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1. Introduction 

Protein-protein interactions (PPIs) are essential to cellular processes. Recent developments of 
high-throughput technologies have uncovered vast numbers of PPIs. However, the 
experimental evidences are mostly for intra-species interactions of model organisms, especially 
human. Studies of non-human organisms and inter-species PPIs are few. For organisms such 
as Arabidopsis thaliana, the experimentally detected 5990 PPIs are estimated to be less than 3% 
of the entire A. thaliana interactome (M. Lin et al., 2011). The accuracy of high-throughput PPI 
experiments is also doubtful (Mrowka et al., 2001; Sprinzak et al., 2003; von Mering et al., 2002).  
To resolve the above issues, several computational methods have been developed to 

evaluate and predict PPIs. This chapter focuses on direct PPIs which involve physical 

interactions of proteins, provides a brief overview of the reliabilities of high-throughput PPI 

detection technologies, and discusses the weakness and strength of important PPI 

computational prediction and evaluation methods. The major repositories which store, 

evaluate, and analyse both detected and predicted PPIs are also introduced.  

2. Experimental detection of protein interactions 

Not until the past decade, PPIs were identified by time consuming and labour intensive 

methods, such as low-throughput (small-scale) yeast 2-hybrid (Y2H). The development of 

high-throughput technologies brought studies of PPIs to an -omics level. Of all the 

technologies used for PPI detection, the high-throughput Y2H is most mature and 

commonly used. However, it is also one of the most inaccurate techniques, producing an 

estimated ~ 50% of false positives (Parrish et al., 2006; von Mering et al., 2002). The error 

rates of the other high- and medium-throughput technologies are summarized in Table 1 

(Mrowka et al., 2001; Parrish et al., 2006; Sprinzak et al., 2003; von Mering et al., 2002).  

In the past few years, BiFC has became one of the popular in vivo technologies as it has a 
medium throughput and reasonable cost, is technically straightforward, and provides 
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information on subcellular  localizations of proteins. The drawback for BiFC is its occasional 
false postivies caused by non-specific interactions and background flurorescence. Split-
luciferase system has an extremely low background, but does not disclose the subcellular 
localization of interactions. Protoplast Y2H is similar to Y2H, but technically more challenging 
as it has to be operated in a nuclei or protoplasts. SUS has high rates of false positives and 
background signals. The in vitro technologies are less favourable as the reactions do not occur 
in cellular environments and do not examine the cellular localization of proteins.  
 

Technology Throughput Accuracy References 

In vivo    

High-throughput Y2H High  
(Causier, 2004; Causier & Davies, 
2002)

Split-luciferase 
system 

Medium-high  (Paulmurugan & Gambhir, 2005,2007) 

Protoplast Y2H Medium  (Fujikawa & Kato, 2007) 

Split-ubiquitin system 
(SUS) 

Medium  
(Michnick, 2003; Obrdlik et al., 2004; 
Reinders et al., 2002; Schulze et al., 
2003)

Bimolecular 
fluorescence 
complementation 
(BiFC) 

Medium  
(Citovsky et al., 2008; Hu et al., 2006; 
Ohad et al., 2007; Ohad & Yalovsky, 
2010; Zhou et al., 2011) 

In vitro    

Stable-isotope 
labeling of amino 
acids in cell culture 
(SILAC) 

High  
(Gruhler & Kratchmarova, 2008; 
Mann, 2006) 

15N-labeling High  
(Huttlin et al., 2007; Nelson et al., 
2007)

Chemical 
crosslinking-MS 
using protein 
interaction reporter 
(PIRs) 

High  
(Anderson et al., 2007; Tang et al., 
2005) 

Protein microarrays High  
(Angenendt et al., 2006; Popescu et al., 
2007; Ramachandran et al., 2004) 

Single affinity 
purification-tagging 

Medium-high  (Berggard et al., 2007) 

Tandem affinity 
purification (TAP) 
tagging 

Medium-high  
(Rohila et al., 2006; Schoonheim et al., 
2007) 

Native 
chromatography or 
electrophoretic 
purification 

Medium  (Liu et al., 2008) 

Table 1. The technologies for high- and medium-throughput PPI detection (Morsy et al., 
2008) Accuracy of each technology is summarised in this table. The symbol “” indicates 
low accuracy, “” indicates high accuracy, and “” indicates sound accuracy. 
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3. Computational prediction and evaluation of protein interactions 

As listed in Table 2, the methods for PPI prediction and evaluation can be classified into five 
categories based on the types of information required for analysis – (1) protein sequences, 
(2) Gene Ontology (GO), (3) gene expression profiles, (4) topology of the interaction 
network, and (5) experimental data.  
 
 

Methods References 

Protein Sequences  

Interologs 
(Matthews et al., 2001; Rhodes et al., 2005; von Mering 
et al., 2007) 

Phylogenetic tree similarity (Jothi et al., 2005) 

Gene fusion (Enright et al., 1999; Marcotte et al., 1999) 

Gene neighbouring 
(Dandekar et al., 1998; Overbeek et al., 1999; Tamames 
et al., 1997) 

Domain-domain interactions (Frishman, 2009; Ng et al., 2003) 

Gene Expression Profile  

Co-expression correlation 
coefficience 

(Ideker et al., 2002) 

Shared Gene Ontology 
Annotation 

 

Protein functions 
(De Bodt et al., 2009; Jain & Bader, 2010; Wu et al., 
2006) 

Protein localization (De Bodt et al., 2009; Jain & Bader, 2010) 

Topology Analysis  

Distance between proteins in a 
PPI network 

(Dyer et al., 2007) 

Experimental Data  

Cited literatures (text mining) (Jaeger et al., 2008) 

Detected PPI datasets  (von Mering et al., 2002) 

Table 2. Computational methods for protein interaction prediction and evaluation 

Methods for PPI prediction and evaluation is each developed based on an assumption 
which states certain criteria are more likely to occur between interacting proteins. These 
methods are often combined, usually in a Bayesian network  (Huttenhower & Troyanskaya, 
2006; Jansen et al., 2003; Lee et al., 2006; N. Lin et al., 2004; McDowall et al., 2009; Patil & 
Nakamura, 2005; Wang et al., 2009; Xu et al., 2011). Some criteria are more relevant to 
protein interactions than the others. When different methods are combined, the statistical 
confidence estimated by each method could be weighted according to the confidence level 
of corresponding assumption.  

3.1 Interologs  

Homologous proteins often conserve similar functions and PPIs across different organisms, 
especially in phylogenetically close-related species (Hirsh & Sharan, 2007). These conserved 
PPIs are designated as interologs.  
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In the interolog method, it is assumed that if a pair of proteins, A and B, interact and there 

are two other proteins, A’ and B’, of which A’ is homologous to A and B’ is homologous to 

B, then A’ and B’ are potentially an interolog to A and B. Interologs can occur among 

different species or in the same species (Mika & Rost, 2006). The conventional interolog 

method identifies homologous proteins by comparing the global sequences. For proteins of 

which only partial sequences are similar, sequence signatures may be compared instead of 

full sequences (Sprinzak & Margalit, 2001). Structurally similar proteins may also have 

similar protein interactions, but predicting PPIs by identifying proteins with similar 

structures is impeded by the limited structural information available (Aytuna et al., 2005; 

Ogmen et al., 2005). The interologous relationship between the two pairs of proteins, one 

pair predicted and one pair detected, could be evaluated by functions such as the s score. 

(He et al., 2008). Homologous genes of model organisms can be identified using BLAST or in 

HomoloGene database that automatically identifies and collects homologs from fully 

sequenced genomes (Sayers et al., 2011). 

The interolog method has been used frequently. The first human PPI network, the 
Arabidopsis PPI network, and the rice blast fungus PPI network are a few examples 
constructed by predicted interologs (Geisler-Lee et al., 2007; He et al., 2008; Lehner & Fraser, 
2004). Unfortunately, prediction of plant PPIs through a comparative interactome approach 
is challenged by the unique biology of plants which involves PPIs not commonly found in 
the other model organisms. Less than 50% of A. thaliana proteins have been found to have 
orthologs in the more extensively studied organisms such as yeast, Caenorhabditis elegans, 
fruit fly, or human (Gollery et al., 2006). Furthermore, the interolog method does not 
differentiate the functionally significant amino acid residues from the others; neglects the 
residue-specific requirements for interaction specificity and affinity (Uhrig & Hulskamp, 
2006). For the highly homologous members of protein families, the interlog method could be 
prone to errors. 

3.2 Phylogenetic relationship 

Interacting proteins have been observed to have topologically similar phylogenetic trees for 

the corresponding protein families, presumably due to the co-evolution of cooperating 

proteins (Fryxell, 1996; Goh et al., 2000; Pages et al., 1997). Based on the above observation, 

the phylogenetic similarity method was proposed. To compare and construct the 

phylogenetic trees, firstly, the sequences of two potentially interacting protein families are 

aligned. Secondly, the evolutionary distance matrixes are calculated from the phylogenetic 

trees, one for each protein family. Finally, the Pearson’s correlation coefficient between the 

two distance matrixes is calculated as an indication of the likelihood of interactions. Partial 

protein sequences could be used to construct the phylogenetic trees - for example, poorly 

conserved sequences have been removed to improve the performance of prediction (Kann et 

al., 2007). 

A similar approach is the phylogenetic profile method. Phylogenetic profile is the profile 
which records the presence and absence of a protein across all species. Also due to the 
presumably co-evolution of proteins involved in the same biological process, proteins with 
similar phylogenetic profiles are more likely to have interactions. The profiles could be 
compared by Hamming distance (Pellegrini et al., 1999). Although this approach is 
powerful, it can be applied only to organisms which have been fully sequenced (Frishman, 
2009). Additionally, there might be complications with essential proteins which are present 
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in all organisms (Frishman, 2009). As the second generation sequencing (SGS) technologies 
exponentially accumulating full genome sequences of non-model organisms, this method is 
expected to become more favorable. 

3.3 Gene fusion and neighboring 

Genes which are previously separated in the genome of one organism can be fused into the 
same gene in another organism. Fused genes almost always encode functional related and 
physically interacting proteins (Enright et al., 1999; Marcotte et al., 1999). The fusion events 
might accelerate the formation of protein complexes by increasing the opportunity of correct 
physical contact between interacting sites.  
Similarly, in bacteria, genes which are consistently located in the same operon across many 
species are likely to express functionally related, and often physically interacting, proteins 
(Dandekar et al., 1998; Overbeek et al., 1999; Tamames et al., 1997).  

3.4 Domain-domain interactions 

Just like protein interactions, domain interactions can be predicted by sequence homology 
among two pairs of interacting domains, by investigating the evolutionary traits of domains, 
or by identifying conserved neighboring relationship between domains (Frishman, 2009). 
Interacting proteins are also more likely to contain domains which have been detected or 
predicted to interact (Ng et al., 2003).  

3.5 Co-expression 

Interacting proteins are assumed to have similar expression patterns (Dyer et al., 2007). 
The co-expression correlation coefficients of seven model animals, including human, 
mouse, chicken, zebra fish, fruit fly, and Coenorhabditis elegans, and nematode, are 
recorded in COXPRESdb (Obayashi et al., 2008; Obayashi & Kinoshita, 2011). The co-
expression correlation coefficients of A. thaliana and many other flowering plants are 
recorded in ATTED-II (Obayashi et al., 2011). High-throughput expression data are mostly 
available on Gene Expression Omnibus (GEO) or TAIR for A. thaliana experiments 
(Garcia-Hernandez et al., 2002; Sayers et al., 2011).  

3.6 Gene Ontology (GO) 

Interacting proteins are presumably to participate in related biological process and share 
similar cellular localization (Dyer et al., 2007; Shin et al., 2009). The GO project annotates 
the cellular components where a protein locates and the biological process in which a 
protein participates. The annotations are created by structured and controlled 
vocabularies. The semantic similarities between GO terms assigned to proteins are often 
used to evaluate the confidence levels of proposed PPIs (De Bodt et al., 2009; Jain & Bader, 
2010).  

3.7 Topology 

As more and more PPIs are revealed, PPI networks can be constructed and analyzed by 
topology theories. It has been proposed that two proteins which interact with the same 
protein should have a shorter path between them on the PPI network (Dyer et al., 2007). It 
has also been proposed that interacting proteins might share more neighboring proteins on 
a PPI network (J. Chen et al., 2006; Chua et al., 2006).  
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3.8 Text mining 

The protein interactions which have been reported repeatedly in more peer-reviewed 
literatures might be more trustworthy than the ones which have never or rarely been 
detected (Jaeger et al., 2008). However, it must be noted that proteins with more valuable 
functions, such as disease mechanisms, would have been studied more intensively and been 
documented more frequently.  
PubMed and GeneRIF are common sources of text mining materials. The automated data 
gathering (e.g. text mining via natural language processing or biomedical language 
processing) is not as reliable as manually curated data. It must be noted that manual 
curation is neither 100% correct due to human errors and inconsistent standards for 
curation.  

3.9 Experimental detections 

PPIs detected by low-throughput technologies are generally considered as error free. For the 
medium- to high-throughput technologies, the reliability of the results varied as listed in 
Table 1. In vivo experiments are usually more accurate than the in vitro experiments, as in 
vivo experiments were conducted in cellular environments. Interactions supported by more 
than one method are generally believed to be more reliable (von Mering et al., 2002). PPI 
datasets which are more reliable are assumed to have more intersections with the other 
datasets and higher averaged numbers of documented protein interactions (Shin et al., 
2009). Reliable PPI datasets should also contain greater proportion of interactions which 
have interacting domain pairs (He et al., 2008).  
In silica protein docking is another approach which could be used for predicting protein 
interactions; however, it is impractical for high-throughput predictions due to the extremely 
large amount of required computation and the lack of detected or predicted structures for 
most proteins. 

4. Protein interaction databases 

More than 30 PPI databases have been published and are mostly available online (Fischer et al., 
2005). Table 3 listed the frequently referenced databases. The contents of these databases are 
often overlapped and integrated to create larger non-redundant databases. These collections of 
PPIs can be used as the foundation for predicting and evaluating the reliability of PPIs.  
 

Database Validation Organisms Reference 

MINT 

Detected 

Provides confidence scores for 

PPIs. 

Model 

organism 
(Ceol et al., 2010) 

DIP Detected 
Model 

organisms 
(Salwinski et al., 2004) 

BIND Detected 
~ 1500 

organisms 

(Gilbert, 2005; Isserlin 

et al., 2011; Willis & 

Hogue, 2006) 

BioGRID Detected 
Model 

organisms 

(Breitkreutz et al., 

2008; Stark et al., 2011; 

Stark et al., 2006) 
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Database Validation Organisms Reference 

IntAct Detected 
Model 
organisms 

(Aranda et al., 2010; 
Brandao et al., 2009) 

HiPredict 

Data from IntAct, BioGRID, and 
HPRD 
Provide confidence scores for 
PPIs. 

Model 
organisms 

(Patil et al., 2011) 

MIPS Detected 
Model 
mammals 

(Pagel et al., 2005) 

HPRD Detected Human (Goel et al., 2010) 

STRING 

Detected and predicted data 
from BIND, BioCarta, BioCyc, 
BioGRID,DIP, HPRD, IntAct, 
MINT, REACTOME, textmining, 
etc 
Provides confidence scores for 
PPIs. 

~ 1000 
organisms 

(Szklarczyk et al., 
2011; von Mering et 
al., 2007; von Mering 
et al., 2005) 

HAPPI 

Detected and predicted data 
from HPRD, BIND, MINT, 
STRING, OPHID, etc 
Provide confidence scores for 
PPIs. 

Human (J.Y. Chen et al., 2009) 

AtPID 
Predicted
Provide confidence scores for 
PPIs. 

A. thaliana 
(Cui et al., 2008; Li et 
al., 2011) 

PAIR 

Detected (from IntAct, BioGRID 
and BIND) and predicted 
Provide confidence scores for 
PPIs. 

A. thaliana (M. Lin et al., 2011) 

AtPIN 

Experiemtnal (from BioGRID 
and IntAct) and predicted (from 
Geisler-Lee and AtPID) 
Provide confidence scores for 
PPIs. 

A. thaliana 
(Cui et al., 2008; 
Geisler-Lee et al., 
2007; Li et al., 2011) 

PIG 
Data from BIND, IntAct, 
REACTOME, and MINT 

Human-
pathogen 
interacitons 

(Driscoll et al., 2009) 

HPIDB 
Data from BIND, IntAct, 
REACTOME, MINT, GENERIF 
and PIG 

Host-pathogen 
interactions, 
hosts are 
model 
organisms 

(Kumar & Nanduri, 
2010) 

Table 3. Major PPI databases 

MINT is one of the few repositories which provide confidence scores for experimentally 

detected PPIs. It uses the number and types of experiments in which a PPI is detected to 

estimate the confidence of data. 
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HiPredict is a repository which contains filtered high-confidence PPIs of nine model species 
from IntAct, BioGRID, and HPRD. While calculating the confidence of PPIs, HiPredict 
considers (1) the type of experiments which detect the PPIs, (2) the co-expression correlation 
coefficients of proteins, (3) shared GO terms of proteins, (4) presences of interologs in the 
same organisms, and (5) domain-domain interactions between proteins. These five criteria 
are combined in naïve Bayesian networks to give confidence scores. 
STRING is one of the largest and most comprehensive PPI repositories. It evaluates PPIs 
using multiple criteria, including (1) the probability of finding the interacting proteins on 
the same KEGG pathway, (2) co-mentioning of gene/protein names in PubMed abstracts, (3) 
co-expression / co-regulation of proteins, (4) presence of interologs, and (5) presence of gene 
neighboring. Similar to HiPredict, the various criteria are also combined in naïve Bayesian 
networks. 
HAPPI only collects human PPIs. For the PPIs which have been evaluated, such as data 
from STRING, the confidence scores are preserved. For the PPIs which have not evaluated, 
HAPPI calculates the confidence scores based on the type of experimental evidences and the 
source of data. 
PAIR collects 5990 detected protein interactions and 145494 predicted interaction of A. 
thaliana (M. Lin et al., 2011). These PPIs were expected to cover 24% of the entire A. thaliana 
interactome, of which the size was estimated to be 200 000 PPIs (for 20 000 genes) based the 
size for yeast (18 000 PPIs for 6000 genes). An estimated 44% of the collected PPIs in PAIR 
are reliable. PAIR predicts PPIs using a machine learning approach with supports the vector 
machine (SVM) model. In the SVM model, indirect evidences of interactions (i.e. interologs, 
phylogenetic profile similarity, domain interactions, gene co-expression correlation, shared 
GO terms, and protein localizations) are combined. The model has been trained using Gold 
Standard Positives (GSPs), which are reliable PPIs from major repositories. The SVM scores 
also serve as the confidence scores for the predicted PPIs. The detected PPIs are collected 
from IntAct, BioGRID, and BIND. 
AtPIN integrates (1) the predicted PPIs from Geisler-Lee and AtPID, (2) the curated PPIs from 
TAIR, and (3) the detected PPIs from BioGRID and IntAct (Brandao et al., 2009). Geisler-Lee 
(2007) predicts PPIs by identifying interologs. AtPIN calculates confidence scores of PPIs based 
on (1) the detected or predicted co-localization of interacting proteins and (2) the number of 
shared neighboring proteins of interacting proteins on the PPI network. It also provides the 
score calculated by AtPID. AtPID combines indirect evidences of interactions, including 
interologs, phylogenetic profiles, domain interactions, co-expression profile, shared protein 
functions, protein co-localisation, and gene fusion, in  naïve Bayesian networks to predict and 
evaluate the PPIs of A. thaliana (Cui et al., 2008; Li et al., 2011). TAIR is a multi-tasking project 
which participates in a broad range of A. thaliana researches.  
The data of protein interactions between hosts and pathogens are scarce. PIG integrates the 
manually curated human-pathogen PPIs from four databases, BIND, IntAct, REACTOME, 
and MINT, in one platform for searching, visualization, and analysis of PPI networks. The 
corresponding hyperlinks to UniProt database, Gene Ontology, InterProScan, and PubMed 
are filed under each protein entry in the user interface for convenient referencing. 
Similar to PIG, HPIDB integrates several host-pathogen PPI databases, including BIND, 
IntAct, REACTOME, MINT, GENERIF, and PIG. However, unlike PIG, the PPIs in HPIDB 
are not limited to human host. Although the majority of data is for human (22386 PPIs), 
HPIDB also contains host-pathogen PPIs for mouse (147 PPIs), A. thaliana (99 PPIs), rat (53 
PPIs), cattle (30 PPIs), and chicken (19 PPIs).  
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A few repositories collect genes which are involved in host-pathogen interactions, but do 
not contain data on physical protein interactions. PHIDIAS is a centralized respiratory for 
host-pathogen interactions. It collects information for 98 pathogens of two hosts, human, 
and mouse (Xiang et al., 2007). PHI-Base contains information for 405 fungal, oomycete, and 
bacterial genes which participate in pathogenicity, virulence, and induction of disease 
resistance (Baldwin et al., 2006; Winnenburg et al., 2006). 176 of these genes are from animal 
pathogens, 227 from plant pathogens, and 3 from pathogens of fungi. PathoPlant contains 
A. thaliana genes which are responsible in the defense against pathogens (Bulow et al., 2007).  

5. Identification of drug targets within human-pathogen interactions network 

The evolutionary history of human has never been parted with pathogens. Viruses, bacteria, 
fungi, and nematodes all play critical roles in shaping the human race. Recent advances in 
metagenomics and human microbiomes suggest that commensal microorganisms have 
significant influences to the metabolism, immune systems, general wellbeing, and even 
behaviour patterns of animal hosts.  
Despite enormous efforts in preventing, diagnosing, and treating infectious diseases, 
pathogens still cause insurmountable burden and social-economical impacts to human. The 
developments of vaccines and drugs have helped to diminish several devastating diseases; 
however, emerging diseases caused by novel or previously unknown pathogens 
continuously lead to unexpected outbreaks. To account for current and future threats 
imposed by pathogens, it is necessary to understand human-pathogen interactions at the 
molecular level. Viruses require host factors for recognition, entrance, replication, and 
release. Their gene products form dense interaction networks with host proteins. Most 
bacteria, fungi, and nematodes, on the other hand, proliferate outside of human cells and 
interact with host cells with extracellular signals and receptors. The following sections of 
this chapter review previous works on high-throughput characterization of human-
pathogen interactions interactions, mostly between human and viruses. Most works have 
focused on human-virus interactions. 

5.1 Human-virus interactions 

High-throughput characterization of intra-species interactions has been the focus of early 
day PPI studies. Inter-species interactions still constitute a minor part of most interactome 
databases. Beginning from 2007, several works on high-throughput human-virus 
interactions and host factor characterization have been published, including the ones for 
Epstein-Barr virus (EBV), hepatitis C virus (HCV), and influenza virus. Among these sparse 
inter-species interactions, those between human immunodeficiency virus 1 (HIV-1) and 
human are most abundant due to the research efforts devoted to this notorious virus. These 
datasets are summarized in Table 4. 
Among these datasets, the HIV-1 human protein interaction database is so far the most 
comprehensive in terms of recorded interaction number and annotations. The number of 
human-virus PPIs can be estimated based on the number of human-HIV PPIs, which 
presumably have not been fully exposed, and the number of human viruses. A severe 
under-estimated number of human viruses is 200 ~ 1 000 species, which can be deduced to 
at least 1 ~ 5 million human-virus PPIs yet to be discovered. Despite the small number of 
human-virus PPIs being detected or predicted,  this data is a start point to the research of the 
viral disease mechanisms and treatments. 
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Datasets 
No. of 
Interactions 

No. of 
Viral 
Strains 

No. of 
Viral 
Proteins 

No. of 
Human 
Proteins 

Sources 

Human 
Immunodeficien
cy Virus 1  
(HIV-1) 

5128 1 21 1433 
(Pinney et al., 
2009) 

Epstein-Barr 
Virus 

173 1 42 112 
(Calderwood et 
al., 2007) 

Hepatitis C 
Virus 

481 1 11 414 
(de Chassey et 
al., 2008) 

Influenza Virus 400 1 10 246 
(Konig et al., 
2010) 

NCBI 
Interactions 

5370 39 86 1530 NCBI FTP Site1 

IntAct 689 50 124 308 
(Aranda et al., 
2010) 

Table 4. Summary of human-virus interaction datasets 

5.2 HIV-1 interactions 
The HIV-1, Human Protein Interaction Database (Pinney et al., 2009) was compiled  
by National Institute of Allergy and Infectious Diseases (NIAID), and hosted by NCBI. 
Interaction data in this database was collected from published literatures. Unlike other 
interaction data, entries in this dataset were associated with detailed annotations, 
including PubMed ID list for references, short phrases describing the interactions,  
and texts excerpted from the source literature. Interactions in this database are not  
just revealed by conventional Y2H or immune-co-precipitation, but 70 interactions  
were annotated with details. For example, the statement “HIV retropepsin cleaves human 
actin” is supported by four publications and attached with descriptions of  
the HIV retropepsin and human actin. Occassionally, the texts from the source literatures 
would provide additional information. In the case of “HIV retropepsin cleaves human 
alpha-2-macroglobulin precursor”, the GeneRIF text states “the cleavage site of alpha  
2-Macroglobulin by HIV-1 protease is the Phe684-Tyr685 bond”, which depicts  
the interaction (cleavage) site. Interaction types include cleavage, binding, 
regulation/modulation, and post-translational modifications.  
Analysis of this database found that there were 21 HIV gene products interacting with 1433 
human proteins. The top 10 HIV and human proteins which participate in most HIV-human 
interactions are listed in Table 5.  
By simply counting the numbers of PPIs in Table 5, critical host factors in HIV infections 
could be identified. The C-C chemokine receptor type 5 (CCR5) variants have been 
implicated in HIV-resistance and immunity (Blanpain et al., 2002). Stem cell-based gene 
therapy has successfully “cured” HIV with this genetic variant in early phase clinical trials 
(Symonds et al., 2010). Some host factors were also involved in various types of processes 
and diseases, such as tumour necrosis factor (TNF), which regulates cell proliferation, 
apoptosis, and has been implicated in cancer. 

                                                 

1 ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/interactions.gz 
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Top 10 HIV 
Proteins 

No. of 
Interactions 

 

Top 10 Human Proteins 
No. of 
Interactions 

Tat 1685 
T-cell surface glycoprotein CD4 isoform 1 
precursor

177 

gp120 1252 
C-X-C chemokine receptor type 4 isoform 
b

54 

Nef 496 Tumor necrosis factor 47 

Vpr 342 
Nuclear factor NF-kappa-B p105 subunit 
isoform 1

41 

gp41 253 
Nuclear factor NF-kappa-B p105 subunit 
isoform 1

41 

gp160 232 C-C chemokine receptor type 5 40 
Rev 139 Interferon gamma precursor 35 
Matrix 132 Mitogen-activated protein kinase 1 30 

Integrase 122 
Major histocompatibility complex, class I, 
B precursor

30 

Retropepsin 98 Cyclin-dependent protein kinase 9 30 

Table 5. HIV and human proteins participate in largest numbers of human-HIV interactions. 

Table 5 also suggests that Tat could be a potential drug target. The crystal structure of Tat 
which forms complex with cyclin-denpendent protein kinase 9 (CDK9) and cyclin T1 has 
been solved (Tahirov et al., 2010). The complex structure (PDB ID: 3MI9) reveals that the 
most part of Tat has physical contact with cyclin T1 and has only a small loop contacting 
CDK9. The structural information provides valuable insights to the design of Tat inhibitors. 

5.3 Epstein-Barr virus interactions 
Epstein-Barr virus (EBV) infects human epithelial cells, and is implicated in various types of 
cancer, such as Burkitt’s lymphoma and nasopharyngeal carcinoma. The interactions within 
EBV proteins, and between EBV and human proteins, have been characterized using Y2H 
method (Calderwood et al., 2007). Overall, 43 EBV-EBV and 173 human-EBV interactions 
have been validated with experimental evidences. 
Network analysis reveals that most EBV-EBV interactions take place among conserved 
“core” proteins, thus these interactions may be responsible for the general 
infection/replication of herpesviruses. On the other hand, most human proteins targeted by 
EBV are proposed as “hub” proteins, which participate in more human-human interactions 
and may have crucial roles in the underlying biological processes. The EBV protein targeting 
most human proteins is BFLF2, with 21 interaction partners. BFLF2 interacts with BFRF1 
and changes cellular localization (Gonnella et al., 2005). Deletion of BFLF2 also impairs viral 
DNA packaging (Granato et al., 2008). The most targeted human proteins are HOMER3 and 
GRN. HOMER3, which binds to numerous receptors, is involved in diverse biological 
functions such as neuronal signalling and T-cell activation. Granulin (GRN) is a secreted 
glycosylated peptide which regulates cell growth and implicates in wound healing and 
tumorigenesis. BFLF2 interacts with both HOMER3 and GRN; however, the functional 
implications of interactions were not clear. 

5.4 Hepatitis C virus interactions 
Hepatitis C virus (HCV) is the pathogen which causes the chronic hepatitis infection. 
Infection with HCV may lead to cirrhosis and hepatocarcinoma if not properly treated with 
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antiviral drugs or interferon. Unfortunately, current HCV treatments are expensive and can 
have severe adverse effects. The human-HCV interaction map would allow us to 
understand the mechanisms of HCV infection and its chronic nature.  
The human-HCV interaction network is constituted by 481 HCV-human interactions (de 
Chassey et al., 2008). Among these interactions, 314 were determined with Y2H 
experiments, and others were identified from literature reviews. The most connected HCV 
proteins include NS3, NS5A, and CORE. Human proteins targeted by most HCV proteins 
include nuclear receptor subfamily 4, group A, member 1 (NR4A1), homeobox D8 (HOXD8), 
and SET domain containing 2 (SETD2). NR4A1 is a nuclear transcription factor, which is 
highly expressed in adrenal cortex, lung, and prostate; however its expression level in liver 
is low. HOXD8 is important to development; its deletion leads to limb deformation. 
Expression level of HOXD8 is highest in kidney. SETD2 is a histone methyltransferase and 
also contains transcription activation domain. Recently, SETD2 has been found as a tumour 
suppressor gene (Duns et al., 2010). However, the roles of HCV-SETD2 interactions in 
tumorigenesis remain elusive. 
The analyses of EBV-human and HCV-human interaction networks found that viral proteins 
tend to interact with “hubs” in human protein-protein interaction networks. In human 
proteins targeted by HCV, three KEGG pathways were significantly enriched, including 

insulin signalling pathway, TGF signalling pathway, and Jak-STAT signalling pathway (de 
Chassey et al., 2008). Also, “focal adhesion” pathway has been identified as a novel pathway 
targeted by HCV. In our own analysis using bootstrap to estimate the statistical significance 
of HCV targeted gene numbers, we have also identified that “focal adhesion” and “ECM-
receptor interaction” pathways may be perturbed by HCV infection (Table 6). 
 

Path ID Title 
No. of 
genes in 
pathway

# of HCV 
targets 

Random 
(mean) 

Random 
(SD) 

Z-stat p-value 

5160 Hepatitis C 134 23 1.82 1.35 15.70 < 2.2 × 10-16 

5200 
Pathways in 
cancer 

328 31 4.60 2.20 12.02 < 2.2 × 10-16 

5212 
Pancreatic 
cancer

71 12 0.99 0.95 11.54 < 2.2 × 10-16 

4510 
Focal 
adhesion 

202 22 2.80 1.68 11.42 < 2.2 × 10-16 

5222 
Small cell 
lung cancer

84 13 1.19 1.08 10.98 < 2.2 × 10-16 

4520 
Adherents 
junction 

75 12 1.07 1.03 10.59 < 2.2 × 10-16 

4722 
Neurotrophin 
signaling 
pathway 

127 15 1.78 1.32 10.04 < 2.2 × 10-16 

5215 
Prostate 
cancer

89 12 1.32 1.12 9.56 < 2.2 × 10-16 

4512 
ECM-
receptor 
interaction

84 11 1.16 1.05 9.35 < 2.2 × 10-16 

Table 6. Top 10 KEGG pathways potentially perturbed by HCV infection. 
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5.5 Influenza virus host factors 

Influenza A virus causes epidemics every now and then. The high transmission rate of 
influenza virus makes it one of the greatest threats to public health, especially when long 
diminished strains or emerging strains turned to the surface. The rapidly evolving virus 
makes it difficult to predict and prepare seasonal vaccines. Drug-resistant strains also 
challenge our ability to treat and control the disease. 
The identification of host factors required by influenza virus may contribute to the 
prevention and treatment of the virus. Host factors involved in early stage influenza virus 
replication have been characterized with genome-wide RNA interference (RNAi) screening 
(Konig et al., 2010). Unlike Y2H experiments, host factors identified with RNAi do not 
necessary interact with viral proteins directly. Nevertheless, these findings imply that viral 
diseases may be treated by regulating some of these host factors. One example is the 
inhibitor for the host factors, CAMK2B, which impedes viral growth and may be developed 
to new antiviral drugs. 

5.6 Human-bacteria interactions 

Bacteria cells can reproduce without the cellular machinery of hosts. Studies on human-

bacteria interactions thus have been focused on cellular-level interactions. So far,  

only limited efforts have been devoted to the identification of human-bacteria interactions 

at the molecular-level. The interactions between three pathogenic bacteria, Bacillus 

anthracis, Francisella tularensis, and Yersinia pestis, have been characterized using high-

throughput Y2H experiments (Dyer et al., 2010). The reported dataset includes 3,073, 

1,383, and 4,059 interactions between human or B. anthracis, F. tularensis or Y. pestis, 

respectively. 

The topology of these human-bacteria and human protein-protein interaction networks 

revealed that many bacteria proteins target “hubs” in human PPI networks. Specifically, 

several host defence pathways have been identified, including innate immunity and 

inflammation. Comparative analysis of the three human-pathogen interaction networks also 

confirmed these findings. Several methods have been used to identify the conserved protein 

interaction modules (CPIM), and found that these bacteria may have interfered host innate 

immune responses, including antigen binding and processing, and several immune 

response pathways. 

Analysis of these interactions faces some obstacles. Large proportions of the bacteria 

proteins (285/943, 66/349, 630/1,218 protiens for B. anthracis, F. tularensis, and Y. pestis, 

respectively) which interact with human proteins are putative, hypothetical, or 

uncharacterized. Without sufficient functional annotations, interpretations of these 

interactions can be superficial. Furthermore, bacterial proteins and human proteins were 

confined within the membrane of respective cells, and only certain types of proteins can be 

exported or internalized by host cells. Thus, the annotations or predictions of protein 

subcellular localization are important tasks for the interpretation and refinements of human-

bacteria interaction networks. 

5.7 Systematic analysis of host-pathogen interactions 

Human-pathogen interactions have been collected and analyzed for their network 
properties (Dyer et al., 2008). Pooling together human-pathogen interactions should enable 
identification of common targets and biological processes perturbed by pathogens. A total of 
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10477 interactions between human and the 190 pathogen strains have been collected from 
several public databases. Networks for human-bacteria and human-virus interactions have 
been constructed separately. Most of the interactions were human-virus interactions, 
notably human-HIV interactions.  
Special attention has been paid to human proteins which interact with multiple pathogen 

groups. Such proteins are believed to be the common targets of these pathogens, and may be 

the highlights of critical events during pathogen invasion. 

The analysis of human proteins targeted by multiple viral pathogens have revealed that 

viruses perturb host cells mainly through controlling cell cycle, regulating apoptosis, and 

transporting viral particles across membrane (Dyer et al., 2008). Human-bacteria 

interactions, on the other hand, perturb Gene Ontology processes like “immune system 

process” and “immune response”. It is notable that much of these perturbed pathways were 

linked to inflammatory and cancer, suggesting multiple roles of pathogens in various 

diseases. 

Another analysis on human-viral interaction network also highlighted the mechanisms of  

non-infectious diseases (Navratil et al., 2011). Totally 2,099 manually curated interactions of 

416 viral proteins from 110 species have been collected. This human-virus interaction 

network has been integrated with human PPI network. Disease gene annotations from 

OMIM have been evaluated for their associations with viral proteins. Links between virus 

and auto-immune diseases have been found, including type 1 diabetes. A comparison 

between human-virus interaction network and human type I interferon network also 

revealed that viruses attack host at multiple levels, from receptors to transcription factors 

(Navratil et al., 2010). 

We have also performed similar analysis with human-virus interactions collected from 

NCBI interactions2, IntAct (Aranda et al., 2009), and other sources. The association of KEGG 

(Kanehisa et al., 2010) disease pathways and human-virus interactions have been analyzed. 

Several KEGG pathways have been identified with high significance, including “systemic 

lupus erythematosus”, “pathways in cancer”, “chemokine signalling pathway”, “focal 

adhesion”, and “T cell receptor signalling pathway”. These findings are in par with studies 

described in previous sections; all pointing to pathogens gain their foothold in host cells 

through modulating host defence mechanisms. In the meantime, inflammation, 

autoimmune diseases and cancers may arise as results of these modulations. 

6. Conclusion 

At the present, the number of confident PPI data is scarce, especially for non-human 

organisms and inter-species interactions. The prediction of PPIs, as well as the evaluation of 

accuracy of detected and predicted PPIs, are important topics which require further 

advances in methodology, tools and data generation. It is believed that, in recent years, as 

the second generation sequencing (SGS) rapidly discloses full genome sequences and 

exponentially accumulates high-throughput expression data, more and more inter- and 

intra-species networks PPI will be constructed for, not only model organisms, but also crops, 

biofuel producing algae and bacteria, between host-pathogens, and between symbiotic 

organisms.  

                                                 
2 ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/interactions.gz 
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