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1. Introduction 

Amyloidoses are a heterogeneous group of diverse etiology diseases. They are 

characterized by an endogenous production of abnormal proteins called amyloid 

proteins, which are not hydrosoluble, form depots in various organs and cause 

functional dysfunctions [Westermark et al., 2007]. Despite of their different structures, 

these proteins are probably generated by a common pathological pathway. Twenty-

seven such proteins have been identified as amyloid precursors in humans [Sipe et al., 

2010]. However, the question how and why these proteins form aggregates and cause 

disease is not still completely clear. A wide range of common neurodegenerative 

diseases is associated with amyloidosis such as Alzheimer's disease and Creutzfeldt-

Jakob disease, as well as non-neuropathic diseases, such as senile systemic amyloidosis 

and type II diabetes. At present, there is not an effective treatment to prevent these 

amyloid diseases. 

To understand the pathogenesis and to develop novel therapeutic strategies, it is crucial 

to generate animal models of amyloid diseases in genetically tractable organisms. During 

the last decades, the genetically amenable fruit fly Drosophila melanogaster was established 

as a valuable model system for the study of variety of human neurodegenerative 

disorders including Alzheimer's disease, Huntington's disease, amyotrophic lateral 

sclerosis and familial amyloidotic polyneuropathy [Bilen & Bonini., 2005; Lu & Vogel., 

2009]. The advantages of using the Drosophila model are that flies have a short lifespan, 

small size, large number of individuals and simplicity in genetic manipulation [Hirth, 

2010]. In addition, Drosophila represents a useful model for screening and testing chemical 

compounds. Moreover, Drosophila is an ideal model for screening genetic modifiers of 

pathogenic process due to their potential to prevent or ameliorate the disease [Marsh & 

Thompson., 2006]. 

In this review we will summarize recent progress in developing of fly models for amyloid 

disease. We address the following issues: (1) creating models of human amyloidosis in 

Drosophila (Alzheimer’ disease, prion disease, senile systemic amyloidosis,  familial 

amyloidotic polyneuropathy)  and (2) screening of chemical and peptide compounds, as 

well as modifier genes of protein toxicity in the fly model. 
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2. Advantages in using Drosophila melanogaster to model amyloid diseases 

One of the most interesting approaches to research of genetic forms of human diseases is 

their modeling on fruit fly Drosophila melanogaster. For these purposes two basic 

experimental approaches are used: an expression in Drosophila of human genes playing 

the role in development of diseases, and studying of own genes of Drosophila, orthologs of 

human genes involved in development of diseases [Bier, 2005]. The recent sequencing of 

the human and Drosophila genome has shown that more than 50% of genes of Drosophila 

melanogaster have homologs in humans, and at the same time not less than 60%-70% of 

genes of human hereditary diseases have the Drosophila counteracts [Fortini, 2000; Reiter, 

2001]. Therefore, when acting with various models of diseases on Drosophila direct 

research of mutant protein can characterize substantially its participation in a 

pathogenesis of human disease. Moreover, use of transgenic technology allows to create 

the strains carrying the human genes and to use them for modulation of concrete 

physiological mechanisms. On the other hand, genetic experiments with gene knockout 

can be a basis for definition of unknown cellular protein functions involved in the 

development of pathological process.  

Well-established techniques on the Drosophila [Rubin & Spradling, 1982] allows receiving 

transgenic flies not only according to the certain gene, but also to define an expression of 

this gene in tissues at various stages of an ontogenesis of the Drosophila, due to binary 

system UAS-GAL4 [Brand & Perrimon, 1993]. The system imported from yeast consists of 

two independent strains one of which carries an investigated gene under promoter UAS 

control (Upstream Activating Sequence), and the second strain contains its transcription 

activator – transcription factor GAL4. For the induction of transgenic expression, UAS 

strain is crossed to the strain expressing GAL4 under control of the endogenous or 

specially designed promoter that leads to the expression of investigated gene in tissues 

where GAL4 expresses. Hundreds of different activator-expressing strains have been 

generated by the Drosophila community and are available to other investigators.  

Temperature- sensitive character of transgenic expression in UAS-GAL4 system has been 

used for creation of temporal and regional gene expression targeting (TARGET) [McGuire, 

2003]. TARGET  system is based on ability of yeast protein GAL80 to suppress the GAL4 

expression. Joint expression of UAS-GAL4 strain and temperature-sensitive allele Gal80TS 

[Matsumoto, 1978], under tubulin 1ǂ promoter control leads to the greatest suppression of 

GAL4 expression at 19C and synthesis depressions of this protein at 30C. 

The other approach for the direct temporary gene expression  by using UAS-GAL4 system is 

based on creation of hormone-inducible chimeric GAL4 variants: Gal4-estrogen receptor 

[Han, 2000] and GAL4-progesterone receptor (Gene Switch) [Nicholson, 2008; Osterwalder, 

2001; Roman, 2001]. The transgenic expression is controlled with addition of ligands in food 

of flies or larvae during certain time period that allows excluding deleterious effects of the 

early expression of transgene. However, it imposes restriction on the use of these 

approaches on embryonal and pupal development stages [Elliott & Brand, 2008]. 

The method of insertional mutagenesis has been developed on Drosophila melanogaster and 
became widely used, based on application of mobile genetic elements (ME). ME represent 
the DNA segments capable to independent transpositions inside the genome. The share of 
mobile elements in human and mammal genome can reach 40% of the nuclear DNA 
[Kazazian, 2004]. The quantity of copies of mobile elements from various families changes 
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from one to several hundreds. ME insertion can essentially change the character of gene 
expression, and it has become the cause for wide ME application in creation of regulated 
tissue specific expression vectors [Enerly et al., 2002; Rorth P.,1996; Staudt et al., 2005]. The 
largest extension in Drosophila researches belongs to vectors, framed on the basis of mobile 
P-element [Adams  & Sekelsky, 2002; Bellen et al., 2004]; however property of the P-element 
to be built in only certain genome sites, limits the mutagenesis in the whole genome. 
Therefore now approaches with use of other mobile elements preferring insertion sites 
distinct from the P-element, in particular, hobo [Huet et al., 20002; Myrick et al., 2009; Smith 
et al, 1993] and Minos [Metaxakis et al., 2005], are developed. 
It is necessary to notice that use of Drosophila models allows avoiding such restrictions 
arising in action with human material, as incomplete family pedigrees, genetic heterogeneity 
of population, duration of the sampling. At the same time, fundamental aspects of cellular 
biology, such as regulation of gene expression, membrane transport, cell signaling, 
synaptogenesis, cellular death, neurotransmitter systems are similar enough in humans and 
Drosophila [Sang & Jackson, 2005]. 

3. Drosophila models of Alzheimer’s amyloidosis  

Alzheimer's disease (AD) is the most frequent reason of a dementia in elderly and senile 
age [Davis and Samuels, 1998]. Clinically, AD manifests as a gradual decline of cognitive 
functions such as learning and memory, which significantly correlates with synaptic loss. 
The main neuropathological features of AD are well known and characterized by the 
accumulation of aggregated phosphorylated tau in neurofibrillary tangles (NFTs) and 
amyloid beta peptide (Aǃ) in senile amyloid plaques. Aǃ  is the  peptide with 39 - 42 amino 
acid, a product of the proteolytic processing of the big transmembrane protein which has 
received a name of Amyloid Precursor Protein (APP). Normally, Aǃ in nanomolar 
quantities is found out in the blood flow and cerebrospinal fluid; however, according to 
modern representations, accumulation of toxic intermediates of amyloid fibril in  AD 
brain is the central link in all neuropathological processes, including dysfunction of 
synapses, neurodegeneration, neuron loss and dementia development [De Strooper & 
Annaert, 2001; Hardy & Selkoe, 2002; Selkoe, 1998]. The appreciable part of works 
specifies that such intermediates may be soluble oligomers of Aǃ [Walh & Selkoe, 2004]. 
Different membrane proteases known as alpha, beta (BACE) and gamma-secretases, are 
involved in proteolytic АРР processing. The coordinated action of ǃ– and Ǆ-secretases results 
in the formation of Aǃ. Ǆ-secretase  represents the protein complex, in which basic component 
are transmembrane proteins presenilin 1 (PSN1) or presenilin 2 (PSN2) [De Strooper & 
Annaert, 2000]. All known familial AD forms are caused by mutations in АРР, PSN1, PSN2 
genes [Selkoe, 1999]. There are a fly homologue of presenilin genes (Psn) [Ye & Fortini, 1998] 
and homologue of APP gene (Appl) [Luo et al., 1990] in Drosophila melanogaster genome. 
Appl is characterized by high degree of homology with АРР, it is exposed to similar 
proteolytic processing, but it lacks the Аǃ peptide region and its processing does not lead to 
neurotoxic effects [Luo et al., 1990; Rosen et al., 1989]. Appl knockout didn't lead to lethal 
effect, but caused change of behavioral reactions which were restored at АРР expression.  
This indicates functional conservatism between Drosophila Appl and human АРР[Luo et al., 
1992]. Many researches specify the key role of Appl in formation and maintenance of 
synapses in Drosophila [Ashley et al., 2005; Torroja et al., 1996]. Experiments by definition of 
Appl localization have shown significant Appl enrichment in growing axons and synaptic 
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structures and participation of Appl in formation and differentiations of synapses in 
neuromuscular junctions of larvae [Torroja et al., 1996, 1999b]. The overexpression both 
Appl, and human АРР caused disturbance of axon transport [Gunawardena and Goldstein, 
2001; Torroja et al., 1999a]. At АРР human overexpression in Drosophila melanogaster it also 
was transported in the presynaptic terminal of neurons and postsynaptic sites of 
neuromuscular junctions [Yagi et al., 2000]. 
Fly models of human Aǃ peptide-induced amyloidosys have been generated employing 

direct expression Аǃ40 and Аǃ42, in nervous system in Drosophila strains [Iijima-Ando & 

Iijima, 2010; Moloney et al., 2010]. Interestingly, diffusive amyloid deposits and neuron 

loss have been detected only  in flies carrying the sequence of more amyloidogenic Аǃ42 

in genome. Amyloid formation was accompanied by progressive age-dependent 

behavioral defects, and life expectancy reduction. Authors did not detect  amyloid 

accumulation and neuron loss as for flies carrying the sequences of less amyloidogenic 

Аǃ40 [Finelli et al, 2004; Iijima et al., 2004]. In other work, flies expressing wild-type Аǃ42 

and Arctic mutant Аǃ42 (Glu22Gly) showed a decline in climbing behavior, increased 

intracellular Аǃ accumulation and diffuse plaques prior to signs of neurodegeneration 

[Crowther et al., 2005]. Late findings demonstrated that expression of the Arctic mutant 

significantly enhanced formation of Аǃ oligomers and Аǃ deposits, together with a 

decline of locomotor functions when compared with Аǃ-art (artificial mutation L17P) 

[Iijima et al., 2008]. 

It has been proposed that dysfunction and loss of synapses underlie in the basis of cognitive 

disturbances at AD [Hardy & Selkoe, 2002; Honer, 2003 Sze et al., 1997; Selkoe, 2002; Terry et 

al., 1991]. At the analysis of sporadic AD form it has been established that the significant 

reduction (> 25 %) of synapse density in a frontal and temporal cortex and in hippocampus 

was observed already in the early stage of disease [Masliah et al., 1994]. Thus loss of 

synapses is not age-dependent and it is the specific characteristic of AD [Masliah et al., 

2001]. Moreover, the degeneration of only insignificant part of synapses is caused by neuron 

death whereas the appreciable share of synapses is lost by living cells [Coleman & Yao, 

2003].  

In addition, transgenic models clearly show that synapse loss strictly correlates with 

cognitive disturbances and precedes formation of neurofibrillary tangles (NFTs) and 

amyloid deposits [Duyckaerts et al., 2008; Mucke et al., 2000; Oddo et al., 2003]. Now the 

most researchers suggest that accumulation of soluble toxic A oligomers in neurons lead 

directly to degeneration of synapses and the neuron loss [Walsh & Selkoe, 2004]. This 

suggestion, considerably, is based on the data showing correlation between concentration of 

soluble non-aggregated A in extracts of cortex and hippocampus, reduction of synapses 

quantity and degree of cognitive disturbances [Lue et al., 1999]. In summary, despite 

appreciable number of modeling experiments on the transgenic animals  [Haass and Selkoe, 

2007; LaFerla  et al., 2007; Wirths et al., 2004] it is extremely difficult to prove a hypothesis 

about casuative the role of toxic A oligomer in  synaptic dysfunction in vivo. Surprisingly, 

different Аǃ42 aggregates had distinctive roles in modulation of synaptic functions. While 

exogenously prepared small Аǃ42 oligomers or Аǃ oligomers secreted from neurons lead to 

a reduction of neurotransmitter release; larger-sized aggregates, possibly fibrils secreted by 

muscle cells, enhanced neurotransmitter release and synaptic transmission [Chiang et al., 

2009]. 
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The A42 expression induced depletion of mitochondria in axons and dendrites and their 
accumulated in the somata without severe mitochondrial damage or neurodegeneration 
[Iijima-Ando et al., 2009]. In addition, significant depletion of presynaptic mitochondria 
occurred before changes in synaptic transmission [Zhao et al., 2010].  

Greeve et al. (2004) have taken an alternative approach to generating flies with A 

deposition. Because BACE activity is very low or not present in Drosophila [Carmine-

Simmen et al., 2009; Fossgreen et al., 1998;], overexpression of human APP does not lead 

to secretion of A leading to the interpretation that all phenotypic effects in these 

transgenic flies should be attributed to the presence of human APP. When human BACE 

and APP were expressed in combination in fly eyes A was secreted and diffuse amyloid 

plaques and age-dependent neurodegeneration of photoreceptor cells were observed. The 

neurodegeneration phenotype was enhanced in the flies expressing dPsn carrying early-

onset familial AD mutations. Surprisingly, neurodegeneration was even more 

pronounced in APP transgenic flies than in APP/BACE double transgenic flies [Greeve et 

al., 2004]. Our data confirm these results. We did not find differences in age-dependent 

neurodegeneration in transgenic flies expressing full size APP with BACE or without 

BACE. However, transgenic expressing APP and BACE had lower levels of the 

presynaptic protein GFP- synaptobrevin or GFP-synaptotagmin than transgenic 

expressing APP alone [Sarantseva et al., 2009a, 2009b]. These findings raise the question 

whether the decline of synaptic proteins levels and/or neurodegeneration are caused by 

different mechanisms. Alternatively, we suggest that A reflects just a part of a larger 

pathological process and independently contributes to different neuropathological 

abnormalities caused by APP overexpression. 

3.1 Screening for genetic modifiers  
Drosophila represents one of classical tools used to conduct genetic modifiers screens. The 

main goal of these screens is to identify proteins or pathways that modulate pathological 

process.  One of the most interesting examples is discovery of modifiers of Aǃ pathology.  

Flies expressing A42 in retina have been used for detection of A phenotype-modifying 

mutations in Drosophila genome. These flies developed so-called «rough eye» phenotype 

characterized by disorganization of photoreceptor cells and reduction of the eye size [Finelli 

et al., 2004]. Modifiers (suppressors and enhancers) of rough eye phenotype were identified 

from screening the collection of nearly 2,000 Drosophila strains carrying in genome inserts of 

ЕР transposon. The EP transposon has a GAL4 activated promoter and modulates the gene 

activity depending on site and orientation insertion [Rorth et al., 1998]. All strains of this 

collection were individually crossed to the flies expressing A42. As a result of screening of 

phenotypes and the subsequent DNA-analysis 23 modifiers gene have been discovered. 

They included genes participating in various secretory processes, cholesterol homeostasis, 

the innate immune pathway, control of transcription and chromatin remodeling. Eight 

mutations change the total A peptide level, but only one mutation resulted in 70 % 

decrease of total A level. This mutation revealed insertion in regulatory zone of neprilysin 

2 (nep2) gene [Cao et al., 2008; Finelli et al., 2004]. Neprilysin is one of major 

neuropeptidases of brain of mammals [Iwata et al., 2001, 2005]. Interestingly, 

epidemiological studies suggest that reduction in Neprilysin  levels may contribute to the 

onset and/or progression of late-onset AD [Hersh & Rodgers, 2008].  
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Several studies show that normal cellular presenilin functions and the nature of 
abnormalities caused by PSN1 and PSN2 mutations in familial AD are not restricted by 
participation of these proteins in Ǆ-secretase complex and required the further investigations 
[Baki et al., 2004; Bentahir et al., 2006; Singh et al., 2001; Saura et al., 2004; Schwarzman et al., 
1999]. For understanding presenilin functions the search of genetic modifiers modulating 
Psn-dependent phenotype in Drosophila wings and notum has been conducted. 177 
modifiers, included  the proteins regulating intracellular calcium signaling, stress response 
and protein folding, components of signal transduction, apoptotic factors and proteins of the 
cellular cycle. Notably, 58 modifiers interacted with АРР, including those involved in 
calcium signaling. These results provide strong evidence for a link between presenilins, 
APP, and calcium homeostasis, and suggest that these may play an important role in AD 
pathogenesis [van de Hoef et al., 2009]. 

4. Drosophila model for transthyretin-associated amyloidosis 

Transthyretin (TTR), plasma protein primarily synthesized in the liver, choroid plexus and 
in retinal pigment epithelium, is the basic transporter of thyroxine and retinol-binding 
protein in mammals [Goodman, D., 1987; Woeber & Ingbar, 1968]. Three human diseases are 
characterized by extracellular  transthyretin deposits – Familial Amyloidotic 
Polyneuropathy (FAP), Familial Amyloidotic Cardiomyopathy (FAC) and Senile Systemic 
Amyloidosis (SSA). SSA is the most widespread form of transthyretin associated 
amyloidosis, in which the lesion of heart, brain, and pancreas is observed [Westermark, et 
al., 1990]. FAP and FAC are hereditary forms caused by mutations in the transthyretin gene. 
Now it is known more than 100 human genetic TTR variants differing with unique amino-
acid replacement, of which the majority is amyloidogenic [Connors et al., 2003]. TTR forms 
amyloid through a process that is initiated by tetramer destabilization. This process results 
in accumulation of monomers, which can misfold and aggregate into fibrillar structures 

[Wiseman et al., 2005]. ТТR is involved in А metabolism, the basic component of amyloid 
deposits in Alzheimer's disease [Liu & Murphy, 2006; Schwarzman, et al., 1994]. Moreover, 

binding TTR to А prevented А aggregation and formation of an amyloid both in vitro and 
in vivo [S.H. Choi et al, 2007; Buxbaum et al, 2008]. Despite the fact that Drosophila does not 
have distinct TTR homolog, the expression of its two clinical forms TTRV30M [Berg, I. et al, 
2009] and TTRL55P and mutant form TTR-A [Pokrzywa et al., 2007], with two amino-acid 
replacements (TTRV14N/V16E) [Olofsson et  al., 2001] led to development of the 
phenotypes partially reminiscent of the human pathology. Expression of TTRV30M in the 
nervous system resulted in neurodegeneration, reduced lifespan, climbing ability, whereas 
the expression of wild type TTR (TTRwt) showed a milder phenotype. Congo red staining of 
the Drosophila brain shows positive amyloid binding in aged TTRV30M flies [Berg, I. et al, 
2009]. Similar results have been received at TTRL55P and TTR-A expression: shortened   
lifespan, locomotive dysfunction, including flight ability [Pokrzywa et al., 2007]. Notably, 
that the expression of all three TTR forms (TTRL55P, TTR-A and TTRwt) caused  the 
unusual “dragged-wing” phenotype.TTR aggregates possessed different toxicity. So, the 
most toxic were TTR aggregations separated from hemolymph and fat body of aged TTR-A 
flies [Pokrzywa et al., 2010]. 
Drosophila strains expressing TTR can address specific questions in transthyretin biology. 
For instance, a variety of TTR-binding partners have been identified over the years [Liz et 
al., 2009]. However, the biological significance of these interactions remains obscure. Use of 
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a tractable genetic system such as Drosophila can play a key role for the elucidation of 
cellular pathways and compartments in which these interactions take place. 

5. Modeling prion diseases in Drospohila 

Prion diseases (transmissible spongiform encephalopaties)  are an unusual group of fatal 

neurodegenerative disease including Gerstmann–Sträussler–Scheinker (GSS) syndrome, 

familial fatal insomnia (FFI), Creutzfeldt–Jakob disease (CJD) and kuru  in human and also 

scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) in cattle,  chronic 

wasting disease in mule deer and elk, [Prusiner, 1998, Prusiner & Hsiao,1994]. These 

diseases may present with sporadic, inherited or infectious origins and lead to dementia, 

motor dysfunction and death [Aguzzi et al., 2008]. The majority of prion diseases cases in 

humans are classified as sporadic forms and about 10-15 % are the inherited form caused by 

mutations in PRNP gene. Now it is described more than 30 mutations in PRNP gene [Mead, 

2006]. According to modern considerations, the central pathogenetic event in prion diseases 

is the conformational conversion of the normal cellular isoform of prion protein (PrPC) into 

its pathological scarpie isoform (PrPSc) [Prusiner, 1998]. The precise structural differences 

between the two PrP isoforms remain to be defined, although it is clear that PrPSc contains 

significantly more ǃ-sheet and is more protease-resistant regions. The deposition of PrPSc in 

the brain is associated with cerebral damage, including spongiform degeneration and 

neuronal loss. However, increasing evidence argues against the neurotoxicity of PrPSc. 

Significant pathology and/or clinical dysfunction develop with little accumulation of PrPSc 

[Flechsig et al., 2000; Manson et al., 1999] and some familial prion diseases are not 

transmissible, and are not accompanied by the accumulation of protease resistant PrP 

[Brown et al., 1994; Rodríguez-Martínez et al, 2010; Tateishi & Kitamoto, 1995; Zou et al, 

2010]. Thus, it is not clear whether specific conformers are associated with neuronal 

dysfunction and degeneration [Solomon et al., 2010]. 

The first attempts to create the model of prion diseases on Drosophila were unsuccessful. PrP 

Syrian hamster (SHaPrP) expression under heat shock promoter Hsp70  did not lead to 

neuropathology and   accumulation of protease-resistent SHaPrP forms [Raeber et al.,1995].   

The expression of wild type of the mouse (MoPrP) and human CJD-associated  PrP (PG14) 

[Krasemann et al., 1995] using GAL4-UAS has not also revealed clinical and pathological 

abnormalities in the flies.  Surprisingly, the flies seemed to accumulate very little mutant PrP 

in the brain compared with the eyes, suggesting that Drosophila brain possesses a specific and 

saturable mechanism that suppresses the accumulation of PG14 [Deleault et al., 2003]. 

The  successes in modeling of prion disease  in Drosophila was achieved in the expression of 

wild type mouse prion protein and  GSS syndrome-associated mouse prion protein (MoPrP 

P101L) in cholinergic and dopaminergic neurons. The MoPrPP101L flies showed severe 

locomotor dysfunction, decreased lifespan and neuronal vacuolization associated to age-

dependent accumulation of misfolded PrP molecules and intracellular PrP aggregates 

[Gavin et al, 2006]. In addition, MoPrPP101L induced altered synaptic architectures in larval 

neuromuscular junctions and progressive reduction of  a synaptic scaffolding protein, Discs 

large (DLG), in adult brains [J.K. Choi et al., 2010]. Flies expressing wild type prion protein 

displayed no phenotype [J.K. Choi et al., 2010; Gavin et al, 2006]. 

Expression of  wild type PrP (SHaPrP )  in Drosophila neurons caused lifespan reduction,  
locomotive abnormality  and spongiform degeneration of brain neurons. This was a first 
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successful attempt on creation of the sporadic form of prion diseases in Drosophila.  Notably, 
PrP underwent conformational changes comparable to those of PrPSc, however flies did not 
accumulate proteinase K-resistant PrP, indicating that wild type PrP can induce spongiform 
degeneration in the absence of its prototypical PrPSc conformation [Fernandez-Funez et al., 
2009].  

6. Drosophila as a model system for discovery of therapeutic compounds for 
brain delivery 

A major obstacle in the treatment of diseases of the central nervous system is the limited 
penetration of drugs into the brain. A basic reason for low efficacy of many systemically 
administered therapeutics is insufficient drug delivery due to the presence of the blood-
brain barrier (BBB) [Pardridge, 2005]. The BBB is formed by the complex tight junctions 
between the endothelial cells of the brain capillaries and their low endocytic activity. This 
results in capillary walls that behave as a continuous lipid bilayer that prevents the passage 
of polar and lipid-insoluble substances into the brain [Ballabh et al., 2004; Huber et al., 2001; 
Reese and Karnovsky, 1967]. The BBB also limits the delivery of protein and peptide-based 
therapeutics that are highly potent, lack toxicity and may prove extremely efficacious for the 
treatment of many neurological disorders [Laskowitz et al., 2006].  
Limited numbers of investigations of brain delivery of therapeutic compounds described in 
literature are partially due to the difficulties in evaluating and predicting simultaneously the 
fate of a compound in a therapeutic intervention and the efficiency with which it crosses the 
BBB.  Current methods such as in vitro measurements in cell cultures are insufficient to 
address problem in modeling of CNS diseases. At the same time present models of 
neurological diseases using rodents often have serious limitations for repetitive testing of a 
large number of structural variants of drugs. Therefore, to avoid these difficulties we 
examined the utility of Drosophila and its BBB for neuropharmacological research. Recent 
studies showing structural and functional similarities between the BBB of Drosophila the 
mammalian BBB suggest that Drosophila represents a reasonable model for testing the 
penetration of drugs and peptide vectors into the CNS [Daneman and Barres, 2005; Genova  

 Fehon, 2003;  Schwabe et al., 2005; Stork et al., 2008; Wu et al., 2004]. We have 
demonstrated the ability of penetratin (protein transduction domain vector) [Derossi  et al., 
1994] to carry a cargo (apoE mimetics) across the Drosophila BBB  into brain cells. These apoE 
mimetics are peptides derived from the receptor binding region of apoE that mimic the 
functional anti-inflammatory and neuroprotective effects of the intact apoE protein 
[Laskowitz et al., 2007; Wang et al., 2007]. Amazingly, penetratin fused with apoE mimetics 
restored cognitive functions in transgenic Drosophila. Moreover,  penetratin fused with 
peptide SH8 (inhibitor of Aǃ amyloidosis)  [Schwarzman et al., 2005] decreased size of Aǃ 
deposits after abdominal injection in Drosophila lines secreting Aǃ [Sarantseva et al., 2009a]. 
These results suggest that Drosophila may be a very fruitful model system for the 
development of CNS drugs and studying drug delivery into the brain. 

7. Conclusion 

Transgenic Drosophila lines reproduce many key signs of Alzheimer's disease, prion 
diseases, FAP, FAC, SSA. Here it should be noted that although experiments with  
transgenic Drosophila do not faithfully recapitulate all aspects of studied amyloid diseases, 
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they offer real opportunities for studying disease-related pathology.  In particular, these 
models help to explain the contributions of APP and Aǃ in familial AD pathogenesis. In 
general, fly models should be surveyed as the sensitive genetic system, which gives 
possibility to reveal the cellular processes involved in a pathogenesis of diseases, modifiers 
of these processes. In a very practical view Drosophila strains may be also used to test new 
therapeutic compounds, which would help resolve a variety of fundamental questions. The 
discovery of genetic modifiers in Drosophila will help to reveal the corresponding human 
genes and therefore new therapeutic targets. 
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