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1. Introduction 

Plaque-induced gingivitis is a localized inflammation affecting marginal periodontal soft 

tissue (Armitage, 1999). It is considered to be a reversible periodontal disease. In contrast, 

periodontitis is an irreversible destructive periodontal condition, which is usually preceded 

by gingivitis although not all gingivitis develops into periodontitis. Why some gingivitis 

sites transition to periodontitis sites is not well understood, although there are some 

indications of “at risk” populations such as smokers and poorly controlled diabetics (Burt, 

2005). It is also understood that development of chronic periodontitis only occurs in areas of 

long-standing gingivitis and furthermore that teeth with consistently inflamed gingival 

tissues are at a significantly higher risk of attachment and tooth loss (Lang et al, 2009). 

Consequently being able to non-invasively and closely monitor gingivitis sites would be 

very helpful in the prevention of periodontal disease. The basic clinical measures for 

periodontitis are gingival bleeding, radiographic bone loss, clinical attachment loss and 

clinical probing depths (Burt, 2005). Current clinical diagnostic measures are unable to 

identify gingivitis with high risk of transition to periodontitis since not all sites with 

gingivitis actually progress to periodontitis (Armitage, 1996). Therefore, the search for more 

accurate periodontal diagnostic instruments is continuing and a number of non-invasive 

diagnostic modalities such as optical and infrared spectroscopy, optical coherence 

tomography (OCT) and ultrasound have been evaluated for their potential in periodontal 

diagnosis. An illustration to better visualize the overall features of currently used clinical 

methods and emerging optical and infrared based diagnostic methods for periodontal 

diseases including gingivitis is presented in Figure 1. In principle, these diagnostic methods 

can be classified into three categories based on their features and clinical aspects. Clinical 

examination which is the mainstream of current practice and the gold standard, primarily 

measures clinical parameters such as bleeding on probing (BOP), probing depth (PD), and 

clinical attachment loss (CAL) as well as bone loss with the use of dental radiographs.  
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Fig. 1. Summary of current and proposed infrared spectroscopy based diagnostic methods 
for gingivitis. 

The second group consists of molecular finger printing or finding molecular markers in 
gingival crevicular fluid (GCF).  In addition to regular genetic analysis and laboratory type 
tests that measure fundamental aspects of oral biochemistry and microbiology, mid-infrared 
spectroscopy (MIRS) has shown some promise in providing molecular profiles of GCF 
related to periodontal disease. The last group consists of methods suited to non-invasive in 
vivo monitoring such as optical spectroscopy, OCT and ultrasound imaging. OCT and 
ultrasound are generally used to delineate anatomical features of the gingival and 
surrounding tissues which are affected by disease, whereas optical spectroscopy can 
simultaneously detect local alterations in tissue hemodynamics and thereby accurately 
differentiate inflamed periodontal sites from healthy sites. 
Non-invasive diagnostic methods that do not employ ionizing radiation are of particular 
interest for routine use in the diagnosis and monitoring of gingivitis as well as in predicting 
disease progression. Therefore, methods based on optical and infrared spectroscopy that are 
being explored as complementary diagnostic tools in periodontal diagnostics will be 
primarily reviewed in this chapter.  
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2. Clinical diagnostic criteria for gingivitis and their limitations  

Gingivitis is defined as gingival inflammation in the absence of clinical attachment loss or in 
the presence of reduced but stable attachment levels (Mariotti, 1999). It is one of the most 
common human diseases and occurs in all ages of populations. The prevalence of gingivitis 
is high in both high income developed countries and low and middle income developing 
societies, affecting 50 – 90 % of adults worldwide (Albandar & Rams, 2002). For instance, 
only 6.1% of American adults showed mean gingival index (GI) <0.50; most (93.9%) were > 
or = 0.50 (Li et al, 2010). The average GI in 97.9% of Chinese adults was 0.5 or higher, and 
only 2.1% of them had a GI lower than 0.5 (Zhang et al, 2010). Most people have clinical 
signs of gingival inflammation, such as redness, edema and bleeding on gentle probing, but 
the extent and severity of inflammation vary from one population to another and are closely 
related to bacterial dental plaque.  
In gingivitis, inflammation is confined to the periodontal soft tissues and diagnosis of most 
gingivitis can be readily made on clinical presentation and visual examination. Common 
signs of gingival inflammation include redness, partly due to the aggregation and 
enlargement of blood vessels, swelling and loss of texture and bleeding on gentle probing or 
sweeping on gingival margin (Lang et al, 2009). However, for clinicians, these key clinical 
parameters are largely subjective observations and difficult to stage gingivitis. Thus, 
assessment of disease progression and the effect of treatment are often inaccurate and 
subjective since it relies on clinical monitoring and comparing of these clinical parameters. 
Some local and systemic factors may further complicate the precise measurement of gingival 
inflammation. For instance, cigarette smoking is a well established risk factor for 
periodontal diseases, but clinical signs of periodontal inflammation are reduced in a dose 
dependent manner in smokers (Scott & Singer, 2004; Dietrich et al, 2004; Erdemir et al, 2004). 
Unlike many other infections, painless bleeding often presents as an early, easily 
recognizable sign of gingivitis, in particular at its early stage when it is easy to treat and 
maintain. If left untreated, however, some gingivitis will develop into a more destructive 
irreversible form of periodontal disease, i.e., chronic periodontitis, leaving permanent 
damage to tooth supporting tissues. Longitudinal studies  showed that teeth with 
chronically inflamed gingiva had 70% more attachment loss than healthy sites and a much 
higher risk of tooth loss as well (Heitz-Mayfield et al, 2003; Schatzle et al, 2003).  Once 
chronic periodontitis has established, more invasive treatment approaches and life long 
professional maintenance are required for periodontal health. Therefore, inaccurate 
diagnosis of periodontal diseases can result in either under-treatment, if one fails to identify 
progressing gingivitis or over-treatment if treatment is delivered to stable sites. It is thus 
important to identify the sites and subjects at risk of progression in their earliest stage of 
development, particularly in cases with high risk of progression. Unfortunately, currently 
used periodontal diagnostic methods, such as periodontal probing and radiography, are not 
sensitive measurements in this regard. Neither method is able to differentiate between 
reversible gingivitis and early but irreversible periodontitis, nor identify progressing 
periodontitis until significant periodontal tissue has been lost. For instance, the standard 
deviation for the measurement of attachment level with conventional periodontal probes is 
reported to range from 0.62 to 1.17 (Glavind & Loe, 1967; Goodson et al, 1982; Aeppli et al, 
1985). Error of this magnitude requires a measured change of 2 to 3 mm in order to safely 
conclude that a change did occur. A more sensitive means is needed to precisely identify 
disease progression at the early stage (Haffajee et al, 1983, Ranney, 1991). As an adjunct to 
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periodontal probing, our group has recently explored the potential of using optical - near 
infrared spectroscopy to measure site specific hemodynamics in relation to periodontal 
diseases, including gingivitis. The previously published results are elaborated in the 
following sections, which clearly demonstrate that optical spectroscopy is emerging as a 
powerful diagnostic tool for inflammatory periodontal diseases.   

3. Diagnosis of gingivitis by optical spectroscopy   

Indeed, a simple, user friendly, chair-side, diagnostic test for periodontal inflammation 

would be an invaluable addition to the dental clinic. To this end, optical spectroscopy has 

been extensively explored as noninvasive modality for the diagnosis of periodontal diseases 

including gingivitis.  

The most attractive feature of a fiber optic optical spectroscopy measurement of periodontal 

inflammation is that it offers a rapid, non-invasive means of assessing the balance between 

tissue oxygen delivery and utilization. In the methodology pursued by our group, the 

measurement is made by positioning a fiber optic probe over the area of tissue under 

investigation but does not require a measurement within the periodontal pocket, unlike 

conventional periodontal probing. This poses less discomfort for the patient with 

measurement times on the order of a few seconds; one can envision optical spectroscopy as 

a practical chair-side tool for the practitioner. 

It is generally known that the visible - near infrared spectral region of the 

electromagnetic spectrum covering the wavelength range from 400 to 2500 nm, conveys 

information on a few key inflammatory markers of periodontal  disease (Sowa et al, 2006; 

Sowa et al, 2001). The electronic transitions stemming from the heme ring and central 

metal iron ion of hemoglobin are particularly strong absorbers of visible light as well as 

absorbing light in the near infrared region of the spectrum. For instance, the short 

wavelength region, 500 – 600 nm is dominated by the absorption from oxygenated 

hemoglobin (HbO2) and deoxygenated hemoglobin (Hb) in the capillary bed of gingival 

tissue while the absorption from water results in an increased attenuation at longer 

wavelengths in the 900 – 1100 nm region (Fig. 2) (Sowa et al, 1999; Hanioka et al, 1990). 

By fitting optical attenuation spectra to the known optical properties (extinction 

coefficients) of HbO2 and Hb, optical spectroscopy can measure relative concentrations 

of HbO2 and Hb (Hanioka et al, 1990; Attas et al, 2001). Furthermore, the 960 nm water 

band is known to shift with tissue temperature and changes in electrolyte concentration 

(Otal et al, 2003). Thus, optical spectroscopy provides a measure of the hemoglobin 

oxygen saturation of tissues and the degree of tissue perfusion as well as a measure of 

tissue edema.  

Based upon these principles, visible – near infrared spectroscopy has been widely applied to 

biomedical problems, including cancer diagnostics, the early prediction of inflammation-

related treatment failures in burn victims (Sowa et al, 2001; Liu et al, 2005; Sowa et al, 1999) , 

and monitoring ischemic conditions in urology such as testicular tissue perfusion and 

oxygenation of testicular torsion (Capraro et al, 2007; Stothers et al, 2008). Commercially, 

some near infrared based cerebral oximetry monitors, i.e., NIRO and INVOS, have been 

employed in the clinical settings for the surveillance of the cerebral oxygen balance under 

CO2 challenge (Yoshitani et al, 2002).  
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Fig. 2. Near infrared reference spectra (500–1000 nm) for water, deoxygenated hemoglobin 
(Hb) and oxygenated hemoglobin (HbO2). The extinction coefficient data for water have 
been multiplied by a scaling factor of 10. (Reproduced from J Perio Res, 2009;44:117-24 with 
permission). 

Likewise, hemoglobin and oxygenation indices have also been previously measured in 
periodontal tissues with the data suggesting that the increase in blood supply during 
inflammation is insufficient to meet the oxygen demand in inflamed gingivae (Hanioka et al, 
1990). In addition, tissue edema, an index that is commonly used as a marker of gingival 
inflammation (Loe et al, 1963; Scott et al, 2004) can also be measured using near infrared 
spectroscopy (Liu et al, 2009; Sowa et al, 2001). Consequently, monitoring the intensity of 
the water bands in gingival tissues should provide an index of tissue hydration 
representing a simple indicator of inflammation at specific periodontal sites.  
Furthermore, we have recently demonstrated, using optical spectroscopy, that tissue 
oxygenation at gingivitis sites was significantly decreased (p<0.05) compared to healthy 
controls as shown in Figure 3 (Liu et al, 2009). Such decreased oxygen saturation likely 
reflects tissue hypoxia resulting from an ongoing inflammatory response leading to 
increased oxygen consumption (Hanioka et al, 2000). It is well known that in destructive 
periodontal diseases, anaerobic microorganisms predominate in the periodontal pocket and 
diminished oxygen tension in deep pockets would be expected to promote growth of 
anaerobic bacteria (Amano et al, 1988; Loesche et al, 1969). Interestingly, it has been shown 
previously that tissue oxygen saturation correlates well with oxygen tension in periodontal 
pockets (Hanioka et al, 1990). In particular, in chronic gingivitis (stage III), the blood vessels 
become engorged and congested, venous return is impaired, and the blood flow becomes 
sluggish. The result is localized gingival anoxemia, which superimposes a somewhat bluish 
hue on the reddened gingiva (Hanioka et al, 1991).  
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Fig. 3. Percent tissue hemoglobin oxygen saturation derived from the relative concentrations 
of Hb and HbO2 from distinct two locations. Indices are compared between healthy, 
gingivitis and periodontitis sites. * Represents a significant difference from healthy sites, 
p<0.01. Vertical bars denote 0.95 confidence intervals. 

We have recently attempted to establish a model to predict risk index of gingivitis based on 

spectral data from several independent studies (Liu et al, 2009; Ge et al, 2011; Nogueira et al, 

2011). The method of Fort and Lambert-Lacroix, using partial least squares with penalized 

logistic regression was applied directly to the measured visible reflectance spectrum (510 – 

620 nm) of the gum with a subject-out bootstrap cross validation approach to select classifier 

parameters. The probabilistic classification model was calibrated using the spectral data 

from healthy sites and sites with periodontitis and the model was then used to predict the 

sites with gingivitis that have optical properties that are more indicative of periodontitis. 

Figure 4 shows a risk index applied to cases that were deemed to be gingivitis based on 

clinical assessment. This method would allow us to stratify the gingivitis cases into those 

that have spectroscopic characteristics closer to healthy sites and those that were similar to 

periodontitis. 

Comparing the risk score between sites with or without plaque (Figure 5) revealed  that the 

risk score of the gingivitis sites with plaque were on average higher than the risk score of 

gingivitis sites without plaque (p=0.02). Both results (Fig. 4&5) strongly indicate that based 

on the hemodynamic information embedded in the optical spectra, one can readily develop 

prediction models or risk scores to further stratify gingivitis.   
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Fig. 4. Logistic regression model that weights sites exhibiting signs of gingivitis towards 
healthy sites (negative periodontal risk values) or periodontitis (positive risk values). Model: 
Logistic regression. Y=exp(-.07661+(1.57564)*x)/(1+exp(-.07661+(1.57564)*x)) 

 

 

Fig. 5. The risk scores of gingivitis sites with or without plaque. T-test indicates a 
significantly higher risk score for gingivitis sites with plaque compared to gingivitis sites 
without plaque (p=0.02).  
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As tissue oxygen saturation is not measurable clinically, optical spectroscopy can provide a 

further index of inflammation that may prove useful to the periodontist. In other words, 

after future studies, the intra-oral optical probe may be able to determine sites at which 

disease has not yet progressed clinically, but whose biochemically-defined profile suggests 

that a particular site has pathogenic potential, such as the anaerobicity required to establish 

a pathogenic micro flora. 

4. Molecular fingerprinting of gingivitis GCF by MIR spectroscopy  

Another important aspect in evaluating gingivitis is to fully utilize the molecular and 

biochemical information embedded in GCF. In fact, studies on GCF have extended over a 

period of about 60 years. Originally proposed by Alfano (Alfano, 1974), GCF represents the 

transudate of gingival tissue interstitial fluid but in the course of gingivitis and 

periodontitis, GCF is transformed into a true inflammatory exudate (Veli-Jukka, 2003). The 

composition of GCF is the result of the interplay between the bacterial biofilm adherent to 

the tooth surfaces and the cells of the periodontal tissues. GCF contains several cellular and 

molecular components of the immunologic response present in serum, as well as mediators 

and by-products of tissue destruction generated within the tissues. These substances possess 

a great potential to serve as indicators of periodontal disease, the healing process after 

therapy or as a window to periodontal disease. Therefore, GCF provides an easily collected 

fluid containing inflammatory mediators released during disease processes that affect 

periodontal tissues (Champagne et al, 2003).  

Gingivitis is a form of periodontal disease in which gingival tissues present with 

inflammation but in which tissue destruction is mild and reversible. Gingivitis affects 

more than 90% of the population, but only 7–15% of the adult population is affected by a 

more severe form of the disease, chronic periodontitis (Brown & Löe, 1993). The 

histological presentation of gingivitis includes vascular changes with increased 

vasopermeability and vasodilatation, and the presence of an exudate of 

polymorphonuclear neutrophils, migrating from the tissue into the gingival crevice (Tsai 

et al, 1998; Page et al, 1976). Gingivitis is thought to be a neutrophil-dominated response, 

as mostly neutrophil mediators are identified in GCF, including leukotriene B4, platelet 

activating factor, prostaglandin E2, interleukin-1, thromboxane B2, elastase and 

collagenase (matrix metalloproteinases-8) (D'Ercole et al, 2008; Munjal et al, 2007; Lamster 

et al, 2007; Kinane & Mark, 2007). Thus, inflammatory cytokines can be detected within 

the GCF and serve as an indicator of local immuno-regulatory and inflammatory status. 

Although in gingivitis the tissue destruction is mild and reversible, the tissue damage 

products like hydroxyproline/collagen fragments, have also been identified as 

biomarkers (Bowers et al, 1989; Huynh et al, 2002). Therefore, it is obvious that GCF 

provides a unique window for analysis of periodontal condition.  

Several tests have been developed that are aimed at specifically and sensitively revealing 

the pathologic and metabolic status of periodontal tissues (Armitage, 2003). Some of them 

have shown good specificity and sensitivity values as well as potential for predicting 

disease progression (Jeffcoat & Reddy, 1991; Jeffcoat, 1992; Magnusson et al, 1996; Bader 

& Boyd 1999; Teles et al, 2009). Unfortunately only a handful of GCF tests have made their 

way into clinical practice. Clinicians are still missing a practical test based on enzymes, 
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tissue degradation products or cytokines that accurately indicates the initial periodontitis 

process, active disease periods or effective healing. However, despite the complex nature 

of periodontal diseases which involves a multifaceted immune and inflammatory reaction 

to a polymicrobial flora, and inter-individual variation in inflammatory response, such 

potential biomarkers are generally studied individually or rarely in small numbers 

(Kinane & Mark, 2007). This may explain why the predictive value of potential 

biomarkers studied to date has not been sufficient for effective routine clinical use 

(Lamster et al, 2007).  

Different from analyzing one or more particular biomarkers in tissue or body fluid, IR 

spectroscopy analyzes complex biological systems by capturing the entire IR spectrum 

which represents the sum of the contributions of the biomolecules present such as proteins, 

lipids, sugars and nucleic acids (Petibois & Déléris, 2006). Essentially, the IR spectrum of a 

tissue or cell sample can be regarded as molecular fingerprint of the tissue or cells. If this 

molecular fingerprint is modified by a disease process, which is normally the case, then IR 

spectroscopy can be used to detect and monitor the disease process.  

Therefore, IR spectroscopy can distinguish differences in the characteristics of diverse 

molecules by probing vibrations of chemical bonds and using these molecular and sub-

molecular profiles to define and differentiate “diseased” and “healthy” tissues (Jackson et al, 

1997). As covalent bonds vibrate, they absorb energy in the form of IR light (Hynes et al, 

2005; Liu et al, 2006). The wavelength of light that is absorbed depends on the nature of the 

covalent bond (e.g., C=O, N-H), the type of vibration (bending, stretching, etc.), and the 

environment of the bond. In the last fifteen years, IR spectroscopists have taken advantage 

of this molecular information, in combination with pattern recognition/classification 

methods, to explore its potential as a powerful tool for the diagnoses of various diseases 

based upon the spectra of biological fluids, including amniotic fluid, lipid profiles, synovial 

fluid, saliva and gingival crevicular fluid to predict fetal lung maturity (Liu et al, 1998), 

diagnose heart disease (Liu et al, 2002) and rheumatoid arthritis (Eysel et al, 1997), assess 

global diabetes-associated alterations (Scott et al, 2010) and evaluate periodontal 

inflammations (Xiang et al, 2010), respectively.  

The IR spectrum of saliva and GCF is a rich source of information regarding the oral cavity 

and associated inflammation. In a recent study by Scott et al, they have assessed global, 

diabetes-associated alterations to saliva at the molecular and sub-molecular levels by using 

infrared spectroscopy (Scott et al, 2010). For instance, by evaluating the difference spectrum 

a great deal of molecular information embedded in the saliva from diabetic patients can be 

distilled as shown in Figure 6. Following Fourier self-deconvolution (FSD), the most striking 

difference between the spectrum of diabetic saliva and that of control were vibrations 

arising from sugar moieties and/or glycosylation products, such as AGEs (advanced 

glycation end products). This can be visualized by examining the spectral range 950-1180 

cm-1 that originated from various C-C/C-O stretching vibrations in sugar moieties. The 1020 

cm-1 band is usually attributed to the C-O stretch vibration in glycogen while the bands at 

1070 and 1169  cm-1 can be assigned as C-O-C symmetric and asymmetric vibrations of sugar 

moieties and phospholipids. Obviously, therefore, the contribution of AGEs and ALE’s 

(advanced lipoxidation end products) to diabetic spectra may be large. This is consistent 

with previous reports that found that stimulated or unstimulated salivary glucose 

concentrations are higher in diabetic patients than in control subjects (Garay-Sevilla et al, 
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2005; Sola-Penna, 2008). These findings are also in keeping with numerous studies that have 

shown increased salivary AGE content in the development of diabetes complications 

(Bilous, 2007).  

 

 

 
 
 

Fig. 6. General features of FSD-processed mean IR spectra of control and diabetes (bottom) 
subjects and the difference spectrum (diabetes minus control, top). Note: Although some 
non-highlighted bands exhibit pronounced differences, they do not convey significant 
meaning in terms of biological significance. (Reproduced from Diabetology & Metabolic 
Syndrome 2010, 2:48 (1-9) with permission). 

More relevant to gingivitis, our group recently has employed IR spectroscopy to 
characterize GCF from healthy, gingivitis and periodontitis sites and determined specific 
spectral signatures that clearly demarcate healthy and diseased tissues (Xiang et al, 2010).  
With the FSD method which can narrow effective bandwidths, enhance resolution, and 

increase available discriminatory data (Surewicz et al, 1988), we were able to reveal subtle 

differences in spectral band intensity and positions arising from the three major 
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components, i.e., lipid, protein and DNA observed in GCF from healthy, gingivitis and 

periodontitis groups. For instance, by integrating the three major DNA sensitive bands - the 

bands at 1087 and 1240 cm-1 arising from symmetric and asymmetric PO2- stretching 

vibrations of phosphodiester groups in DNA and the 1713 cm-1 band - we can see that GCF 

DNA concentrations in diseased subjects are increased compared to healthy subjects (Fig. 7). 

GCF contains a diverse population of cells, which include bacteria, desquamated epithelia 

and transmigrating leukocytes (Delima et al, 2003; Palmer et al, 2005). The increased DNA 

component in GCF from gingivitis and periodontitis sites, relative to healthy controls, is 

likely due to a combination of an inflammation-driven increase in leukocyte migration into 

the GCF, particularly neutrophils; an increase in epithelial turnover, reflecting ongoing 

tissue remodeling; and of the inflammatory stimulus itself, i.e., plaque bacteria.  

 
 

 
 
 

Fig. 7. Relative DNA contributions are increased in diseased GCF groups. The shade areas 
highlights DNA-specific signals in GCF. The enlarged area of another important DNA 
band, 1713 cm-1, arising from DNA pair base vibration after Fourier self-deconvolution 
(FSD). The histograms representing the integrated area (relative DNA content) in the 
spectra from the three groups. (Reproduced from J Perio Res, 2010; 45: 345-352 with 
permission). 
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Increased protein (Amide I at 1652 cm-1) and lipid (symmetric CH2 stretching vibration at 
2853 cm-1 from the fatty acyl chains) signals are also evident at diseased sites (Figure 8). In 
particular, disease-specific cellular and molecular alterations to the composition of GCF are 
clear, most obviously the increased intensity of the 1652 cm-1 Amide I band at inflammatory 
sites (gingivitis and periodontitis) compared to healthy sulci. This indicates that the protein 
concentrations in both disease groups were significantly higher than in controls, in 
agreement with prior reports of increased total protein levels in periodontitis GCF (Akalin et 
al, 1993); and a significant correlation between total GCF protein concentration and disease 
severity (Baltacioglu et al, 2008). Many GCF proteins have been extensively explored as 
potential diagnostic markers that define periodontal inflammation. They include 
inflammatory mediators, particularly cytokines and matrix metalloproteinases, and tissue 
breakdown products, such as, fibronectin, collagen fragments and hydroxyproline, which 
should reflect the extent of underlying tissue destruction. 
In addition, the integrated area of the =CH band at 3012 cm-1 has been used as an index of 
the relative concentration of double bonds in lipid structures from unsaturated fatty acyl 
chains (e.g. linolenic, arachidonic, etc.) arising from lipid peroxidation (Severcan et al, 2005; 
Liu et al, 2002). Interestingly, lipid oxidation is increased in the inflammatory groups, as 
evidenced by the olefinic =CH band at 3012 cm-1 providing further evidence of the 
importance of lipid peroxidation in periodontal disease pathogenesis (Tsai et al, 2005; 
Sheikhi et al, 2001).  
 

 

Fig. 8. Relative concentration of protein and lipid components derived from GCF MIR 
spectra after FSD procedure. The histograms representing the integrated area (relative 
protein, lipid and lipid peroxidation content) in the spectra from the three groups. Clear 
differences in protein and lipid content of GCF from diseased and healthy sites are apparent. 
(Reproduced from J Perio Res, 2010; 45: 345-352 with permission). 
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Besides the unique capability of IR for capturing the composite molecular content of GCF, it 

may also provide qualitative diagnosis of periodontal inflammatory status. This could be 

achieved by using linear discriminant analysis (LDA), to correlate observed spectral 

differences of GCF from inflammatory conditions (gingivitis and periodontitis) and normal 

healthy status. This is primarily due to the fact that periodontal disease is clearly multi-

factorial and our LDA analyses consider multiple components in the GCF as the basis to 

designate individual spectra as healthy or diseased. As shown in Table 1, LDA could 

classify GCF from gingivitis and healthy control sites that the overall accuracy for the 

classification of GCF samples as controls or gingivitis was 91.4% for the training set and 

72.4%, in the validation set. Comparing to the better overall accuracy for the classification of 

GCF samples in periodontitis, 98.4% for the training set and 93.l% for the test set, this would 

suggest that the gingivitis-specific molecular alterations to GCF are less profound than in 

periodontitis.  

In a nutshell, there are several advantages to using IR spectroscopy of GCF for screening 

and diagnosis of periodontal inflammation. Namely, IR spectroscopy is reagent-free 

requiring only small sample volumes; GCF samples are essentially unprocessed; the process 

is readily automated; IR spectroscopy is straightforward requiring minimal training for 

operators; and GCF samples are easily collected by clinicians with sample collection 

targeted to specific sites or to a representative set of teeth.  

 

 

 

 

 

Diagnosis of gingivitis was determiined by linear discriminant analysis of the infrared spectra. Overall 
accuracy was 91.4% on the training set and 72.4% on the test set. Bold numbers indicate accurate 
classifications. SP=specificity; PPV=positive predictive value. 

 
 
 
 

Table 1. Diagnostic accuracy of gingivitis based on IR spectra of GCF 
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