth condition, the damage checkpoint operates to 
stabilize a chromosome when all or almost all of the efficient replication origins on the 
chromosome are deleted (Theis et al, 2010). It is likely that during the long travel on DNA, 
replication forks spontaneously collapse to create DSBs. Consistent to this idea, decreasing 
the replication initiation by partial inhibition of the assembly of pre-RCs causes gross 
chromosomal rearrangements (GCRs) (Tanaka & Diffley, 2002). The most common fragile 
site in human lymphocytes FRA3B is caused by a paucity of replication initiation events in 
that region (Letessier et al, 2011). A hypomorphic mutation of Mcm4Chaos3, that decreases the 
Mcm2-7 protein levels, in mice causes various types of chromosome instability and shows 
predisposition to cancer (Chuang et al, 2010; Kawabata et al, 2011; Shima et al, 2007). These 
findings demonstrate that the number and the distribution of replication initiation along a 
chromosome are important for maintaining the genome stability. 
Polo-like kinase (PLK) is involved in various important cellular events such as regulation 
of mitotic entry, chromosome segregation, centrosome maturation, and mitotic exit. PLK 
contains two tandem Polo boxes, termed as the Polo-box domain that interacts with 
phosphoproteins (Elia et al, 2003). The Xenopus PLK homolog Plx1 binds to Claspin in a 
manner dependent on the phosphorylation of Claspin by the checkpoint kinase (Yoo et al, 
2004a). The Plx1 phosphorylates Claspin and causes its dissociation from chromatin, 
resulting in the inactivation of the replication checkpoint kinase Chk1 after a prolonged 
checkpoint arrest. The PLK homolog in budding yeast Cdc5 is also required for the down 
regulation of the replication checkpoint: the adaptation, that is the resumption of the cell 
cycle in the presence of a single unrepaired DSB after a prolonged arrest (Donnianni et al, 
2010; Toczyski et al, 1997; Vidanes et al, 2010). These findings indicate that PLK has an 
inhibitory effect on the checkpoint response. Members of the MCM helicase are 
phosphorylated by the checkpoint kinases, suggesting a regulation of the MCM helicase 
by the ATR/ATM checkpoint (Cortez et al, 2004a; Yoo et al, 2004b). Mammalian PLK 
binds to the Mcm proteins in the phosphorylation dependent manner (Lowery et al, 2007; 
Tsvetkov & Stern, 2005). In Xenopus, the phosphorylation of Mcm2 by ATR stimulates the 
interaction with Plx1, probably recruiting Plx1 to the damage sites (Trenz et al, 2008). 
Although Plx1 is dispensable for DNA replication under the normal condition, it is 
essential to complete DNA replication when there are only a limited number of pre-RCs 
assembled on chromatin or in the presence of a low dose of replication inhibitors such as 
aphidicolin. Thus, it seems that, even though the overall level of the initiation of DNA 
replication is prohibited in the presence of replication problem, the inhibitory effect 
caused by the checkpoint is relieved by the Polo-like kinaseso that replication initiation 
occurs from the dormant origins nearby the stalled or collapsed fork. 
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6. Coupling DNA unwinding with DNA synthesis under the stressed condition 

In bacteria, the replication fork DNA helicase (DnaB) and the replicative DNA polymerase 
(Pol III holoenzyme) are associated with each other, and the interaction is essential for a 
high rate of replication fork movement of about 1,000 nt/s (Kim et al, 1996). In eukaryotes, 

the CMG complex unwinds template DNA strands and specific DNA polymerases (Pol α, δ 

and ε) synthesize their respective leading and lagging strands. When the polymerase 
function is interfered by replication stress, the CMG complex continues to unwind dsDNA 
to some extent, and induce the activation of the replication checkpoint. However, 
unregulated continuous translocation of the CMG helicase exposes longer stretch of ssDNA 
(Figure 2). The uncoupling of the helicase from the polymerase may cause re-annealing of 
the two complementary single-strands behind the helicase, which is a serious obstacle at the 
time of resumption of DNA synthesis. In addition, the long ssDNA is likely to be fragile 
compared with the short one. 
 

 

Fig. 2. Unregulated translocation of CMG helicase disrupts the replication fork. 

No direct functional interaction between DNA polymerases and the CMG complexes has 
been reported, so far. However, in budding yeast, elimination of Tof1, Csm3 or Mrc1 causes 
uncoupling of the CMG helicase from DNA synthesis (Katou et al, 2003). Mrc1 may bridge 
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the gap between the leading strand polymerase and the CMG helicase, as Mrc1 interacts 
with both DNA pol ε (Lou et al, 2008) and the MCM protein (Bando et al, 2009; Komata et al, 
2009). On the other hand, Ctf4 may bridge the gap between the lagging strand polymerase 

and the CMG helicase as Ctf4 interacts with DNA Pol α (Miles & Formosa, 1992) and with 
MCM and GINS (Gambus et al, 2009). The connection between the polymerase and helicase 
mediated by Mrc1 and Ctf4 may be important to couple the two important reactions of 
replication (Figure 3A). When DNA synthesis is inhibited, higher-order conformation 
around DNA polymerases would change. The conformational change emanates a signal that 
may be transmitted via the bridge molecules to the CMG helicase, to prevent uncoupling of 
the unwinding from the synthesis. Consistent to this model, mutations in the CMG complex 
suppress the hypersensitivity of fission yeast mrc1 cells to HU (Nitani et al, 2006). 
Another model is also proposed, in which the checkpoint kinase controls the activity of the 
CMG helicase (Figure 3B). The MCM proteins are phosphorylated dependent on the 
replication checkpoint kinases (Bailis et al, 2008; Cortez et al, 2004b; Ishimi et al, 2003; 
Randell et al, 2010; Yoo et al, 2004b). As phosphorylation of MCM down regulates the DNA 
unwinding activity of Mcm4-6-7 (Ishimi et al, 2003), it is possible that once the replication 
checkpoint kinase becomes activated with the aid of the CMG helicase, it turns off the 
activity of CMG. 
 

 

Fig. 3. Down regulation of the CMG helicase in response to replication stress. 

The evolutionally conserved C-terminal domain (CTD) of Mcm4 plays an important role in 

the regulation of DNA unwinding carried out by the MCM helicase, as the deletion of the C-

terminal in fission yeast accumulates RPA on the stalled replication forks while binding of 

MCM and GINS remains unaffected (Nitani et al, 2008). A recent study has shown that 

among Mcm2-7 subunits Mcm4 has the strongest affinity to both GINS and Cdc45 (Ilves et 

al, 2010). Thus, it is possible that the C-terminal region of Mmc4 affects the configuration of 

the CMG complex thereby regulating its helicase activity when DNA synthesis is inhibited. 

It is important to understand the interaction between the components of CMG, as is 

modulated in response to replication stress. 

There is increasing body of evidence that regulation of the CMG helicase is important not 

only for DNA replication but also for maintaining the genome integrity. Recent findings that 

hypomorphic mutations in the replication proteins such as MCM in mammals cause growth 

abnormality and or predisposition to cancer, underscore the importance of the tight 

regulation of DNA replication. Genome-wide analysis of replication origins in different 
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types of tissues or cells would reveal the specificity of cancer to certain types of tissues. 

Detailed studies of spatiotemporal regulation of the integral component of the replication 

fork, the CMG helicase, would provide great insights into the mechanism by which 

chromosomal DNA is faithfully replicated in the S phase, which is one of the essential 

events during cell proliferation.  
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