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1. Introduction 

Amorphous silicon, and its more useful alloy form, hydrogenated amorphous silicon  

(a-Si:H), has been the subject of investigation for more than three decades. A-Si:H is a low-

cost, efficient material which is used extensively for electronic devices. Indeed, most recent 

electronic device textbooks contain a comprehensive review of the physics of amorphous 

materials and amorphous silicon in particular (Baranovski, 2006; Kasap, 2005; Street, 2000).  

The advantages of a-Si:H are particularly evident when considering the photovoltaic 

application context for the preparation of solar cells: in fact, a-Si:H has a large optical 

absorption coefficient (about 0.5 micron of the material will absorb 90% of the incident 

sunlight); the energy gap can be modulated to allow for near optimum conversion efficiency 

for sunlight; it can be alloyed with other elements (carbon, germanium) to create multi-

junction structures with increased energy conversion efficiency for sunlight. Finally, it is 

plentiful and can be deposited on a variety of materials (at low temperature, over large 

areas, and on flexible substrates).  

However, the presence of metastable defects in a-Si:H adversely affects the performance of 

photovoltaic cells and thin film transistors. Electrical conductivity, photoconductivity and 

luminescence degradation have been linked to defect formation, such as dangling bonds 

(DBs) in the a-Si:H film (Akkaya & Aktas, 1995; Street, 1980). 

Staebler and Wronski (1977) found that defects can be created by illuminating a-Si:H. The 

creation of these light-induced defects (LID) is therefore referred to as the Staebler-Wronski 

(SW) effect. The presence of these defects, or dangling bonds, is the major factor responsible 

for the deterioration of the optical and electronic properties of a-Si:H. On the other hand, 

these defects are metastable and can be cured. Indeed, we could define a SW process that 

can be described as a two-step reversible process:  

i. Exposure to sunlight leads to an increase in the density of states (dangling bonds) in the 

energy gap of a-Si:H; this represents the SW effect proper; 

ii. Subsequent annealing at elevated temperatures (150-200 OC) reduces the density of 

states back to the original value, thus restoring the optoelectronic properties.  

It has been shown experimentally that both optical and electronic properties of amorphous 

silicon, such as refractive index, optical gap, absorption coefficient, electron and hole 
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mobility, etc., are strongly dependent on hydrogen content, in terms of both hydrogen 

concentration and hydrogen dynamics (diffusion) under various conditions - see, for 

instance, (Searle, 1998) and references therein. The investigation of such dynamics, including 

the relation with defect creation and annealing, is crucial for assessing the appropriate 

solutions to achieve better control of the defects and, consequently, better optoelectronic 

performances.  

There exists a large amount of articles and review papers or books that address the basic 
properties of a-Si:H, including analysis of the structural, optical and electronic properties; 
description of a variety of experimental methods used for the growth of a-Si:H films; and 
correlation between growth parameters and film quality.  
In this chapter a summary of the basic properties and historical issues related to a-Si:H and 
its applications in optoelectronics is presented in section 2. A more exhaustive description of 
the basic properties of a-Si:H is provided by the references in this section. Section 3 will 
focus on the role of hydrogen in relation to the optoelectronic properties and defect 
dynamics in a-Si:H, and will examine some of the prominent models of hydrogen diffusion 
also used to describe the SW process dynamics. Section 4 will describe the use of tritium, an 
isotope of hydrogen, as an experimental probe that can be used as a reference by such 
models. Finally, section 5 will present the results of an integrated experimental and 
theoretical approach aimed at developing a proper model of the dynamics inherent to a-Si:H 
and amorphous materials in general. Future work necessary to achieve a proper description 
of these dynamic processes will be indicated in the Conclusion section. 

2. Properties of a-Si:H 

There exist several preparation methods for a-Si:H films. Early work on evaporated and 
sputtered a-Si:H lead to poor quality films, and it is now widely accepted that Radio 
Frequency (RF) Glow Discharge produces the best quality material, although other more 
recent methods claim similar or better results. A comprehensive review of the advantages 
and disadvantages of the different methods employed to grow a-Si:H can be found in the 
books edited by Searle (1998) and Street (1991).  
In general, it is desirable that a hydrogen plasma be employed to help the formation of Si—
Hn ion radicals; hence, methods based on plasma-enhanced chemical vapour deposition 
(PECVD) techniques are usually preferred. The ions produced in the plasma region are 
directed via an electric field towards a substrate, where film growth takes place. A common 
characteristic of these PECVD techniques is the possibility of tuning the system using 
several parameters, which might be mutually dependent on or independent of each other, 
like partial gas pressure, electrode bias, substrate bias, flow rates, gas mixtures, substrate 
temperature, and any other adjustable parameter. A review of plasma deposition of a-Si:H 
can also be found in (Bruno et al.,1995). 
If the goal of current research in this sector is the understanding and prediction of the 
properties of a-S:H, it is crucial that the dependence of physical properties on preparation 
conditions be fully examined. This requires the development of experimental and predictive 
tools applicable to size scales ranging from the atomic to the macroscopic levels. Both Searle 
(1998) and Street (1991) provide an exhaustive review of the structural, optical and 
electronic properties of a-Si:H, and point out the still unresolved issues. In the following 
subsection, the basic properties of a-Si:H are presented, with a focus on the role of 
hydrogen.   
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2.1 Structure and Density of States (DOS) 
In order to understand the implication of the amorphous structure of a-Si:H on its opto-

electronic properties, it is useful to examine the structure of amorphous silicon in 

comparison to its crystalline form (c-Si). Crystalline silicon is characterized by the well 

known diamond (or tetrahedral) structure, with bond length of 23.3 nm and bond angle of 

109.5o. As a matter of fact, the amorphous form shows very small changes from the 

crystalline parameters, with a ± 10% deviation in bond length, and a ± 5% deviation in 

bond angle. These small changes make it possible to maintain a relatively good short 

range order (within the first 2-3 nearest neighbours); however, the accumulation of 

structural stress, due to the progressive compounding of small deviations, eventually 

leads to bond breaking and the appearance of dangling bonds. Figure 1 shows simple 2-d 

schematics of the formation of dangling bonds: a 2-d square crystal (1a) is slightly 

distorted (1b, top, center atom). The distortions become more marked as the network is 

extended, and eventually a dangling bond (DB) appears to relieve the structural stress 

(top right quadrant of figure 1c: this is usually also accompanied by under-coordinated 

and over-coordinated bonds).  
 

 

Fig. 1. (a to c) 2-d schematics of formation of dangling bonds due to long range disorder.  

The negative effects of the dangling bonds on the opto-electronic properties of a-Si can be 

effectively removed by hydrogenation; that is, hydrogen atoms are introduced to passivate 

(bond to) the dangling bonds; see, for instance, (Kasap, 2005; Street 1991, 2000).   

Hydrogen atoms incorporated into the films satisfy the covalent bonds at defects and 

microvoids and also allow the lattice to relax, thereby reducing the density of localized 

states by several orders of magnitude. Figure 2(b) show a 3-d representation of amorphous 

silicon with dangling bonds passivated by hydrogen atoms. A crystalline structure is also 

shown for comparison in figure 2(a). 

The differences and similarities between the crystalline silicon and amorphous silicon 

structures are evident when we examine the radial distribution functions (RDF) for the two 

structures, as shown in Figure 3. The amorphous structure still shows ordered, crystalline 

features for the first 3 nearest neighbors. The first neighbor also maintains the crystalline 

sharpness for the peak, while the progressive deviations from the crystalline structure are 

evident in the spreading of the peaks for the second and third nearest neighbor. 
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(a) (b)  

Fig. 2. A 3-d computer model representation of c-Si (a), and a-Si (b) with dangling bonds 
passivated by hydrogen atoms (red balls).  

The role of hydrogen in determining the degree of disorder is also the subject of numerous 
studies. For instance, O’Leary et al. (1996), by using optical absorption data, and by 
investigating how the modeling parameters vary with the bonded hydrogen concentration, 
suggest that bonded hydrogen helps decreasing the amount of disorder, and has an impact 
on the optical absorption spectrum.  
More recently, Ukpong (2007) studied the chemically-induced disorder-to-order transition 
in hydrogenated amorphous silicon as a function of hydrogen concentration, CH. The author 
identifies three stages, associated with low CH, medium CH, and high CH, that describe the 
changes in the stress and structure parameters. Rui et al (2005) investigated the effect of 
hydrogen plasma annealing on the micro-structural transition from disorder to order in 
amorphous silicon films. They found that there exist two steps for the reaction between 
atomic hydrogen and Si network, and show that the hydrogen plasma treatment conditions 
strongly influence the microstructures of the amorphous Si films 
The disorder inherent in the amorphous structure and the presence of dangling bonds has a 
crucial impact also on the electronic density of states (DOS) of amorphous silicon. Figure 4 
shows a simple schematic representation of the electronic DOS of a-Si:H.   
 

 

Fig. 3. Radial Distribution Function of crystalline silicon (left) and amorphous silicon (right) 
[From: Laaziri et al., 1999]  
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Fig. 4. A schematic representation of the electronic density of states, g(E), of a-Si:H. VB 

indicates the valence band and CB the conduction band. The dashed, red, vertical lines show 

the mobility edges, which are defined as the energy level separating extended (non-

localized) states from localized states. 

The main features in Figure 4 can be summarized as follows:  

i. The localized tail states are a consequence of the disorder inherent to the amorphous 

structure. Several studies have examined the role and the extent of tails states in a-Si:H. 

In particular, a characteristic energy, EU, or Urbach energy, gives the measure of the 

width of the tail states; hence, it is also referred to as the Urbach tail width - see, for 

instance, (Ley, 1983). The characteristic width for the band tail states is about 50 meV 

for the valence band tail states and about 25 meV for the conduction band tail states – 

see, for instance, (Cody, 1981) and the relevant articles cited in the reviews in (Street, 

1991) and (Searle, 1998). Furthermore, the tail states width has been associated with a 

“degree” of disorder, with the implication that the optoelectronic properties of a-Si:H 

are also dependent on its value.  

ii. The localized defect states in the middle of the gap are associated with the formation of 

DBs. Different models have been proposed to identify the percentage and the energy 

levels of neutral DBs vs. the positive and negative DBs. Indeed, a DB is identified not 

only by the fact that the bond is unsatisfied, but also by its net charge, which is 

determined by the number of electrons sharing the dangling bond, i.e., no electrons 

imply a positive DB (D+), a single electron makes the bond a neutral one (D0), while the 

presence of two electrons lead to negative DBs (D-).  One of the most interesting and 
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utilized models, describing the energy distribution of the three types of defects, is the 

so-called defect-pool model (Powell & Deane, 1996).  

iii. The localized states in the band tails become delocalized at a critical boundary called 

the mobility edge. A mobility gap is then defined as the energy separation between the 

two mobility edges of the conduction and valence bands.  

2.2 Optical properties of a-Si:H 
A-Si:H can be described as a direct band-gap semiconductor. The original study of Tauc et 

al. (1966), in which the distributions of electronic states are assumed to be exactly square-

root in character, terminating abruptly at the respective band edges, leads to a simple 

analysis of optical absorption and luminescence experiments. 

Optical absorption and luminescence occur by transition of electrons and holes between 

electronic states such as conduction and valence bands, tail states, and gap states. Tauc’s 

relation (Tauc, 1966) describes the dependence of the optical absorption constant, ǂ, on the 

energy gap as:  

 ( )2
Gǂ ω B ω E= −¥ ¥  (1) 

Where B is a constant, ħω is the photon energy and EG is the optical gap.  

The empirical determination of the optical gap EG can then be achieved by plotting ǂ ω¥  
vs. ω¥ , which is known as Tauc’s plot (a schematic illustration of Tauc’s plot is shown in 
Figure 5). 
However, the presence of localized tail states extending from the conduction and valence 
bands into the energy gap makes the determination of an optical gap unclear. For instance, 
Malik & O’Leary (2004) and Thevaril & O’Leary (2010) have addressed the fact that in 
amorphous semiconductors considerable deviations from square-root distributions of 
electronic states occur. They claim that the presence of tail states introduces a corresponding 
tail in the imaginary part of the dielectric function, ( )2 ωε ¥ , which makes the optical gap 
difficult to determine, i.e., it introduces a considerable amount of uncertainty into the Tauc 
optical gap determination procedure. 
Nevertheless, it is still a common procedure to determine the optical gap by using Tauc’s 
relation, although two different methods have been used to obtain a value for the gap. The 
first simply extrapolates the high energy, linear section of the plot of ǂ ω¥  vs. ω¥ , and 
takes the intercept with the x-axis as the value of the optical gap, as shown in Figure 5. The 
second chooses the photon energy at which the absorption coefficient is equal to 104 cm−1, 
defined as E04, as the optical gap.  
The characteristic values for the band gap of a-Si:H determined from Tauc’s plot range from 

~1.7 eV to ~1.9 eV. The variations in gap value are due to preparation conditions, but it is 

well accepted that the main parameter responsible for the value of the optical gap is the 

hydrogen content (CH).  

Indeed, there are numerous studies that have investigated the dependence of the optical gap 

and other optical parameters, like absorption coefficient and refractive index, on CH. Earlier 

studies can be found in the references in (Searle, 1998) and (Street, 1991). In summary, it has 

been shown that the optical band-gap of a-Si:H tends to increase with hydrogen content; see 

also, for instance, (Daouahi et al., 2001; Gaspari et al, 1993). 
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Fig. 5. A schematic illustration of a Tauc’s plot. The extrapolation of the high energy linear 
portion is used to determine the optical gap EG 

2.3 Electronic properties of a-Si:H 
A-Si:H electronic properties also exhibit a strong dependence on the hydrogen bonding and 
content.  For example, dark conductivity in a-Si:H can be described by two main processes. 
The first is the standard extended states conduction process, described by the relation (Mott, 
1983) 

 A
0

B

Eσ=σ exp k T
⎛ ⎞−⎜ ⎟
⎝ ⎠

 (2) 

where σ and σ0 are the electrical conductivity and a prefactor, respectively, and EA, kB and T 
are the activation  energy, the Boltzmann constant and the temperature, respectively. EA is 
given by either EC− EF or EF− EV, depending on whether electrons or holes are considered, 
with EC and EV being the conduction band and valence band edges respectively. The second 
conduction process is referred to as variable-range hopping (VRH) conduction, a well 
known process in amorphous materials in general. This conduction process is associated 
with hopping within tail states, and is characterized by the following temperature 
dependence (Mott, 1983): 

 h h0 1
4

Bσ =σ exp
T

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

 (3) 

where σh and σh0 are the electrical conductivity and a prefactor, respectively, for variable 
range hopping. 
It has been shown that tail states are also subject to the SW effect (Longeaud et al., 2000).  
The authors also state that passivation of these DBs in the tail states is related to hydrogen 
reservoirs. As mentioned before, hydrogen will also influence tail states by reducing the 
amount of disorder, and by relaxing the structure; furthermore, defects states will tend to 
shift the Fermi level, thus influencing the activation energy in the dark conductivity. 
Therefore the hydrogen content plays a fundamental role in determining the conduction 
processes, as it does for the optical gap.  
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3. The role of hydrogen in a-Si:H 

As previously indicated, the presence of hydrogen during the growth of a-Si:H has a 

dramatic effect on the optoelectronic properties of a-Si. It is a well established fact that the 

presence of hydrogen atoms reduces the DB density, both at the center of the gap and in the 

tail states, thus reducing also the EU values. Furthermore, the optical gap increases with 

hydrogen content. However, several questions are still unanswered: for instance, it is still 

unclear whether there is a direct relation between hydrogen-content and optical gap, or 

whether such increase is also due to a structural reordering, leading to a less disordered 

structure, as indicated by the Urbach width. 

More importantly, the role of hydrogen dynamics during the defect creation and defect 

passivation phases of the SW process is still a matter of debate. The nature of hydrogen 

bonds, the hydrogen distribution, and hydrogen mobility represent crucial parameters in 

addressing these issues.  

3.1 Hydrogen bonding 
The most effective characterization of hydrogen content and hydrogen bonding is provided 

by the vibrational density of states (VDOS), obtained experimentally via transmission and 

Raman infrared spectroscopy. Fourier Transform Infrared Spectroscopy (FTIR) has become 

in fact one of the routine modes of investigation to determine the quality of the a-Si:H film 

(Searle, 1998; Street, 1991; and references therein).  

Investigations on the correct interpretation of crucial features in the infrared (IR) spectrum, 

such as the nature of the stretching modes at about 2000 cm-1, the roles of chains and 

microvoids, the distinction among different poly-hydride bonds - i.e. Si—H2 vs. Si—H3 vs. 

(Si—Hn)m - became crucial in order to achieve a better understanding of the role of hydrogen 

atoms both in the determination of the basic film properties (energy gap, Fermi level, etc.) 

and in the dynamics of creation and annealing of defects. 

For instance, early infrared spectroscopy (Jeffrey et al. 1979; Knights & Lujan, 1979; 

Zanzucchi et al., 1977), primarily of evaporated and sputtered a-Si:H, associated poly-

hydride bonding with poor film properties, but Street & Tsai (1988) and Kato & Aoki (1985) 

showed that that was not the case. A model predicting the various modes of vibration for 

silicon and hydrogen atoms in a-Si:H was developed by Lucovski et al. (1989). 

Recently, the correct interpretation of the various modes, in particular the stretching modes 

between 1950 and 2150 cm-1, has been questioned (Smets & van de Sanden, 2007); however 

the frequency assignments by Lucovski still provide an excellent reference for the 

investigation of a-Si:H. 

3.2 Hydrogen diffusion models 
Several models have been proposed to describe the dynamics of hydrogen diffusion within 

the amorphous silicon network relative to the Staebler-Wronski effect. Furthermore, many 

techniques have been employed to generate a realistic computational model of a-Si:H. In 

particular, molecular dynamics (MD) has become one of the more powerful and frequently 

used tools for the correlation of the microscopic characteristic of materials with their 

macroscopic properties, observed experimentally. In order to underline the variety of 

models and approaches used to analyze hydrogen diffusion, a summary of some of the most 
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important models and experimental studies introduced over the past 20 years is presented 

below. It should be noted that the following summary represents only a fraction of the 

publications on this subject, and it is not intended to be exhaustive, but rather to provide a 

sense of the diversity in the approaches to the problem. 

Santos et al. (1991, 1993) present first experimental evidence of light-induced hydrogen 
motion in undoped a-Si:H, obtained from diffusion experiments under illumination. A 
definite increase in diffusion was observed for the illuminated samples. The authors 
speculate that the recombination of e-h pairs releases energy and may induce excitation of 
hydrogen (H) from a Si—H bond. Another important conclusion is that there is an electronic 
nature to hydrogen motion in a-Si:H. Up to at least 275 oC, the H diffusion is not purely a 
thermal process but is dominated by the concentration of carriers. 
Jackson & Tsai (1992) consider hydrogen bonding in terms of a density of states. Bonding in 
a given configuration is equivalent to occupancy of the state. The barriers to configuration 
changes are equated with the energy required to reach transport energy. The main 
conclusions are that there is a range of possibilities: one extreme is the case in which 
hydrogen is predominantly bonded on void surfaces and the transport energy is 
substantially different in a-Si than in c-Si; the other extreme is that hydrogen predominantly 
resides in platelets structures and the transport energy is similar to c-Si. The actual case 
depends on deposition conditions. Also, Jackson et al. (1993) show that, at relatively high 
hydrogen concentration, hydrogen atoms reside mainly in clusters. The energy of the 
clusters depends on the number of hydrogen pairs within the cluster. Annealing has the 
effect to shift the hydrogen in more stable clusters. 
Van de Walle & Street (1994, 1995) investigate, using first principle pseudo-potential 
calculations, the bonding energetics and the diffusion mechanism of Si—H bonds in general 
and in amorphous silicon. The main conclusions are as follows: i- it is favorable for a 
hydrogen atom to move from a DB site to a bond centered (BC) site (bond-centered between 
two silicon atoms); ii- not only is this a favorable path, but the energy levels which are 
introduced into the band-gap open the way for carrier-enhanced dissociation; iii- the main 
path is that by which H stays at approximately the same distance from the original silicon 
atom, i.e., it moves along the direction of its wagging mode into a BC site. Finally, the 
motion of hydrogen atoms through a-Si can be described by a diffusion coefficient: 

 ( )H 0 AD  D exp E /kT= −  (4) 

Where EA is the activation energy of the diffusion process. 
Biswas et al. (1998) agree that H diffusion involves some type of hydrogen interstitial state, 
but that the exact nature of the diffusion mechanism is not well identified. They propose a 
type of H diffusion motion more consistent with energetics calculations and experimental 
evidence. The authors use a tight-binding model to calculate the energy to break a Si—H 
bond and place the hydrogen atom at nearby or distant silicon sites. They find that 
hydrogen is very reactive, and can form a new Si—H bond by breaking a Si—Si bond. This 
is represented by: 

 * *
x y x ySi—H  Si —Si Si  Si —H Si+ → + +  (5) 

These configurations typically consist of two DBs (Si* and Siy*). Remarkably, the energy of 
reaction is low even when the Si—H bond being broken is not a weak one.  The authors 
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identify a manifold of transport states, which depends on the bond length deviation of Si—
Si bonds, through the a-Si:H network. They propose that diffusion of hydrogen proceeds by 
the hydrogen atom breaking and reforming Si—Si bonds in the network, with the diffusing 
hydrogen carrying a transporting DB along. The basic conclusion is that hydrogen motion is 
very reactive and does not rely on the existing DBs in the network. It is also somewhat 
different from the hydrogen motion through bond-centered sites, which according to these 
authors is a less reactive process since it implies that the Si—Si bond must stretch outwards 
to accommodate the hydrogen atom. The calculation of the energy barriers is complex, but 
the authors set an upper limit of 0.8 eV and a likely value of 0.5 eV. 
One of the most important and popular models for hydrogen diffusion is the one proposed 
by Branz (1999) with the Hydrogen Collision Model (HCM). In this model, DBs are created 
when recombination of light induced carriers stimulates emission of mobile hydrogen from 
Si-H bonds according to: 

 Si H DB Si H /DB− → + −  (6) 

The basic process is described by the following steps: 
1. The mobile hydrogen atom goes to a Si—Si bond 
2. The bond is broken, forming a temporary Si-H and a DB 
3. The hydrogen atom hops to another Si—Si bond, again breaking the bond, while the 

previous bond reconstructs itself. 
4. The mobile hydrogen atom continues to hop (it can be proven that its binding energy to 

the various bonds it breaks on its way is weaker than regular Si-H). 
5. Eventually, the mobile hydrogen atom re-traps to Si-H through one of two mechanisms, 

described below: 
The first is a normal re-trapping to an immobile DB, given by Si-H/DB+DB→ Si-H, that is, 
the inverse process of eq. [6]. Basically, one can see this phenomenon as an H jumping to an 
ordinary DB, or as the formation of a bond between the mobile DB - that accompanies the 
mobile H – and the immobile DB. In both cases, no net DB results from the process.  
The second mechanism can be described as a re-trapping process of the form Si-H/DB+Si-

H/DB→ M(Si-H)2. This is far less frequent than normal re-trapping. It represents the 
collision of 2 mobile H atoms (and their accompanying mobile DBs) that associate into a 
metastable complex, M(Si-H)2, containing a pair of Si-H bonds in close proximity. The 
meaning of this process is that there is a net formation of 2 DBs (the ones left behind by the 
original Si-H bonds), thus resulting in the SW effect. 
All this can be summarized by the following reaction: 

 ( )2
2Si H 2DB  2Si H /DB 2DB M Si H− → + − → + −  (7) 

Experimental studies by Cheong et al. (2000) examine one of the main and most 
controversial assumptions of the HC model, namely, that the photo-generated mobile 
hydrogen atoms can move a long distance at room temperature. They devised an 
experiment to observe hydrogen motion at room temperature, since detection with 
traditional methods such as IR and deuterium tracing is inadequate. By using the high 
sensitivity of the Raman spectrum of electro-chromic amorphous tungsten (a-WO3) to 
hydrogen insertion the authors were able to detect the long-range motion of hydrogen at 
room temperature.  
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The floating bond (FB) model as described, for instance, in (Biswas & Pan 2003), proposes an 
alternative explanation for the H diffusion process. To put it simply, compared with the 
hydrogen-collision model proposed by Branz, the creation of DBs is mediated by floating 
bonds rather than hydrogen atoms.  
The proponents of the FB model point out that the emission rate of mobile hydrogen should 
be larger than the creation rate of a pair of DB and FB and that the mobility of movable 
hydrogen should be faster than that of FB, leading to the dominance of the Branz 
mechanism for DB creation. However, one should note that the possibility of the DB creation 
by the mobile hydrogen in the case of the HC model is very small, but DB-FB pair creation 
directly leads to the creation of DB.  
As mentioned previously, the hydrogen distribution is also an important parameter in 
determining the dynamics of the SW effect. For instance, Tuttle & Adams (1997) show that 
the energetic and properties of H-atoms must be analyzed considering also their phases, i.e., 
dilute or clustered.  According to the authors, the relative ratio of these phases and their 
distribution has an important role in determining the properties of a-Si:H. This is a 
fundamental fact that needs to be taken into account, if a model has to be used to simulate 
processes connected with hydrogen dynamics, including the testing of the models outlined 
above that have come to prominence as explanations of the Staebler-Wronski effect. 
Gaspari et al. (2010) have examined the hydrogen distribution in simulated samples, 
obtained by ab-initio Molecular Dynamics (AIMD), by examining the H-H radial distribution 
function. It was noted that the H-structure and its distribution within the underlying silicon 
network is crucial in determining the properties of a-Si:H and for finding whether the 
sample possesses high quality characteristics for photovoltaic or micro-electronic 
applications. These findings are in agreement with results reported in (Tuttle & Adams, 
1997), and indicate that the dilute vs. clustered distribution ratio, combined with a proper 
interatomic distance, plays a major role in determining the properties of a-Si:H.  
More recent studies continue to refine old models and propose new ones; however the focus 
has now shifted on the computational aspect of the modeling and, in particular, the realism 
of the model structure. This topic will be discussed in section 5.  
In the following section, a unique procedure providing a novel experimental and theoretical 
analysis regarding dangling bond formation and annealing in a-Si:H is presented. The 
approach employed is the incorporation of tritium into a-Si:H.  

4. Tritiated amorphous silicon  

In order to shed light on the role of hydrogen in defect dynamics, it would be desirable to be 
able to control the evolution of DBs and correlate it with hydrogen dynamics. However, a 
quantitative study in which the density of DBs is changed usually involves changing 
deposition conditions, or high-temperature annealing, or damaging the material with high-
energy particles or light (Danesh et al., 2005; Schneider & Schröder, 1990; Sholz et al., 1994). 
These procedures modify, to varying degree, other structural properties of the material, 
making it difficult to isolate the effect of DBs on the optoelectronic properties of a-Si : H. 
An alternative approach to investigating the properties of a-Si:H has been to substitute 
hydrogen with one if its isotopes, tritium, and use the effects of the radioactive decay 
process of tritium as a means to follow the dynamics of defect creation and annealing, and 
their impact on the opto-electronic properties (Costea et al., 2000; Gaspari et al., 2000; 
Kherani et al., 2008; Kosteski et al., 2000, 2003, 2005; Zukotynski et al., 2002).  
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4.1 Dangling bond formation due to tritium decay 

Tritium decay is described by the formula: 3 + -T He + + νβ→ , where −β  is the beta-particle 
emitted by the Tritium atom and ν  is an anti-neutrino. The half-life of tritium is 12.3 years 
and the mean energy of the beta particle is 5.69 keV. The bonding of tritium in amorphous 
semiconductors is stable at room temperature (Sidhu et al., 1999).  
Because of the direct-like nature of the energy gap in amorphous semiconductors, radiative 
recombination of electron-hole pairs is allowed. Furthermore, the nuclear decay process 
which leads to the emission of a ǃ particle from a Si-T site will produce a 3He atom which 
will diffuse out and leave behind a dangling bond (or recombination center, as shown in 
Figure 6). This process has led to a novel way of investigating the properties of amorphous 
silicon and amorphous semiconductors in general; see, for instance, (Kosteski et al., 2000, 
2003; Zukotynski et al., 2002). 
It should be noted that tritium decay has side effects that might in turn have an impact on 
DB formation (i.e., He recoil, e-h pair recombination). These issues have been addressed and 
it was proven that the impact of the secondary effects is negligible. A detailed analysis of the 
relative impact of electron-hole pair recombination is presented in the following sub-section. 
 

 

Fig. 6. The mechanism of tritium decay and dangling bond formation: I – Tritium is bonded 

to a Si atom and shares 2 covalently bonded electrons; II – Tritium decays into 3He+ and 
emits a high energy electron (ǃ emission); III – The 3He+ ion captures both electrons shared 
with the Si atom and leaves behind a positive dangling bond (DB+); IV – The positive DB can 

become a neutral DB by capturing in turn an electron generated by collisions between the 
original ǃ particle and the silicon matrix. An average of 1500 electron-hole pairs per ǃ 
emission is generated via this process (Kosteski et al., 2000). 

4.2 Effect of electron-hole pairs on dangling bonds 

The tritium decay process results in the emission of a β particle with a mean energy of 5.7 

keV. The β decay transforms the tritium atom into 3He+ with a, maximum, recoil energy of 

about 3 eV. Furthermore, electron-hole (e-h) pairs will be created in the material as the β 
particle transfers its energy to the silicon matrix.  
It has been shown that electrons with keV energies are unlikely to produce atomic 
displacements (Dubeau et al., 1996). They lose energy in collisions with electrons in the 
material, through which they pass, creating e-h pairs that thermalize by shedding ‘Raman’ 
phonons. In the case of a-Si:H, a pair is created for every 4.3 eV of energy lost. It can also be 
shown that Helium recoil is expected to create little damage (Street et al., 1979; Stutzmann, 
1991). 
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On the other hand, e-h pairs recombination has also been associated with the creation of 
DBs (Yelon et al., 2000) and with the mechanism of hydrogen diffusion in a-Si:H (Branz et al., 
1993, 1999; Cheong et al., 2000; Santos et al., 1991, 1992). The relative impact of e-h pairs on 
DB formation can be estimated as follows: 
An estimate of the number of e-h pairs generated by tritium decay in an a-Si:H:T film is 
given by the formula (Kosteski et al., 2000): 

 Tv avgG n E /= λ ε  (8) 

Where λ is the decay constant of tritium (λ = 1.78 x 10-9 s-1), Eavg is the average energy of a 

beta particle (5.7 keV) and ε is the energy needed to produce an electron-hole pair (4.3 eV); 
nTv is the volume density of atomic tritium. Assuming nTv~5 at.%, as confirmed by IR 
measurements for standard tritiated samples used in the investigation (Gaspari et al., 2000; 
Sidhu at al., 1999), we obtain: 

 15 3 1G  5.9 x 10 cm s− −=  (9) 

The effects of electron beam irradiation on a-Si:H has been extensively investigated 
(Schneider & Schroder, 1990; Scholz et al., 1994). In particular, the authors examined the 
effect of keV electrons – in the range 1 to 30 keV – and determined that metastable states 
were formed as a result of the irradiation. The results of their work can be summarized as 
follows: 

• The annealing kinetics of these defects is the same as for those produced by light.  

• The DB creation kinetics is linear with time over more than two decades in time.  

• The approach to saturation goes from linear to saturated with a change of less than a 
factor of 2 in the total number of metastable defects. 

• There is no sub-linear regime, in contrast to light-induced defect creation and 
annealing. 

• The saturation defect density is independent of dose rate over three orders of 
magnitude and independent of primary electron energy from less than 1 to more than 
30 keV . 

• Finally, the defect creation rate and saturation are independent of temperature from 170 
oC to room temperature. 

Yelon et al. (2000) applied the hydrogen collision model developed by Branz to explain the 
origin of metastable states due to ion bombardment. Since the work by Schroder and co-
workers deals in the most part with room temperature 20 keV irradiation, at 170 mW cm-2, 

of samples, d=0.6 µm thick, the authors have compared their model to the above-mentioned 

experimental conditions. The intensity of the e-beam corresponds to a flux of Φ = 5.3 x 1013 

cm-2 s-1 electrons striking the sample. In this case, the initial measured creation rate of 
dangling bonds is R0 = 2 x 1015 cm-3s-1. They obtained for the volume-averaged pair 
generation rate the number: 

 20 3 1
pR ΦN /d  6 x 10 cm s− −= =  (10) 

which is comparable to that of light degradation at the smaller intensities for which smaller 

DB creation rates and sub-linear (Ndb ∝ t1/3) kinetics are observed. 
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By applying Yelon’s treatment to e-h pairs generated by beta particles originating from 
tritium decay, it can be shown that the number of dangling bond due to e-h recombination is 
2 orders of magnitude less than the number due to the direct conversion of a Si—T bond 
into a DB. This is shown in Figure 7.  
 

 

T � DB 

e-h � DB 

 

Fig. 7. DB generation rates due to direct conversion of a Si—T bond into a DB and to e-h pair 
recombination. 

In summary, the studies of the properties of a-Si:H:T thin films have established the 
following:  
Creation of DBs, or induced changes to the host structure, by other causes associated with 
Tritium decay (i.e., irradiation damage from β particles, e-h pair recombination, He recoil) is 
negligible. This is of particular relevance, since it makes it possible to eliminate any side 
effects of Tritium decay from the analysis, in particular electron irradiation. Calculations 
have shown that DBs due to electron irradiation caused by Tritium decay account for less 
than 1% of the total number of dangling bonds created by the release of the He atom from 
the Si bond. 
Annealing recovers the photoluminescence (PL) and the electrical properties of the tritiated 
samples (see figures 8a and 8b). This is the fundamental aspect of the SW process in a-Si:H:T 
since the dangling bonds are created following a well known nuclear process, in which the 
Tritium atom is replaced by an Helium atom which diffuses away from the original bond. 
This clearly shows that the annealing process cannot be a simple reversal of the formation 
process of DBs. Therefore the passivation of DBs appears to be independent of the DB 
formation process and linked to the a-Si:H structure and bonding configuration. 
The significance of point 2 should be emphasized: many models of the SW effect, in 
particular earlier ones (Adler, 1984; Stutzmann et al., 1985), are based on the assumption 
that the annealing mechanism is basically the reverse process of the dangling bond 
formation mechanism. Although some fundamental common aspect might be present in 
both phases of the SW process, it is possible to focus on each phase independently. In 
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particular, the objective is to establish the relationship between the structure of a-Si:H (i.e. 
void fraction, hydrogen bonding, etc.) and the curing process (i.e., is it due to H diffusion 
and/or a network readjustment during annealing? If H diffusion is involved, how is it 
mediated?). A number of fundamental issues remain unresolved: microscopic atom 
dynamics, for instance, influences atomic structure, chemical bonding, diffusion and 
vibrations, and are difficult to study both experimentally and theoretically. Furthermore, it 
is not clear why the number of DBs measured by electron spin resonance (ESR) is one order 
of magnitude less than expected, as noted by Whitaker et al. (2004) and Ju et al. (2007).  
 

  

(a)                                                                             (b) 
                               

Fig. 8. (a) Decay of PL signal for a tritiated amorphous silicon film. The black curve was 
taken one hour after deposition, and the decay vs. time is shown by the coloured curves, 
labelled in the figure by the post-deposition times at which the spectra were recorded.  
(b) PL spectrum taken for the same sample after annealing. The open dots show the PL 
signal (almost completely quenched) approximately two weeks after deposition. The filled 
circles show the recovered PL signal after annealing at 150 oC for one hour. 

4.3 The stretched exponential behaviour  
One of the most interesting observations for tritiated a-Si:H is that the increase in DBs 
density can be described by a stretched-exponential function, as shown in figure 9 (Kosteski 
et al., 2003). This indicates that the expected exponential growth of DBs due to tritium decay 
has a competing process of DB passivation that leads eventually to saturation and a steady-
state distribution of DBs.   

One hypothesis is that hydrogen atoms that diffuse from nearby sites annihilate the tritium 
induced defects. In this case, hydrogen detachment from such a site should not be 
accompanied by the creation of a new defect. This might be possible if the hydrogen atom 
comes from a large reservoir of paired hydrogen sites such as double-hydrogen complexes 
(Branz, 1999) or hydrogenated vacancies (Zhang & Branz, 2001). It should be noted that a 
similar concept has been proposed for DBs in tail states (Longeau, 2000). 

The stretched exponential behaviour has been reported for a number of different conditions 
for a-Si:H, for instance: Danesh et al. (2005) have investigated a-Si:H degradation for 18 MeV 
electron beam bombardment. They observed that “the annealing kinetics obeys the 
stretched-exponential law which is known to be typical for a-Si:H films underwent the light-
induced degradation.” 
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The stretched exponential behaviour has also been investigated, among others, by Morigaki 
& Hikita (2007) and Morigaki et al. (2008) for light-induced defects. Morigaki considers three 
possible annealing mechanisms, i.e., hydrogen dissociation from two closely located Si-H 
bonds, dissociation from a hydrogen molecule, and reconstruction of silicon network 
(Zukotynski et al., 2002). Although the dissociation values for the first two processes are 
higher than the activation energy of thermal annealing (~1 eV), Morigaki argues that the 
values are still reasonable for activation energies higher than 1 eV.  
It is not clear, however, why the same stretched exponential behaviour and similar 
saturation values are observed for tritiated samples, unexposed to light, or for high energy 
electron bombardment. 
The stretched exponential behaviour observed for tritiated amorphous silicon is consistent 
with the reported values for light induced defects. The major difference between the defect 
re-equilibration dynamics in a-Si:H:T vs. illuminated a-Si:H is that in the former case there is 
no assistance from external excitation due to photons.  
Yet, it appears that the a-Si:H:T structure still adjusts to the increase in the density of 
dangling bonds. As previously mentioned, this indicates that a common process, related to a 
combination of network reconstruction and H-diffusion, should be at the basis of the 
annealing phase, regardless of the DB formation mechanism.  
The hydrogen bonding structure and the hydrogen diffusion process are linked by the 
activation energies required to bring a hydrogen atom into the mobility band, as indicated, 
for instance, in (Powell & Deane, 1996). As the above mentioned authors point out in their 
“defect pool” model, hydrogen transitions involve silicon DB defects, the defect energy and 
the Fermi energy. The hydrogen density of states (HDOS) is a crucial factor in this model, 
and is at the basis of the defect equilibration dynamics. 
 

N0 = 5.6x10
16

 cm
-3

Nsat= 6.9x10
17

 cm
-3

t = 1x10
6
 sec

α = 0.76

 

Fig. 9. Dangling bond rate of creation for a-Si:H:T measured by ESR (Kosteski, 2003). The 
dashed line is the theoretical prediction for one dangling bond per tritium decay. The solid 
line is a stretched exponential fit to the experimental data. The parameters in the inset refer 
to the stretched exponential formula: ( ) ( )ǂd 0 sat 0N = N + N - N × 1 - exp -t τ⎡ ⎤

⎢ ⎥⎣ ⎦
. 
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5. Ab Initio molecular dynamics 

The main reason for the development of so many models and interpretations of hydrogen 
mobility is due to the difficulty of obtaining a clear microscopic picture of the dynamic 
processes via experimental techniques. The only way to investigate the trajectories of 
hydrogen atoms in a-Si:H is to extensively model it numerically.  
Many theoretical techniques have been employed to generate a realistic model of a-Si:H, 
including classical MD (Ishimaru, 2002; Izumi et al., 2005), tight-binding MD (Singh et al., 
2004; Tuttle & Adams, 1997), and Ab-Initio MD  (Su & Pantelides, 2002). Molecular dynamics 
has become one of the more powerful and frequently used tools for the correlation of the 
microscopic characteristic of materials with their macroscopic properties, observed 
experimentally.  Some authors (Abtew & Drabold, 2006) have applied the model to simulate 
the dynamics of hydrogen diffusion, in particular as a way of analyzing possible 
mechanisms behind the Staebler-Wronski (SW) effect. However, classical MD is not 
sufficiently accurate to describe the covalent bonding and forces in semiconductors, and a 
tight-binding approach; even DFT-LDA based MD (Singh et al., 2004) is not sufficiently 
transferable to non-crystalline systems.  
For amorphous Si, with no translational symmetry, presence of non-saturated Si bonds, 
hydrogen switching between host Si atoms and diffusion, the most accurate approach is first 
principles (or ab-initio) MD. Although AIMD has to be used with a smaller unit cell and the 
simulation time is shorter compared to, for instance, tight-binding, it is extremely accurate 
in the description of the interatomic potential, forces, and inharmonicity of the interaction. 
We have seen that the microscopic details of disordering, hydrogen migration and bonding 
within the amorphous silicon network are crucial for the understanding of a-Si:H, and for 
the improvement of the overall quality of the material. However, hydrogen migration and 
other complex properties must be investigated within a realistic structure to obtain useful 
information. Kupchak et al. (2008) and Gaspari et al. (2009) have shown that the commonly 
used radial distribution function (RDF) is not a sufficient validation parameter, and that the 
recreation of physically consistent vibrational spectra does, on the other hand, represent a 
sound validation protocol. 
The authors have used AIMD to model bulk a-Si:H under various conditions. At various key 
points in simulations, detailed pictures of measurable quantities related to the electronic 
structure have been calculated, assuring that the model remain close to nature.  In AIMD 
one treats atoms classically, but the potential is calculated quantum mechanically using 
DFT. The solutions to the Schrödinger equation are approximated numerically. In terms of 
computing operations, these calculations involve mainly matrix operations and fast Fourier 
transforms (FFT). Details of this approach can be found in (Gaspari et al., 2009; Kupchak et 

al., 2008).  
This approach has led to reproducing all the fundamental vibrational signals in a-Si:H. 
Computer visualization was used to demonstrate some of the most important features, like 
the existence of poly-hydride bonding. The vibrational spectra obtained for the “good” 
samples were consistent with experimental data and showed also time stability, as shown in 
Figures 10 and 11.  
As previously mentioned, Gaspari et al. (2009) have examined the appropriateness of using 
RDF as a validation parameter for assessing the realism of a simulated structure. The 
authors compared a variety of a-Si:H samples with H content from 0 to 20%, and have found 
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that the RDF practically does not depend on the amount of hydrogen in the sample. 
Furthermore, all the calculated RDF agree reasonably well with the most recent and accurate 
RDF measurement for a-Si with no hydrogen. This reflects the fact that the most probable 
distance between neighboring atoms is equal to a sum of the atoms’ covalent radii. Even 
when hydrogen passivates the dangling bonds, this does not modify the Si–Si bond length. 
On the other hand, atomic vibrations do depend on microscopic bonding (bonds), their 
angular distribution, distortion or breaking. In fact, the experimental measurements 
demonstrate a variety of spectral features that obviously require microscopic theoretical 
interpretation. 
Furthermore, in order to further verify the validity of the model, the authors have also 

studied the special case of metastable Si-H-Si bonds, observed experimentally by Darwich et 

al. (1995), and have confirmed Darwich’s claim within experimental error. Gaspari et al. 

(2009) indicate that the decrease in the vibrational frequency with respect to that of a stable 

mono-hydride bond is due to the sharing of the hydrogen electron density between two Si 

atoms. This decreases the Si–H bond strength, increases the bond length and results in 

reduction of the vibrational frequency. Therefore, the band in the 1500-1800 cm-1 region can 

be interpreted as the signature of hydrogen metastable bonds, including the TCB bond, with 

variations in the frequency due to the different overlap between the H and the Si electron 

wave functions. 

 

 

Fig. 10. Hydrogen stretch vibrations for a-Si64-H10 system at high frequency (Kupchak et al., 
2008). The solid black line shows all H-associated stretching vibrations, including dihydride 
modes (blue, short dash) and monohydride modes (red, long dash).  Note the very close 
agreement with data by Lucovsky et  al. (1989). 
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Fig. 11. Time dependent frequencies for a “good” sample. Note the absence of vibrations 
between the two main modes (2000 cm-1 and 640 cm-1) indicating stability of the bonds. The 
colour scale is related to the peak intensity, that is, white represents the strongest signal 
(peak), while black represents no vibrational signal (Kupchak et al., 2008).  

The investigation led by this author has proven that in order to validate the simulation of 
complex structure, bonding, and diffusion, a protocol needs to be established for the 
verification of the “realism” of the simulated models. Using hydrogenated amorphous 
silicon as an example, Gaspari et al. (2009, 2010) have unambiguously demonstrated that 
reproduction of the radial distribution function, used commonly in numerical simulations, is 
not sufficient and must be complemented with verification of other, more complex, 
macroscopic properties. By focusing on the vibrational modes of the amorphous system, it 
was proven that the vibrational spectra represent a crucial testing tool for non-crystalline 
materials because of their complexity and sensitive link to structure and bonding 
configuration.  Successful reproduction of all the experimentally observed vibrational 
features for a-Si:H has proven the validity of the algorithm and indicates that hydrogen 
structure and dynamics are extremely sensitive to the parameters of the model. In order to 
correctly apply a numerical model to extract such important macroscopic parameters as 
density of states, optical gaps, and migration dynamics, the accuracy should be verified first 
by the derivation of the standard vibrational modes and comparison with experimental 
observation. 
Indeed, the importance of hydrogen distribution and its connection to hydrogen mobility is 
demonstrated by recent investigations, both experimental and theoretical, on the role of 
hydrogen in a-Si:H. For instance, Fehr et al. (2010) investigated the distribution of hydrogen 
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atoms around native dangling bonds in a-Si:H by electron-nuclear double resonance 
(ENDOR).  The authors suggest that the hydrogen distribution is continuous and 
homogeneous and there is no indication for a short-range order between hydrogen atoms 
and dangling bonds. This is in contrast with current understanding that hydrogen is 
distributed as a succession of clustered and diluted phases (Gaspari et al., 2010; Tuttle & 
Adams, 1997). Such controversies can only be addressed by using a rigorous, realistic model 
to simulate properties and dynamic processes.  

6. Conclusions 

Hydrogenated Amorphous Silicon (a-Si:H) has been the subject of intensive investigation for 
over 30 years.  The main role of hydrogen in amorphous silicon is the passivation of the Si 
dangling bonds (DBs) to restore a proper energy gap and the semiconducting properties, 
thus enabling extensive application of a-Si:H in the microelectronics and the photovoltaic 
industry. Due to the importance of hydrogen, many experimental methods have been used 
to characterize the DBs passivation, bonding chemistry and related mechanisms of 
degradation of the material. Among the numerous experimental techniques used to study a-
Si:H and the role of hydrogen, the Fourier Transform Infrared Spectroscopy (FTIR) is used 
extensively to analyze vibrational spectra of a-Si:H. Although FTIR represents one of the 
most common and powerful techniques, no microscopic links between the observed 
vibrational features of the hydrogen and the microscopic properties of a-Si:H can be yet 
established by any experimental means. 
A number of other important fundamental issues remain unresolved for a-Si:H as well. 
Microscopic atom dynamics, for instance, influences atomic structure, chemical bonding, 
diffusion and vibrations, and are difficult to study both experimentally and theoretically. 
However, the microscopic details of disordering, hydrogen migration and bonding within 
the amorphous silicon network is crucial for the understanding of a-Si:H, and for the 
improvement of the overall quality of the material. 
The Staebler-Wronski effect epitomizes this need. It is generally accepted that a-Si:H light-
soaking degradation, observed by Staebler and Wronski, is caused by Si-H bonds breaking 
during illumination. However, the microscopic details of the SW effect are still controversial 
and it is not clear how to experimentally predict the stability of a-Si:H films, grown at 
particular temperature and hydrogen concentration, with respect to light induced 
degradation. Furthermore, a number of alternative techniques have been used to create 
dangling bonds, and the same dynamics has been observed in the curing (annealing) phase. 
That is, no matter how the dangling bonds were formed, a similar curing process occurs 
during annealing. This might be due to diffusion of hydrogen atoms, structural 
readjustment, or a combination of the two. 
In this chapter I have briefly summarized how the optical and electronic properties of a-Si:H 
are dependent on the hydrogen content and pointed out that the challenge of uncovering 
the microscopic details of hydrogen bonding and distribution and their correlation with 
hydrogen dynamics cannot be answered by standard experimental techniques.  
On the other hand, with the continuous improvement of computational capacity and 
software quality, the simulation of realistic structures is becoming ever more feasible. In 
particular, Ab Initio Molecular Dynamics (AIMD) allows highly accurate simulation of the 
dynamical properties of various systems, including amorphous materials.  
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The goal of such simulations is to be able to reproduce dynamic processes and follow the 
diffusion of hydrogen, the bond breaking processes, and the structural reorganization of the 
material, following external perturbations. The DB creation process in tritiated amorphous 
silicon can provide a simple and convenient source of experimental data that can be used as 
a basis for such simulations, since the tritium decay process is well understood, and its effect 
on a-Si:H can be treated as the simple removal of an hydrogen atom from an existing Si—H 
bond. 
The main challenge is of course to make sure that the simulated structure is indeed a 
realistic one. The author of this chapter has shown that several models lack the necessary 
realism, since the validation of the model is based on the radial distribution function of the 
Si—Si bonds. The author has also shown that the reproduction of the vibrational modes of a-
Si:H represents a much better validation test for a realistic structure. As the continuous 
advances in computational science will allow for the use of bigger simulated structures, the 
future direction of these studies should aim at reproducing other fundamental properties, 
such as the band-gap, the density of states, etc. By achieving this goal, it will be possible 
then to simulate dynamic processes too, such as the SW effect, and to shed light both on the 
formation phase of the dangling bonds and on the curing phase. 

7. Acknowledgment 

The work by the author was supported by the Shared Hierarchical Academic Research 
Computing Network (SHARCNET) and Natural Sciences and Engineering Research Council 
of Canada (NSERC). 
The author would also like to thank Dr. A. Chkrebtii for his invaluable contribution and 
leadership in the development of the AIMD algorithm. Thanks go also to Dr. J.M. Perz, Dr. 
S. Zukotynski, and Dr. N. P. Kherani for their support and helpful discussions spread over 
20 years. 

8. References 

Abtew, T.A., Drabold, D.A. (2006) Phys. Rev. B, Vol. 74, 085201. 
Adler D., (1984) AIP Conference Proceedings, n 120, 70-77. 
Akkaya,A., & Akta,G. (1995). Mater. Lett., Vol. 22, 271. 
Baranovski, S. (2006). Charge transport in disordered solids with applications in electronics. John 

Wiley $ Sons, ISBN: 9780470095041, New York. 
Biswas, R., Li, Q., Pan, B.C., Yoon, Y. (1998) Phys. Rev. B, Vol. 57, 2253. 
Biswas, R., Pan, B.C. (2003) Solar Energy Materials and Solar Cells, Vol. 78, 447. 
Branz, H.M., Asher, S.E., Nelson, B.P., (1993)Phys. Rev. B Vol. 47, 7061.  
Branz, H.M. (1999) Phys. Rev. B Vol. 59, 5498. 
Branz, H.M., Asher, S.E., Gleskova, H., Wagner S., (1999)Phys. Rev. B Vol. 59, 5513. 
Bruno, G., Capezzuto P., Madan A., (Eds.) (1995) Plasma Deposition of Amorphous Silicon-

Based Materials. Academic Press, ISBN: 9780121379407, Burlington, MA. 
Cheong, H.M., Lee, S.H., Nelson, B.P., Mascarenhas, A., Deb, S.K., (2000) App. Phys. Lett. B 

Vol. 77, 2686. 
Cody,  G.D., Tiedje, T., Abeles, B., Brooks B., Goldstein, Y. (1981) Phys. Rev. Lett. Vol. 47, 

1480. 

www.intechopen.com



 
Optoelectronics - Materials and Techniques  

 

24 

Costea, S., Gaspari, F., Kosteski, T., Zukotynski, S., Kherani, N. P., Shmayda, W.T. (2000)  
Mat. Res. Soc. Symp. Proc, Vol. 609, A27.4 (2000). 

Costea, S., Pisana, S.,  Kherani, N.P., Gaspari., F., Kosteski, T., Shmayda, W.T.,  Zukotynski, 
S. (2005) Fusion science and technology Vol. 48, 712. 

Danesh, P., Pantchev, B., Vlaikova, A. (2005) Nuclear Instruments and Methods in Physics 

Research B, Vol. 239, 370. 
Daouahi, M., Ben Othmane, A., Zellama, K., Zeinert, A., Essamet, M.,Bouchriha, H. (2001) 

Solid State Communications Vol. 120, 243. 
Darwich, R., Roca I. Cabarrocas, P., Vallon, S., Ossikovski, R., Morin, P., Zellama, K. (1995) 

Phil. Mag. B, Vol. 72, 363. 
Dubeau, J., Hamel, L.A., Pochet, T., (1996) Phys. Rev. B 53, 10 740  
Fehr, M., Schnegg, A., Teutloff, C., Bittl, R., Astakhov, O., Finger, F., Rech, B., Lips, K. (2010) 

Physica Status Solidi A, Vol. 207, 552. 

Gaspari, F., O’Leary, S.K., Zukotynski, S., Perz, J. (1993) J. Non-Cryst. Solids Vol. 155, 149. 
Gaspari, F.,  Kosteski, T., Zukotynski, S.,  Kherani, N. P., Shmayda, W. (2000) Phil. Mag. B, 

Vol. 80, 561. 
Gaspari, F., Shkrebtii, A., Kupchak, I., Perz, J.M. (2009) Phys. Rev. B Vol 79, 224203. 
Gaspari, F., Shkrebtii, A., Kupchak, I., Teatro, T., Ibrahim, Z.A. (2010) 35th  IEEE Photovoltaic 

Specialists Conference Proceedings, Honolulu Hawaii, June 20-25,  003671-75. 
Ishimaru, M.  (2002) J. Appl. Phys. Vol. 91, 686.  
Izumi,  S., Hara, S.,  Kumagai, T., Sakai, S. (2005) J. Cryst. Growth Vol. 274, 47. 
Jackson, W.B., Tsai, C.C. (1992) Phys. Rev. B, Vol. 45, 6564. 
Jackson, W.B., Santos, P.V., Tsai, C.C. (1993) Phys. Rev. B, Vol. 47, 9993. 
Jeffrey, F.R., Shanks, H.R., Danielson, G.C. (1979) Appl. Phys. Lett. Vol. 50, 7034. 
Kasap, S. (2005) Principles of Electronic Materials and Devices. McGraw-Hill, retrieved from 

http://Materials.Usask.Ca. 
Kato, S., Aoki, T. (1985) J. Non-Cryst. Solids Vols. 77&78, 813. 
Kherani, N.P., Liu, B., Virk, K., Kosteski, T., Gaspari, F., Shmayda, W.T., Zukotynski, S., 

Chen, K.P. (2008)  J. Appl. Phys. Vol. 103, 024906. 
Knights, J.C., Lujan, R.A. (1979) Appl. Phys. Lett. Vol. 35, 244. 
Kosteski, T., Gaspari, F., Hum, D., Costea, S., Zukotynski, S., Kherani, N.P., Shmayda, W.T. 

(2000) Mat. Res. Soc. Symp. Proc. Vol. 609, A30.1. 
Kosteski, T.,  Stradins, P., Kherani, N.P., Gaspari, F., Shmayda, W.T.,  Sidhu, L., Zukotynski, 

S. (2003) IEE Proc. Circuits, Devices and Syst., special issue on Amorphous and 
Microcrystalline Semiconductor Devices, Vol. 150 no. 4, 274. 

Kupchak, I. M., Gaspari, F., Shkrebtii, A. I., Perz, J. M. (2008) J. Appl. Phys. Vol. 104, 123525-1 
Laaziri, K., Kycia, S., Roorda, S., Chicoine, M. Robertson, J. L., Wang, J., Moss, S. C. (1999) 

Phys. Rev. Lett. Vol. 82, 3460. 
Ley, L. (1983) “Photoemission and Optical properties”, in The Physics of Hydrogenated 

Amorphous Silicon, Vol II, Eds. J.D. Joannopoulos & G. Lucovski, Springer-Vderlag, 
ISBN: 0387128077, New York.\ 

Longeaud, C., Roy, D., Teukam Hangouan, Z. (2000) App. Phys. Lett. Vol. 77, 3604. 
Lucovski, G., Davidson, B.N., Parsons, G.N., Wang, C. (1989) J. Non-Cryst. Solids Vol. 114, 

154. 
Malik, S. M., O'Leary, S. K. (2004) J. Non Cryst. Solids, Vol. 336, 64. 

www.intechopen.com



Optoelectronic Properties of Amorphous Silicon  
the Role of Hydrogen: From Experiment to Modeling 

 

25 

Morigaki, K., Hikita, H. (2007) Phys. Rev. B 76, 085201  
Morigaki, K., Takeda, K., Hikita, H., Ogihara, C., Roca i Cabarrocas, P. (2008) J. Non-Cryst. 

Solids, Vol. 354, 2131. 
Mott, N. (1983) “Conductivity, Localization, and the Mobility Edge”, in The Physics of 

Hydrogenated Amorphous Silicon, Vol II, Eds. J.D. Joannopoulos & G. Lucovski, 
Springer-Verlag, ISBN: 0387128077, New York. 

O'Leary, S.K.,  Sidhu, L.S.,  Zukotynski, S.,  Perz, J.M. (1996) Canadian Journal of Physics, Vol. 
74, S256-9. 

Powell, M.J.,  Deane, S.C., (1996) Phys. Rev. B, Vol. 53, 10121. 
Rui, Y., Mei, J., Xu, J., Yang, L., Li, W., Chen, K. (2005) Proceedings of SPIE - The International 

Society for Optical Engineering, Vol. 5774, 279. 
Santos, P.V., Johnson, M.N., Street, R.A. (1991) Phys. Rev. Lett. Vol. 67, 2686. 
Santos, P.V., Johnson, N.M., Street, R.A., (1992) Mat. Res. Symp. Proc. Vol. 258, 353. 
Santos, P.V., Johnson, M.N., Street, R.A. (1993) J. Non-Cryst. Solids Vols. 164-166, Part I, 277. 
Schneider, U., Schröder, B. (1990) Photovoltaic Specialists Conference. Conference Record of the 

Twenty First IEEE, vol. 2, 1521. 
Searle, T. (Ed.) (1998) Amorphous Silicon and its Alloys, INSPEC, ISBN: 0852969228, London.  
Sholz, A., Schröder, B., Oechsner, H. (1994) Mat. Res. Symp. Proc. Vol. 336, 293. 
Sidhu, L. S., Kosteski, T., Zukotynski, S., Kherani, N. P. (1999) J. Appl. Phys. Vol. 85, 2574.  
Singh, R.,  Prakash, S., Shukla, N., Prasad, R. (2004) Phys. Rev. B Vol. 70, 115213. 
Smets, A.H.M., van de Sanden, M.C.M. (2007) Phys. Rev. B, Vol. 76, 073202. 
Staebler, D.L., Wronski, C.R. (1977) Appl. Phys. Lett. Vol. 31, 292. 
Street, R.A., Biegelsen, D., Stuke, J., (1979) Philos. Mag. B Vol. 40, 451.  
Street, R.A. (1980) Phys. Rev. B, Vol. 21, 5775. 
Street, R.A. (1991) Hydrogenated Amorphous Silicon, Cambridge University Press, ISBN: 

0521371562, New York. 
Street, R.A. (Ed.) (2000) Technology and Applications of Amorphous Silicon, Springer Verlag, 

ISBN: 3540657142, New York. 
Street, R.A., Tsai, C.C. (1988) Philos. Mag. Vol. B57, 663.  
Stutzmann M., Jackson W.B., Tsai, C.C. (1985), Phys. Rev. B, Vol. 32, n 1, 23-47 
Stutzmann M., (1991) in Amorphous and Microcrystalline Amorphous Devices, Vol. II, Ed. J. 

Kanicki, Atech House, Boston, p. 129. 
Tauc, J., Grigorovici, R., Vancu, A. (1966) Phys. Status Solidi, Vol. 15, 627. 
Thevaril, J.J., O’Leary, S.K. (2010) J. Appl. Phys., Vol. 107, 083105. 
Tuttle, B., Adams, J. B. (1997) Phys. Rev. B Vol. 56, 4565.  
Ukpong, A.M. ((2007) Turkish Journal of Physics, Vol. 31, 317. 
Van de Walle, C.G., Street, R.A.  (1994) Phys. Rev. B, Vol. 49, n 20, 14766-9.  
Van de Walle, C.G., Street, R.A.  (1995) Mat. Res. Soc. Symp. Proc., Vol. 377, 389. 
Yelon, A., Fritzsche, H, Branz, H.M., (2000) J. Non-Cryst. Sol. Vols. 266-268, 437. 
Ju, T., Whitaker, J., Zukotynski, S., Kherani, N., Taylor, P.C., Stradins, P. (2007) Mat. Res. Soc. 

Symp. Proc. Vol. 989, 9. 
Whitaker J., Viner, J., Zukotynski, S., Johnson, E., Taylor, P.C., Stradins, P. (2004) Mat. Res. 

Soc. Symp. Proc. Vol. 808, 153. 
Zanzucchi, P.J., Wronski, C.R., Carlson, D.E. (1977) J. Appl. Phys. Vol. 48, 5227. 

www.intechopen.com



 
Optoelectronics - Materials and Techniques  

 

26 

Zeman, M. (2006) “Advanced Amorphous Silicon Solar Cell Technologies”, in Thin Film 

Solar Cells: Fabrication, Characterization and Applications, Eds. J. Poortmans & V. 
Arkhipov,  John Wiley & Sons, New York. 

Zhang, S.B., Branz, H.M., (2001) Phys. Rev. Lett. Vol. 87, 105503  
Zukotynski, S., Gaspari, F., Kherani, N., Kosteski, T., Law, K., Shmayda, W.T., Tan, C.M. 

(2002) J. Non-Cryst. Solids Vols. 299-302, 476.  

www.intechopen.com



Optoelectronics - Materials and Techniques

Edited by Prof. P. Predeep

ISBN 978-953-307-276-0

Hard cover, 484 pages

Publisher InTech

Published online 26, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Optoelectronics - Materials and Techniques is the first part of an edited anthology on the multifaceted areas of

optoelectronics by a selected group of authors including promising novices to the experts in the field.

Photonics and optoelectronics are making an impact multiple times the semiconductor revolution made on the

quality of our life. In telecommunication, entertainment devices, computational techniques, clean energy

harvesting, medical instrumentation, materials and device characterization and scores of other areas of R&D

the science of optics and electronics get coupled by fine technology advances to make incredibly large strides.

The technology of light has advanced to a stage where disciplines sans boundaries are finding it

indispensable. Smart materials and devices are fast emerging and being tested and applications developed in

an unimaginable pace and speed. Here has been made an attempt to capture some of the materials and

techniques and underlying physical and technical phenomena that make such developments possible through

some real time players in the field contributing their work and this is sure to make this collection of essays

extremely useful to students and other stake holders such as researchers and materials scientists in the area

of optoelectronics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Franco Gaspari (2011). Optoelectronic Properties of Amorphous Silicon the Role of Hydrogen: from

Experiment to Modeling, Optoelectronics - Materials and Techniques, Prof. P. Predeep (Ed.), ISBN: 978-953-

307-276-0, InTech, Available from: http://www.intechopen.com/books/optoelectronics-materials-and-

techniques/optoelectronic-properties-of-amorphous-silicon-the-role-of-hydrogen-from-experiment-to-modeling



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


