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1. Introduction 

The incidence of cancer in the United States in children under 15 years of age has risen in 
recent years (Ries et al., 1991). This is largely due to the increased incidence of  
lymphoblastic leukemia and tumors of the brain and nervous system, as opposed to Wilms 
tumors, soft tissue and bone sarcomas, lymphomas and Hodgkin's disease or other 
malignancies of childhood. Between 1973 and 1988, the incidence of childhood nervous 
system tumors jumped by 30% (Bleyer, 1993). Every year, more than 1,500 children are 
diagnosed with brain tumors (Pollack, 1994). Because a child is more likely to develop 
cancer during the first 5 years of life, the etiology of these early cancers is likely different 
from those later in life and of different factors. While childhood tumors are more aggressive, 
their long-term control is often possible (Albright, 1993). Cancer Statistics Review reports an 
overall decrease in childhood cancer mortality, although brain and nervous system cancer 
deaths have decreased less than those due to other malignancies (Ries et al., 1991). These 
results indicate the need for useful in vivo biomarkers to allow the evaluation of treatment 
protocols for pediatric brain tumors. Given the inherent difficulties of sequential biopsies to 
monitor therapeutic response in children with brain tumors, non-invasive and non-
irradiating imaging methods are needed to provide additional diagnostic indices or 
biomarkers beyond simple tumor volume measurements. Brain tumor treatment in most 
modern centers is managed through a tumor board, which typically rely in part on available 
proton Magnetic Resonance Spectroscopic Imaging (MRSI) results, especially for inoperable 
tumors that can be difficult to biopsy. Additionally, where progression or treatment 
response is questioned, serial in vivo MRSI is preferred over serial biopsy or PET/SPECT, 
which is irradiating, expensive and often unavailable. Non-invasive and non-irradiating in 
vivo MRSI can be performed as an adjunct to Magnetic Resonance Imaging (MRI), and is 
thus cost effective and the method of choice in children under 5 years, when radiation is a 
serious concern. Although MRSI does not obviate the utility of biopsy, it is suggested that it 
has the potential to replace serial biopsy and is an excellent alternative to biopsy in 
inoperable or unbiopsied tumors.  The MRSI data when combined with anatomical or other 
type MR images provide unique information regarding brain tumor biochemistry in 
inoperable tumors and, might complement neuropathology, guide biopsies, and monitor 
therapy for operable brain tumors. The combination of such non-invasively acquired 
prognostic information and the high-resolution anatomical imaging provided by 
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conventional MR imaging will surpass molecular analysis or DNA microarray gene 
profiling, which although promising depend on invasive biopsy.   

2. Application of brain tumor proton MRSI in children 

Localized MR spectroscopy studies in children are increasing (Tzika et al., 1993a; Lazareff et 
al., 1996; Tzika et al., 1997; Lazareff et al., 1998; Lazareff et al., 1999; Warren et al., 2000; 
Tzika et al., 2001; Tzika et al., 2002; Tzika et al., 2003; Astrakas et al., 2004; Tzika et al., 2004). 
Brain tumors are usually heterogeneous and complicated by edema and necrosis of the 
adjacent brain parenchyma, yet their spectra are critically impacted by precision in voxel 
size and position. Single-voxel MR spectroscopy has the inherent disadvantage that spectral 
data is not simultaneously collected from the tumor and its surrounding tissue, which 
greatly hinders the incorporation of valuable information in assessing therapeutic response 
(Kurhanewicz et al., 1996; Nelson et al., 1997a; Wald et al., 1997; Dillon and Nelson, 1999; 
Nelson, 2001). Due to technical difficulties, a limited number of adult brain tumor studies 
using advanced localized MR spectroscopy have been reported (Wald et al., 1995; Nelson et 
al., 1997a; Nelson et al., 1997b; Wald et al., 1997; Graves et al., 2001a; Vigneron et al., 2001a; 
Li et al., 2002), and even fewer studies have been carried out in children, employing 
advanced localized MRSI (Lazareff et al., 1996; Tzika et al., 1997; Lazareff et al., 1998; Taylor 
et al., 1998; Gonen et al., 1999; Lazareff et al., 1999; Tzika et al., 2001; Tzika et al., 2002; Tzika 
et al., 2003; Astrakas et al., 2004; Tzika et al., 2004).   

3. Biological aspects of selected metabolites detected by proton MRSI 

Proton MR spectroscopy has identified several metabolites that are biomarkers of tumor 
growth and apoptosis (Tzika et al., 1997). To this end, brain tumor proton MR spectroscopy 
studies (Fig. 1) consistently demonstrate: (1) reduced or absent n-acetylaspartate (NAA) and 
total creatine (tCr) attributed to edema and necrosis; (2) increased Cho-containing 
compounds possibly due to cell membrane disruption (Griffin et al., 2001) and altered 
phospholipid metabolism (Aboagye and Bhujwalla, 1999; Podo, 1999; Ackerstaff et al., 2001); 
and (3) increased lactate due to metabolic acidosis (Bruhn et al., 1989; Alger et al., 1990; 
Arnold et al., 1990; Segebarth et al., 1990; Luyten et al., 1991; Nelson et al., 1997a; Nelson et 
al., 1997b; Wald et al., 1997; Aboagye et al., 1998). Reduced NAA is expected in glial tumors, 
since NAA is primarily localized to neurons. Therefore NAA detection within glial tumors 
corresponds to either partial volume averaging with adjacent normal tissue, or tumor 
infiltration of normal tissue. Since NAA occurs in cell cultures of oligodendroglia 
progenitors (Urenjak et al., 1992), NAA in childhood tumors may also reflect immature 
oligodendroglia. A reduction in tCr resonance may indicate cell loss due to necrosis, and 
correspond to exhausted energy reserves resulting from rapid cell proliferation and 
ischemia. It is also possible that tCr may be a valuable independent predictor of tumor 
response to therapy (Tzika et al., 2001).   
The Cho peak consists of water-soluble Cho-containing compounds, such as 

phosphocholine (PCho) and glycerophosphocholine (GPC), and free choline (Barker et al., 

1994), versus membrane-bound phospatidylcholine (Miller et al., 1996a). In vivo MRS reveals 

that phosphomonoesters (PME), such as phosphocholine (PCho) and phosphoethanolamine 

(PEth), are elevated in tumors and rapidly proliferating tissues (Daly et al., 1987; Daly and 

Cohen, 1989; Gillies et al., 1994a). Furthermore, elevations in PCho and PEth correlate with 
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increased cell growth or increased cell degradation, and have been shown to occur in 

human tumors, as well as in animal tumor models and cell lines. For instance, actively 

proliferating cultures show dramatically lower PCho/PEth as compared to stationary 

cultures (Aiken and Gillies, 1996). Gillies et al., found that PCho levels are lowest, and PEth 

levels are highest in non-proliferating cells and concluded there is a decrease in the 

biosynthesis of PCho concomitant with a reduction in culture growth (Gillies et al., 1994b). 

Mahmood et al., found a strong radiation dose-dependent response in the relative 

PCho/PEth ratio, suggesting that changes in the PCho levels may be related to cell 

proliferation and/or radiation-induced membrane damage (Mahmood et al., 1994). Aiken et 

al., suggested that growth stimulation in rat-2 fibroblasts increases phosphomonoesters 

suggesting that growth stimulation increases PCho levels (Aiken et al., 1996). Together, 

these data suggest the hypothesis that PCho, which can be measured with either 

phosphorous or proton MRS, is elevated in actively proliferating cells. Indeed, in vivo proton 

MRS studies suggest the Cho peak reflects proliferative activity in gliomas (Shimizu et al., 

2000; Tamiya et al., 2000). Furthermore, PCho concentration correlates with the number of S-

phase cells, with depletion corresponding to growth arrest (Smith et al., 1991), and the 

PCho/GPC ratio corresponding to oncogenic transformation (Bhakoo et al., 1996). Also, the 

PCho-produced Cho signal has been proposed to also depend on local cellularity (Chang et 

al., 1995; Miller et al., 1996b). Recently, using a high-resolution magic angle spinning proton 

MRS technique, it has been shown that PCho levels in glioblastoma multiforme correlate to 

the percentage of highly cellular malignant glioma (Cheng et al., 2000b). Also, altered 

phospholipid metabolism, such as PCho and GPC accumulation, has been reported to reflect 

early stages of growth arrest or apoptosis (Smith et al., 1991). In addition, GPC levels were 

found to increase in cultured mammalian cells exhibiting perturbed energetic metabolism 

during acidosis (Galons et al., 1995). In general, the consensus is that tissues with high 

proliferative potential or tissues that are oncogenically transformed are also highly cellular 

in the absence of compensating apoptotic mechanisms or limitations of vascular supply. 

Consistent with this, many studies strongly have suggested that the Cho peak detected by in 

vivo MRS may be elevated because the volume of interest is highly cellular (Chang et al., 

1995; Miller et al., 1996b; Cheng et al., 2000b) or includes cells with high PCho which may be 

due to increased proliferative potential (Daly et al., 1987; Daly and Cohen, 1989; Gillies et al., 

1994a; Mahmood et al., 1994; Aiken and Gillies, 1996; Aiken et al., 1996) or includes cells 

which are oncogenically transformed (Bhakoo et al., 1996; Aboagye and Bhujwalla, 1999; 

Ackerstaff et al., 2001). It was recently reported that in ex vivo high resolution MR spectra 

(which show much higher than the spectra obtained in vivo) of a biopsy from a cerebellar 

primitive neuroectodermal tumor, myo-inositol, taurine and phosphorylethanolamine 

contribute to the in vivo signal at 3.2 ppm, usually attributed to Cho-containing compounds 

(Tugnoli et al., 2001).  
Cancer cells are apoptotic, and thus typically die upon conventional chemotherapy, 
radiation (Thompson, 1995) and experimental approaches such as antiangiogenic 
(Holmgren et al., 1995) and ganciclovir treatments (Freeman et al., 1993; Wei et al., 1998). 
Recently, it was shown that in vivo proton MR spectroscopy detects a substantial 
accumulation of polyunsaturated fatty acids associated with gene therapy-induced 
apoptosis (Hakumaki et al., 1999). Furthermore, PCho depletion, a major constituent of the 
Cho peak detected in vivo in tumors, coincides with growth arrest (Smith et al., 1991). 
Therefore, facilitation of apoptosis by selective chemotherapeutic agents or gene therapy 
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could be a future strategy for human cancer treatment (Thompson, 1995). It has also been 
 

 

Fig. 1. MR imaging and MR spectroscopy in a 4-year-old boy with a large posterior fossa 
anaplastic ependymoma. A, Axial T2-weighted MR image shows a large cystic posterior 
fossa tumor. B and C, Two contiguous axial T1-weighted MR sections after injection of 
contrast material show a large cyst and nonhomogeneous enhancement. Rectangles indicate 
the volume selected for MR spectroscopy. D–G, Composite images represent Cho (D), NAA 
(E), tCr (F), and lactate/lipids (G) metabolite distributions (rectangles) superimposed on the 
T2-weighted MR images. Increased brightness corresponds to higher metabolite levels and 
decreased brightness to lower levels. In D, F, and G, the T2-weighted image contrast has 
been reversed so that the tumor is dark and does not interfere with the intensity of the 
metabolite image. Note that the cyst (clearly seen as a dark region in B) corresponds to low 
or no NAA and high lactate/lipids, which suggests that lactic acid has been concentrated in 
the cyst. D shows two regions of high Cho corresponding to the solid portion of the tumor. 
H, The spectral grid has been superimposed on a zoomed T2-weighted image. The metabolic 
heterogeneity of the tumor as depicted by multivoxel MR spectroscopy is illustrated. I and J, 
Histologic sections show certain regions of the tumor are “typical” ependymoma (I), 
whereas other regions had more anaplastic features, including increased cellularity (J). 
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 inferred that prior to volume loss, the treatment response is associated with an increase in 
tissue water diffusion and T2 relaxation time (Poptani et al., 1998), which suggests increased 
water content and bulk diffusibility. Also, reduced diffusion of Cho-containing compounds 
in gliomas undergoing apoptosis has been reported (Hakumaki et al., 1998). These 
observations imply an increased viscosity and restriction within cells, to reflect cell 
shrinkage. Also, flow-cytometric studies demonstrate that gene therapy-induced apoptosis 
(Freeman et al., 1993) is preceded by an irreversible arrest in the late S- or G2-plase of the 
cell cycle (Wei et al., 1998). The MRS-visible lipids not only correlate with apoptosis or 
necrosis (Cheng et al., 2000a; Tugnoli et al., 2001), but also with the proportion of cells in 
these S- or G2 stages (Veale et al., 1997). Finally, the ceramide resonance region has been 
associated with the differential diagnosis of high and low malignancy of brain gliomas 
(Lombardi et al., 1997). This observation deserves further investigation, since apoptotic 
stimuli such as ceramide, a second messenger related to apoptosis, disrupt electron 
transport in mitochondria (Kyriakis and Avruch, 1996; Susin et al., 1997; Kolesnick and 
Kronke, 1998; Schwandner et al., 1998; Williams et al., 1998; Yasuhara et al., 1999), which 
acts as an important site for apoptosis initiation (Ashkenazi and Dixit, 1998; De Laurenzi 
and Melino, 2000; Tournier et al., 2000).  

4. Methodology for acquiring proton MRSI data in the clinical setting 

It is important to note that the methodological aspects of MRSI are not standardized and 
may vary among investigators or clinical sites. Typically, for MRSI, a large volume of 
interest can be selected and then phase encoding is applied to obtain multiple voxels in a 
single plane (Tzika et al., 1997) or in three-dimensions (Nelson et al., 1997c; Vigneron et al., 
2001b). The advantage of obtaining multivoxel data is that it is possible to observe not only 
heterogeneity within the lesion but to examine surrounding tissue that may appear normal 
on MR images. This provides a reference for comparing metabolite levels in the tumor and 
makes it possible to identify regions of abnormal metabolism outside the morphological 
lesion (Nelson et al., 1999; Graves et al., 2000; Graves et al., 2001a; Tzika et al., 2002). 
According to our experience with MRSI in children, multilevel two-dimensional MR 
spectroscopy data acquisitions with no gap may be rather used than three-dimensional 
methods. This approach improves the signal-to-noise ratio, because adjustments for 
magnetic field homogeneity and water suppression may be performed in each section; with 
a large volume, these adjustments often fail in the clinical MR setting (Tzika et al., 2002). The 
two most common methods used for volume pre-selection is point-resolved spectroscopy 
(PRESS) (Bottomley, 1984; Bottomley, 1987) or stimulated echo acquisition mode (STEAM) 
(Bruhn et al., 1989), with PRESS being preferred when the echo time allows because of its 
intrinsically higher signal to noise ratio (Tzika et al., 1996b). Briefly, after a 50–100-mL 
volume is selected and after shimming and water suppression adjustments are made, a large 
data set is obtained by using phase-encoding gradients in two or three directions. The 
following parameters may be used for 2 dimensional acquisitions: 1000/65 (TR/TE), 16 X 16 
phase-encoding matrix, 160-mm FOV, section thickness of 10 mm, 1250-Hz spectral width, 
two averages, and 512 points. Using these parameters, data sets of 1–1.2-cm3 resolution are 
acquired. The decision to use a TE of 65 milliseconds may be made for the following 
reasons. If one is not as interested in the lactic acid detection as in the presence of lipids, 
which might be important, because lipids are related to tumor necrosis or apoptosis; this, in 
turn, is a determining factor of tumor activity. Our current notion is that a TE of 65 
milliseconds provides us with the opportunity to 1) null lactic acid; 2) increase sensitivity in 
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lipid detection, and 3) prevent diffusion artifacts and water-suppression failures with PRESS 
performed at TEs shorter than 65 milliseconds. Thus, the four prominent peaks of biologic 
importance in our studies were those of NAA, Cho, tCr, and lipids (and/or lactate).�An 
advantage of the above stated approach is that the volume of interest can be selected to 
eliminate as much of the subcutaneous lipids as possible and to avoid regions likely to cause 
large variations in susceptibility such as the sinuses. This permits improved shimming and 
provides spectra with narrower peaks and higher signal to noise. Fig. 1 shows examples of 
multivoxel spectra from normal brain tissue, necrosis, and different regions from brain 
tumors (Tzika et al., 1997). The normal brain has N-acetylaspartate that is approximately 
twice the intensity of choline and creatine. Tumor generally has decreased N-acetylaspartate 
and increased choline and variable levels of creatine. Peaks corresponding to lipid and/or 
lactate may be present in regions of necrosis (Tzika et al., 1997; Tzika et al., 2002).  
MRSI is more demanding in magnetic field homogeneity than MRI. In many circumnstances 
(e.g. close to the sinus or to cavities of resected tumors, or close to permanent radioactive 
seeds) shimming fails and water and lipid suppression become inadequate compromising 
the quality of the data obtained. Also due to the low spatial resolution of MRSI (about 1-cm3 
per voxel at 1.5 T) the spectra may reveal a mixed metabolic profile of tumor, necrosis, and 
normal brain tissue. Finally MRSI sequences are time consuming because usually they lack 
the most rapid form of gradient spatial enconding, namely the frequency enconding 
performed by the readout gradient. Many new approaches have been developed to improve 
the performance of conventional MRSI (Nelson et al., 1997b). Special alternative 
radiofrequency pulses are able to provide improved spatial and frequency selection (Star-
Lack et al., 1997a; Star-Lack et al., 1997b) and better volume selection can be achieved with 

spatially selective saturation bands (Tran et al., 2000)Multislice and multiple echo time 
techniques (Spielman et al., 1992; Duyn et al., 1993) can be used to acquire multivoxel MRSI 
data in a time efficient manner. Also a fast three dimension multivoxel MRSI can be 
achieved with echo planar methodology with good quality data (Posse et al., 1994; 
Adalsteinsson et al., 1995; Posse et al., 1995). In the future the development of a hybrid 
PRESS-echo planar spectroscopic imaging technique with spatially selective saturation 
bands may speed up MRSI and overcome its present limitations in water suppression, 
volume selection and susceptibility artifacts (Nelson, 2003).   

5. Processing and analysis of proton MRS data in the clinical setting 

The processing and analysis of the resulting proton MR spectra combines fourier transforms 

and apodization with automated methods of spectral processing to provide data that can be 

interpreted by visual inspection or quantified to generate maps of the spatial distribution of 

different metabolites (Nelson, 2001). Different MR system manufacturers offer different 

packages for proton MRS analysis. Typically, the data are transferred off-line to the remote 

Sun workstation, converted into a standard data format, fourier-transformed and phased 

using appropriate spectroscopic packages. To reliably and reproducibly quantify in vivo 

spectra, requires removal of baseline components, identification of peaks, and estimation of 

peak parameters, which can be accomplished using several different approaches 

(Barkhuijsen et al., 1985; Hore, 1985; Laue et al., 1985; Nelson and Brown, 1987; Spielman et 

al., 1988; Van der Veen et al., 1988; Derby et al., 1989; Nelson and Brown, 1989). 

Characteristics of the proton MR spectroscopy data that guide the choice of methodology 

are the larger number of spectra that need to be considered, and the need for whatever 
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method is chosen to be robust to differences in signal to noise and peak configurations 

corresponding to different tissue types. Additionally, more sophisticated fitting algorithms 

can be applied to spectra that have sufficient signal to noise for the optimization routines to 

be reliable (e.g., (Provencher, 1993)). The output of the analysis is a number of spatial maps 

of metabolite parameters that can be applied to identify regions of normal and abnormal 

metabolism.  

We have used a software application we have written in IDL that employs the PIQUABLE 
algorithm, which has the advantages (Nelson and Brown, 1987; Nelson and Brown, 1989) of 
being automated, uses non-parametric methods for objective identification of peaks, and can 
remove broad baseline components. This algorithm has been tested using simulated data 
(Nelson and Brown, 1987; Nelson and Brown, 1989) and data from human volunteers and 
patients (Nelson et al., 1997a). We have calibrated our software with simulated spectra, and 
spectra from phantom and patients, to result in reliable and reproducible results, within the 
accuracy of random noise. Additional corrections for spatial variations in intensity caused 
by the data acquisition procedures may also be required if comparing relative intensities of 
metabolites such as choline, creatine, N-acetylaspartate, lactate, and lipid (Nelson, 2001). 
When the PIQUABLE algorithm fails, we use alternative quantitation algorithms (AMARES, 
HLSVD, etc) in the MRUI package. 
Several approaches may be used to display the information from multivoxel MRSI data sets 
and to correlate the anatomy with spatial variations in metabolites, including: (1) A grid 
superimposed on the MR image and plotting of the corresponding array of spectra. This 
approach does not require quantification and can be quickly performed after data collection; 
and (2) Metabolite images formed from arrays of estimated peak parameters. The primary 
resonances of interest are NAA, Cho, tCr, as well as lipid resonances at: 0.9 ppm (methyl 
groups), 1.3 ppm (methylene groups and lactate); 2.8 ppm (bisallylic methylene fatty acids); 
and a resonance at 5.4 ppm which arises from vinyl protons and includes ceramide. In 
addition, other metabolites, such as glutamate, glutamine, -aminobutyric acid, scyllo-
inositol, aspartate, taurine, N-acetylaspartylglutamate, glucose and branched amino acids, 
may be detected (Tkac et al., 2001; Di Costanzo et al., 2003). To visualize the spatial 
distributions that correspond to the metabolites of interest, gray-level images mapping the 
peak area of these metabolites may be obtained; (3) Color metabolite images overlaid on 
gray-level MR images. This aids the estimation of the anatomic correlation of the varying 
levels of color metabolite images; (4) Selected spectra may be extracted from the MRSI data 
sets to be correlated with data from other modalities or with the ex vivo high resolution 
magic angle spinning proton MR spectra of tumor biopsies that correspond to the same 
anatomic location.   

6. Contribution of proton MRSI in clinical tumor grading 

Whether proton MRSI is able to contribute to defining tumor type and grade remains an 

open question. Although elevated Cho and low NAA before therapy may be a reliable 

indicator of pediatric brain tumor malignancy (Sutton et al., 1992; Tzika et al., 1993b; Tzika, 

1995; Byrd et al., 1996b; Tzika et al., 1996a; Tzika et al., 1997; Taylor et al., 1998; Tzika et al., 

2004), the consensus is that proton MR spectroscopy results may not be used alone to 

classify tumors, as some studies have shown considerable overlap in proton MRSI results 

among different tumor types (Warren et al., 2000; Warren, 2004). In our experience, the 

different MR spectral patterns may suggest that proton MRSI can be used to distinguish at 
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least three different tissue compartments —normal, tumor, and necrosis— (Naidich, 1995; 

Tzika et al., 1997), whereas mixed MR spectral patterns were due to the known 

heterogeneity of tumors, as confirmed by the histopathologic features (Tzika et al., 2002). 

This notion is in agreement with other reports (Ott et al., 1993; Wald et al., 1997; Star-Lack et 

al., 1998; Li et al., 2002). MR spectral patterns with elevated Cho and lipid levels in the 

absence of NAA that are histologically verified to represent regions of active tumor with 

extensive areas of necrosis suggest that such MR spectral patterns contribute additional 

information that is not available with conventional MR imaging. Because glial tumors are 

graded according to their cellularity, proliferative activity, and degree of necrosis, Cho 

mapping (increased cellularity and proliferative activity), may contribute added value to 

MR neuroimaging in patients with brain tumors, especially when it is combined with lipid 

mapping (necrosis and/or apoptosis). Indeed, contrast-enhancing regions with high lipid 

levels and low or no Cho levels, as shown in 11 patients with malignant or inoperable 

tumors, have been suggested to represent areas of high neoplastic potential intermingled 

with microscopic necrosis; this finding was verified at biopsy (Tzika et al., 2002). Low-grade 

tumors not enhancing on the T1-weighted Gd-enhanced images exhibit prominent peaks 

corresponding to Cho; although tCr and NAA peaks are occasionally detected the absence 

of lipids and or lactate is demonstrated (Fig 2).  
A successful classification of pediatric patients with posterior fossa tumors was published 
by Arle et al., (Arle et al., 1997) using single voxel proton MR spectroscopy and a computer-
based neural network. The network combined MR spectroscopy data (ratios of N-acetyl-
aspartate, choline, and creatine) with 10 characteristics of tumor tissue obtained from MR 
images, as well as tumor size and the patient's age and sex, and improved diagnostic 
accuracy by identifing 95% of the tumors correctly. However, given the differences in spatial 
extent of tumors, the question arises as to whether the single voxel MR spectroscopy is able 
to contribute to defining tumor type and grade. To this end, an excellent classification of 
adult patients with brain tumors was reported by Preul et al., (Preul et al., 1996) who used 
two-dimensional proton MRSI and a multivariate pattern recognition analysis of peaks 
corresponding to choline, creatine, N-acetylasparate, lactate, lipid, and alanine. Grade 2 
gliomas tended to have low lactate and lipid, some N-acetylaspartate, and some creatine. 
Grade 3 gliomas tended to have low lactate and lipid, less N-acetylaspartate and creatine, 
with higher choline. Grade 4 gliomas tended toward high lactate and lipid, with very low N-
acetylaspartate. Upon visual inspection of spectral patterns and metabolite levels in each 
class, it was clear that meningiomas were distinguished as they were the only lesions that 
had alanine. Although these results were very promising, there has not yet been a 
prospective study using the statistical classification that these authors derived. One of the 
complications in analyzing data obtained with a multivoxel data acquisition technique is in 
determining which spectrum to consider for each lesion. Suggestions that have been made 
include using the most abnormal voxel and the average of all voxels within the lesion. Both 
of these approaches involve a subjective decision that takes the anatomical appearance of 
the lesion into account. For example, does the lesion include the entire T2 abnormality or is 
it restricted to the enhancing volume. As seen in the study by Li et al., the spectral 
characteristics of these regions may be quite different (Li et al., 2002). The same issue is 
present with single voxel analysis, but in that case, the decision is made implicitly at the 
time of data acquisition by the choice of the selected volume. The studies from Dr. Nelson’s 
group at UCSF have suggested that although it may be possible to detect mean differences 
between populations of gliomas with different grades based upon metabolite levels, there is 
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considerable overlap, both for mean metabolite levels or for the most abnormal voxels 
within the T2 lesion (Li et al., 2002).  
 

 

Fig. 2. Axial FLAIR, T2-weighted (T2W), and T1-weighted Gd-enhanced (T1WGd) MR 
images and selected proton MR spectra from a multivoxel MR spectroscopic data set in a 10-
year-old girl with a cerebellar tumor. The lesion appears inhomogeneously hyperintense on 
the FLAIR and T2-weighted images and is not enhancing on the T1-weighted Gd-enhanced 
image. Prominent peaks corresponding to Cho are detected. Also, tCr and NAA peaks are 
occasionally detected. The Figure illustrates that no relationship existed between Cho 
detection and contrast enhancement on T1-weighted Gd-enhanced images and that spectral 
patterns devoid of lipid and/or lactate peaks are characteristic of low grade tumors. . 

In our experience, information such as relative cerebral blood volume or apparent diffusion 

coefficient may also help in grading tumors and in distinguishing between tumors and other 

types of mass lesions (Tzika et al., 2003). Because brain tumors can be characterized 

according to their physiological parameters, including proton MR spectral metabolites 

(NAA, Cho, tCr, L), hemodynamic indices (i.e., rCBV) and physicochemical measures (ADC) 

the notion is that relationships among these parameters may reflect the biochemical state of 

tumors and this notion was supported by our findings so far (Tzika et al., 2003). Finally, age 

and tumor location in addition to anatomic factors seem likely to be relevant for 

classification and that which ever procedure is considered should ensure that the influence 

of all factors explicitly considered in the analysis.  
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7. Clinical role of proton MRSI in predicting response to therapy 

A number of studies suggest that proton MRS spectroscopy promises an early prediction of 

whether a lesion has responded to therapy (Byrd et al., 1996a; Lazareff et al., 1998; Warren et 

al., 2000; Tzika et al., 2001; Tarnawski et al., 2002; Tzika et al., 2004). In a study involving 75 

children with brain tumors, Byrd et al., found elevated Cho and elevated lactate and or 

lipids (Byrd et al., 1996a), which agrees with our data and data in adults. Another study 

involving 11 pediatric patients with low-grade gliomas, the tumors that progressed during a 

2-year period displayed higher normalized Cho than those that remained stable (Lazareff et 

al., 1998). Warren et al., found in 27 children with recurrent or progressive tumors that the 

maximum tumor Cho:NAA ratio was predictive of outcome; Cho:NAA greater than 4.5 

correpsonded to survival time of 22 weeks and all 13 patients died by 63 weeks; Cho:NAA 

less or equal to 4.5 corresponded to more than 50% survival at 63 weeks (Warren et al., 

2000). Since proton MR spectroscopy detects total creatine (creatine, phosphocreatine; tCr) 

in addition to Cho and NAA in tumors, we hypothesized that we might be able to use 

proton MRSI to measure tCr to predict treatment response of pediatric brain tumors. To this 

end, 24 patients aged 10 months to 24 years were studied using MRI and point-resolved 

spectroscopy (PRESS) with volume preselection and phase encoding in 2-dimensions on a 

1.5-T MR imaging system (TR-2000ms; TE-65ms). Multiple logistic regression was 

performed to establish the independent predictors of active tumor growth. Biologically vital 

cellular metabolites such as tCr, N-acetyl-aspartate (NAA), choline-containing compounds 

(Cho), and lipid or lactate (L), were seen to differ between tumor and control tissues (P< 

0.05). Brain tumors (n=8), while responding to treatment (radiation or chemotherapy), 

exhibited decreased Cho (P=0.05), increased tCr (P=0.02), decreased NAA (P=0.50), and 

decreased L (P=0.04) when compared to untreated tumors (except surgery) or to tumors not 

responding to treatment (n=16), although the only significant independent predictor of 

active tumor growth was tCr (P<0.01). We concluded that Cho was the strongest metabolite 

signal detected in tumors, and tumor tCr was the only independent predictor of active 

tumor growth, and suggested that tCr is biological important metabolite useful in brain 

tumor assessment (Tzika et al., 2001). Other investigators have used other metabolite ratios 

such as lactate/NAA ratios to evaluate the prognostic value of MRS in brain tumors; for 

lactate/NAA ratios greater than 2.0 have been associated with 1-year survival rate of 20%, 

whereas for lactate/NAA values less than 2.0, the 1-year survival rate was 85% (Tarnawski 

et al., 2002).  

In our experience, percent change in Cho/NAA is the most promising prognostic index in 

children with brain tumors (Tzika et al., 2004). From the serial proton MRSI exams of 27 

children with neuroepithelial tumors we calculated and plotted the maximum percent 

change in Cho/NAA ratios versus clinical outcome. Each exam was rated either as stable or 

as progressive disease, according to the evaluation of the clinical oncologist who was 

blinded to the MRSI results. We used the Mann-Whitney U-test (since the Kolmogorov-

Smirnov test detected significant skewness) and our results showed that percent change in 

Cho/NAA is significantly higher in the progressive (n = 18) as compared to the stable (n = 

32) disease group (P < 0.001). Logistic regression confirmed that percent change in 

Cho/NAA is an important predictor of tumor progression (likelihood ratio test = 33.4, P 

<0.001). Using a 20% increase as a cutoff, Cho/NAA correctly classifies 16 out of 18 
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progressing cases (sensitivity = 0.89, 95% confidence limits = 0.65 – 0.99) and 27 out of 32 

stable cases (specificity = 0.88, 95% confidence limits = 0.71 – 0.97). The odds of tumor 

progression are estimated to be approximately 55 times higher for cases showing at least a 

20% change in Cho/NAA (odds ratio = 55.1, 95% confidence interval = 9.2 to 140.3). We also 

found significant differences between progressing and stable outcomes with respect to 

Cho/ntCr (progressing: median = 2.03, range 0.83 to 3.17; stable 1.53, range 0.74 to 6.81, P = 

0.03). Furthermore, significant differences are seen between progressing and stable 

outcomes in percent change of Cho/ntCr (progressing: median +63%, range -14% to +140%; 

stable: median +9%, range -57% to +166%, P = 0.04).  

For proton MRSI to be included in the clinical management of the patient it is important that 

MRSI improves the assessment of pediatric brain tumors by adding independent 

information regarding tumor involvement. For instance, if it were possible for proton MRS 

to assist in defining tumor borders since in gadolinium-enhanced MR images the relation 

between tumor cell extent and contrast-enhanced regions is unclear, it would allow 

modifying an ineffective treatment strategy before the tumor progresses further. To this end, 

we analyzed MRI and MRSI data in 31 children with brain tumors and we found that tumor 

spectral patterns were detected in tumor regions and outside enhancing tumor beds in 

patients with clinical progression; these were confirmed at neuropathologic analysis. This 

study demonstrates the importance of mapping out both the temporal and spatial 

distribution of metabolite changes in response to the therapy of interest. Such mapping 

requires the use of two or three-dimensional proton MRSI and is most easily achieved for 

the case of focal therapies such as surgery or radiation. The incorporation of multiple 

imaging modalities into therapy planning offers the potential to improve identification of 

regions of pathology. To this end, multiparametric and/or multimodality imaging has been 

proposed (Graves et al., 2001b; Tzika et al., 2003). Registration of the MR images and proton 

MRS data are critical for correlating data from such examinations. To this end excellent 

results from the studies in adults undergoing brain tumor therapy at the University of 

California San Francisco have been already reported (Wald et al., 1997; Dowling et al., 2001; 

Graves et al., 2001a; Graves et al., 2001b). In our opinion, multivoxel proton MRSI is more 

powerful than conventional or some of the recently promising types of MRI such as 

perfusion MRI for prediction of tumour behaviour (Tzika et al., 2004). Although proton 

MRSI generally agrees with perfusion MRI (Fig. 3), it may be superior to perfusion MRI in 

the case where perfusion MRI is limited (Fig. 3).  

8. Clinical relevance of proton MRSI 

The therapeutic approach to pediatric patients with malignant brain tumors is multifaceted 

and takes into account the location and resectability of the tumor, as well as the patient’s age 

(Allen and Siffert, 1997). Surgery continues to be the treatment of choice for most patients, 

although overall effectiveness is often limited by disease dissemination or primary location 

(Mickle, 1997; Tomita, 1998). Radiation therapy has a documented role in the treatment of 

children with brain tumors (Buatti et al., 1997; Kalapurakal and Thomas, 1997), although 

most high-grade glial tumors show only temporary responses. Furthermore, the deleterious 

effects of radiation therapy on the developing nervous system often prevent the use of this 

modality. Finally, effective chemotherapy has been predominantly observed in neural 
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Fig. 3. Baseline magnetic resonance (MR) images and MR spectroscopic imaging (MRSI) (a– 
d) and 1-month follow-up MR images (e,f) from a female patient age 13 years with an 
anaplastic ependymoma during therapy. Gadolinium (Gd)-enhanced, T1-weighted 
(T1WGd) MR image (a) after Gd injection shows a region of enhancement within the left 
frontal lobe that is hyperintense on T2-weighted (T2W) image (b) and hypointense on a 
relative cerebral blood volume (rCBV) image (c). These findings may suggest tumor 
recurrence or radiation necrosis. The MRSI image (d) distinguishes radiation necrosis from 
tumor recurrence (middle voxel with a prominent choline [Cho] peak at arrow) and 
predicted tumor progression, which was evident on the T1WGd and T2W MR images (e,f) 1 
month later. The rCBV image in c does not illustrate true relative tumor blood volume 
values, because the rCBV quantitation failed in the tumor region (most likely because of the 
leaky vasculature of the tumor), which is a limitation of the perfusion technique. 

 tumors and low-grade gliomas, but not in patients with high-grade glial or 

recurrent/progressive disease (Kedar, 1997). Given the difficulties inherent with sequential 

biopsy to monitor response to therapy in children with brain tumors, non-invasive and non-

irradiating imaging methods are needed to provide additional diagnostic and/or prognostic 

indices or biomarkers beyond simple tumor volume measurements. Moreover, an important 

unresolved issue in brain tumor therapy is that dying or necrotic tissue within the CNS is 

difficult to differentiate from viable recurring tumor (Nelson et al., 1997a). By both clinical 

and standard CT or MRI scan criteria, necrosis or recurring tumor can appear to be identical. 

In time, tumor cell death will resolve, and thus the capability to differentiate between 

growing tumor and necrotic tissue at an early point in time is of great importance for both 

patient management and access to the biologic activity of tumorigenesis inhibitors or 

chemotherapeutic drugs. Advanced neuroimaging MR techniques, such as proton MRSI, 
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promise to help differentiate between these two entities at an early stage. Also, the spatial 

extent of the metabolic lesion by MRS is different from the gadolinium-enhancing region 

and hyperintensity on T2-weighted images (Tzika et al., 2002). Since there is such a 

distinction there may be added value for the proton MRSI data over and above conventional 

MRI. More importantly, the general consensus is that proton MRSI might be able to make an 

early prediction of whether a lesion has responded to therapy (Byrd et al., 1996a; Lazareff et 

al., 1998; Warren et al., 2000; Tzika et al., 2001; Tarnawski et al., 2002; Tzika et al., 2004). If 

this were possible, it would allow tailoring therapy to each individual patient and 

modifying an ineffective treatment strategy before the tumor progresses. It would also be 

possible to avoid giving unnecessary treatment in the case that an increase in tumor volume 

is attributable to treatment-induced necrosis as opposed to recurrent or residual tumor. 

9. Conclusion 

Although the clinical relevance of proton MRSI has not been decided yet, in our opinion, it 
is clear that proton MRSI improves the assessment of pediatric brain tumors by adding 
independent biochemical information regarding tumor type or grade, tumor involvement 
and by depicting residual or recurrent tumor outside the gadolinium-enhancing tumor bed. 
More importantly it is an invaluable adjunct to MRI and other modalities. To this end, it 
may provide biomarkers predicting tumor response earlier than conventional MRI. We 
believe that in the near future, and since higher field MR systems have been approved by 
the FDA and are being introduced in the clinical setting high-field, higher resolution proton 
MRSI, will provide unique biomarkers regarding brain tumor biochemistry in inoperable 
tumors and, might complement neuropathology, guide biopsies and monitor the success 
and failure of therapy, for operable brain tumors. Correlative studies with genomic 
biomarkers will strengthen the biological and clinical relevance of proton MRS.  
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