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3D Tumor Segmentation from Volumetric Brain 
MR Images Using Level-Sets Method 

Kamel Aloui and Mohamed Saber Naceur  
National Engineering School, LTSIRS Laboratory – Tunis 

Tunisia 

1. Introduction  

1.1 Statement of the problem 
Segmentation in volumetric images is a tool allowing a diagnostics automation and as well 
will assist experts in quantitative and qualitative analysis. It’s an important step in various 
applications such as visualization, morphometrics and image-guided surgery. In the context 
of neuro-imaging, brain tumor segmentation from Magnetic Resonance Images (MRI) is 
extremely important for treatment planning, therapy monitoring, examining efficacy of 
radiation and drug treatments and studying the difference between healthy subjects and 
subjects with brain tumor. The task of manually segmentation of brain tumor from MR 
images is generally time-consuming and difficult. Anyway, the task is done by marking by 
hand the tumor regions slice-by-slice which generates set of jaggy images, so the 
practitioner is confronted with a succession of boundary which he mentally stacked up to be 
made a 3D shape of brain tumor. This shape is inevitably subjective and becomes infeasible 
when dealing with large data sets, also there is losing of information in the third dimension 
because is not taken into account in the segmentation process. All this, affect the quality and 
accuracy of clinical diagnosis. An automatic or semi-automatic segmentation method of 
brain tumor that takes entire information within the volumetric MR image into account is 
desirable as it reduces the load on the human raters and generates optimal segmented 
images (Wang & al., 2004), (Michael & al., 2001), (Lynn & al., 2001). Specially, automatic 
brain tumor segmentation presents many challenges and involves various disciplines such 
us pathology, MRI physics and image processing. Brain tumors are difficult to segment 
because they vary greatly in size and position, may be of any size, may have a variety of 
shapes and may have overlapping intensities with normal tissue and edema.  This leads to 
numerous segmentation approaches of automatic brain tumor extraction. Low-level 
segmentation methods, such as pixel-based clustering, region growing, and filter-based 
edge detection, requires additional pre-processing and post-processing as well as 
considerable amounts of expert intervention and a priori knowledge on the regions of 
interest (ROI) (Sahoo & al., 1988). Recently, several attempts have been made to apply 
deformable models to brain image analysis (Moon & al., 2002). Indeed, deformable models 
refer to a large class of computer vision methods and have proved to be a successful 
segmentation technique for a wide range of applications. Deformable models, on the other 
hand, provide an explicit representation of the boundary and the ROI shape. They combine 
several desirable features such as inherent connectivity and smoothness, which counteract 
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noise and boundary irregularities, as well as the ability to incorporate knowledge about the 
ROI. However, parametric deformable model must be re-parameterized dynamically to 
recover the object boundary and that has difficulty in dealing with topological adaptation 
such as splitting or merging model parts. A level-Sets deformable model, also referred to as 
a geometric deformable model, provides an elegant solution to address the primary 
limitations of parametric deformable models (Taheri & al., 2009), (Taheri & al., 2007), 
(Lefohn & al., 2003). These methods have drawn a great deal of attention since their 
introduction in 1988. Advantages of the contour implicit formulation of the deformable 
model over parametric formulation include: no parameterization of the contour, topological 
flexibility, good numerical stability and straightforward extension of the 2D formulation to 
n-D.  

1.2 Outline of our method 
In this work, we describe various segmentation tools for segmenting brain tumor from 

volumetric MR images based on Level-Sets method. Figure 1 shows a general diagram of 

developed segmentation tools. We develop a first technique of brain tumor segmentation by 

stacking a sequence of 2D tumor contours, detected by 2D level-Sets method in the parallel 

cross-sectional MRI images. It consists on applying to each brain MRI slice the 2D level-Sets 

method and to propagate the result by taking as initial data the result of the preceding slice. 

The first approach is similar to an expert reasoning. This approach has several advantages 

such as simplicity to implement; it is fast, it requires less time than manual segmentation but 

it has a major disadvantage : the information loss because the third dimension is not taken 

into account. However, an evolution was necessary to the glance of its defects. The second 

and third developed approaches come to improve segmentation quality, based on carry out 

the computation in 3D space and detect the 3D tumor surface directly using 3D level-Sets 

method. In the second approach the 3D level-sets model evolves according to information 

related to contours on IRM volume. The third proposed method is similar to the 

segmentation with a deformable model with two phased image. Explicitly no need for 

gradient information, the level-Sets model evolves according to related regions information 

in the volumetric MR image. 

In order to evaluate the proposed segmentation tools, MRI volumetric images have been 

used. They can be downloaded from the well known MeDEISA database « Medical 

Database for the Evaluation of Image and Signal Processing Algorithms », (MeDEISA, 2010).  

1.3 Structure of the chapter 
This chapter is organized as follows:  

 In the next section, we present the level-Sets formulation and principal steps of the 

segmentation algorithm.  

 In Section 3, 3D brain tumor segmentation by stacking a sequence of its 2D contours is 

described. For this purpose, 2D level-Sets method is required to detect tumor contours 

in the parallel cross-sectional MRI images.  

 In section 4, we present 3D brain tumor segmentation using volumetric approaches 

based on boundary and region information on volumetric MRI data to check the 

deformable surface propagation. 

 Finally, a summary and discussion related to this work are given in section 5. 
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Fig. 1. General diagram of developed segmentation tools for segmenting 3D brain tumor 
from volumetric MR images based on Level-Sets method. 

2. Level-set method: Presentation 

In this Section, we describe a modeling technique based on a level-Sets approach for 
recovering shapes of objects in two and three dimensions. The modeling technique may be 
viewed as a form of active modeling such as “snakes” (Kass & al., 1988) and deformable 
surfaces (Terzopoulos & al. 1988). The model which consists of a moving front, until is 
plated on the desired shape, by externally applied stop criteria synthesized from the image 
data (Fig. 2.). Specially, deformable models are curves or surfaces defined in a digital image 
that can move under the influence of external and internal forces. External forces, which are 
computed from the image data, are designed to keep the model smooth during 
deformations. The external forces are defined from the deformable curve or surface like 

www.intechopen.com



 
Diagnostic Techniques and Surgical Management of Brain Tumors 

 

120 

curvature in order to move the model to the boundary of a region of interest (ROI) in the 
digital image. Using these two forces, deformable models offer robustness to both image 
noise and boundary gaps, by constraining extracted ROI’s boundaries to be smooth and 
incorporating other prior information about the ROI shape. Moreover, the resulting 
boundary representation can achieve subpixel accuracy which is considered a highly 
desirable property for medical imaging applications. 
 

 
a)   b)   c)  d) 

Fig. 2. Principle of deformable curve in two space dimensions. We show curve evolution in 
time. 

There are basically two types of deformable models:  

 Parametric deformable models (Kass & al., 1988), (Amini & al., 1990), (Cohen, 1991) and 
(McInerney & al., 1995); 

 Geometric deformable models (Caselles & al., 1993), (Milladi & al., 1995), (Caselles & al., 
1995) and (Whitaker, 1994).  

Parametric deformable models represent curves and surfaces explicitly in their parametric 
forms during deformation. This representation allows direct interaction with the model and 
can lead to a compact representation for fast real-time implementation. Adaptation of the 
model topology such as splitting or merging parts during the deformation can be difficult 
using parametric models. However, geometric deformable models can handle topological 
changes naturally. These models, based on the theory of curve evolution (Sapiro & 
Tannenbaum, 1993), (Kimia & al., 1995), (Kimmel & al., 1995), (Alvarez & al., 1993) and the 
level set method (Osher & Sethian, 1988), (Sethian, 1999) represent curves and surfaces 
implicitly as a level-Sets of a higher-dimensional scalar function. Their parameterizations 
are computed only after complete deformation, thereby allowing topological adaptively to 
be easily accommodated. Despite this fundamental difference, the principles of both 
methods are very similar. Level-Sets method as a geometric deformable model; provide an 
elegant solution to address the primary limitations of parametric deformable models. In 
particular, curves and surfaces move using only geometric measures and other prior 
information from the image data to recover ROI boundaries.  
In this section, we first review the fundamental concepts in curve evolution theory and the 
level-Sets method. 

2.1 Curve evolution theory 
The purpose of curve evolution theory is to study the deformation of curves using only 
geometric measures such as the curvature and the unit normal. Let us consider a moving 

curve  t , where t  represents the time;  

The evolution of the curve along its normal direction can be characterized by the following 
partial differential equation (Fig. 3.): 
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NkF
t

   (3) 

Where: 

 N denote inward unit normal; 

 k  is the curvature. 
Where F  is called speed function, since it determines the curve evolution speed. We note 
that a curve moving in some arbitrary direction can always be reparameterized to have the 
same form as Eq. 3 (Kimia, 1990). The intuition behind this fact is that the tangent 
deformation affects only the curve’s parameterization, not its shape and geometry. 
 
 

 
 

Fig. 3. Curve moving in the normal direction. 

The most extensively studied curve deformations are constant deformation and curvature 
deformation. Constant deformation is given by: 

 






NV
t

0
  (4) 

Where 
0V is a coefficient determining the speed and direction of deformation (shrinks or 

expands). Constant deformation plays the same role as the pressure force in parametric 
deformable models.  
Curvature deformation is given by the so-called geometric heat equation (Osher & Sethian, 
1988): 

 






Nk
t

    (5) 

Where  is a positive constant. This equation will smooth a curve, eventually shrinking it to 

a circular point (Grayson, 1985). The use of the curvature deformation has an effect similar 
to the use of the elastic internal force in parametric deformable models. 
The properties of curvature deformation and constant deformation are complementary to 
each other. Constant deformation can create singularities from an initially smooth curve 
while curvature deformation removes singularities by smoothing the curve. 
The basic idea of the geometric deformable model is to couple the speed of deformation 

(using curvature and/or constant deformation) with the image data, so that the evolution of 

the curve stops at ROI’s boundaries. The evolution is implemented using the level-Sets 

method.  
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2.2 Level-Sets method: Basic algorithms 

We now review the level-Sets method for implementing curve evolution. The level-Sets 

method is used to account for automatic topology adaptation, and it also provides the basis 

for a numerical scheme that is used by geometric deformable models. The level-Sets method 

for evolving curves is due to Osher and Sethian (Osher & Sethian, 1988), (Sethian, 1985) and 

(Sethian, 1989). The interface  bounds a (possibly multiply connected) region  . The goal 

is to compute and analyze the subsequent motion of  under a velocity field F . This 

velocity can depend on position X  (Where  yxX , in tow space dimensions or 

 zyxX ,,  in three space dimensions), time, the geometry of the interface and the 

external physics. The interface is captured as the zero level-Sets of a smooth function: 

  tX , , i.e.,     0,  tXXt    (6) 

  is positive inside  , negative outside   and is zero on  t , has the following 

properties: 

 
 
 

   











TXfortX

XfortX

XfortX

0,

0,

0,








 (7) 

Thus, the interface is to be captured for all later time, by merely locating the set  t  for 

which   vanishes. 

We note that the only purpose of the level-Sets function is to provide an implicit 

representation of the evolving curve and the topological merging and breaking are well 

defined and easily performed. Instead of tracking a curve through time, the level-Sets 

method evolves a curve by updating the level-Sets function at fixed coordinates through 

time. A useful property of this approach is that the level-Sets function remains a valid 

function while the embedded curve can change its topology.  The motion is analyzed by 

convecting the   values (levels) with the velocity field F . This elementary equation is: 

   0

 


kF

t
   (8) 

Where   denotes the gradient of  . 

Here F  is the desired velocity on the interface, and is arbitrary elsewhere. 
Actually, only the normal component of F  is needed. The inward unit normal to the level-
Sets curve is given by: 

 









N      (9) 

Then 

    









kFkFN
   (10) 
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Accordingly, Eq. 8 becomes 

   0

 

kF
t

N
  (11) 

Finally, the curvature k  at the zero level-Sets is given by: 

 

  3
2

22

22
2

yx

xyyxyyxyxx
divk

























  (12) 

2.3 Level-sets: Speed function 
The geometric deformable contour formulation, proposed in (Caselles & al., 1993) and 

(Malladi & al., 1995), takes the following form: 

      





kVIgkF
t

N 0
 (13)    

Where 

  
p

I

Ig
ˆ1

1


    (14) 

Positive 
0V  shrinks the curve, and negative 

0V  expands the curve. The curve evolution is 

coupled with the image data through a multiplicative stopping term  Ig . Where Î  is the 

image corrected by a Gaussian operator and 21 orp  . This scheme can work well for 

objects that have good contrast. However, when the object boundary is indistinct or has 

gaps, the geometric deformable contour may leak out because the multiplicative term only 

slows down the curve near the boundary rather than completely stopping the curve. Once 

the curve passes the boundary, it will not be pulled back to recover the correct boundary. 

2.4 Level-Sets: Numerical implementation 
Various numerical implementations of deformable models have been reported in the 
literature. For examples, the finite difference method (Kass & al., 1988), dynamic 
programming (Amini & al., 1990), and greedy algorithm (Williams & Shah, 1992) have been 
used. In this section, we present the finite difference method implementation for level-Sets 
method as described in (Kass & al., 1988). 

2.4.1 Initialization 

An initial function  0, tX must be constructed such that its zero level-Sets correspond 

to the position of the initial contour or surface. A common choice is to set: 

    xdtX  0,   (15) 

Where  xd  is the signed distance from each grid point to the zero level-Sets. 
For example, when the zero level-Sets can be described by the exterior boundary of a circle, 
the signed distance function can be computed as follows: 
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       ryyxxtyx  2

0

2

00,,      (16) 

 

Where  
000 , yxX   is the center and r  is the radius of the circle. 

2.4.2 Discretization of the motion equation 

Since the motion equation Eq. 13 is derived for the zero level-Sets only, the speed 

function  kF , in general, is not defined on other level-Sets. Hence, we need a method to 

extend the speed function   kF  to all of the level-Sets. A re-initialization of the level-Sets 

function to a signed distance function is often required for level-Sets schemes. 

The discretization of equation Eq. 13 is given as follows; noting  ji, is a position in the tow 

space dimensions image data: 

 n

ijijij

n

ij

n

ij
F

t






1

 (17) 

where : 

 n

ij :  values in position  ji,  at the iteration tn . 
 n

ijij : Spatial gradient approximation space of n

ij  with the finite difference. 
   

ijijijij kFIgF  0
. 

2.4.3 Discretization of gradient 
If the temporal gradient approximation does not pose a problem, it is not the same for the 
spatial gradient. According to the spatial gradient is a factor in the curvature or constant term, 
it takes a different form (Osher & Sethian, 1988), (Malladi & al., 1995) and (Sethian, 1985). 
Indeed, if the curve evolves in various  directions  (eg according to its curvature), there is no 
particular problem. But, if the curve evolves in a given direction (eg. Constant deformation 

0
V ), the choice of the spatial gradient is crucial: if it is calculated on a "simple", it can lead to 

loops formation during the deformation. Once the corner is developed, it is not clear how to 
continue the deformation, since the definition of the normal direction becomes ambiguous 
(Fig. 4.). A natural way to continue the deformation is to impose the so-called entropy 
condition originally proposed in the area of interface propagation by Sethian (Sethian, 1982), 
(Sethian, 1994).  
Since the numerical scheme of the spatial gradient in one space dimension can be written as 
follows:  

 
x

ii

i 


 

2

11 
  (18) 

When, there is a deformation in various directions, (when
i  is the curvature k  factor); 

        2
1

22

0,min0,max
  xixi DD   (19) 

When, there is a constant deformation, (when 
i  is constant deformation 

0V  factor); 
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Where 

  
x

D ii

ix 


  1
   

  
x

D ii

ix 


  
 1  

 
 
 

 
 

Fig. 4. Curve moving in the normal direction with the entropy condition. Deformation 
without entropy condition shows swallowtails and loops during the deformation.  

2.5 Numerical scheme of the motion function 

In this section, we provide a numerical implementation that is adapted from (Sethian, 1999) 

for Eq. 13, in which   and 
0V  are allowed to be functions. The spatial derivatives are 

implemented using a special numerical scheme that can handle the formation of sharp 

corners during deformation. The numerical implementation is given as follows: 
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As it has been specified previously, the level-Sets function evolves using a speed function 
for the zero level-Sets only and using extended speed functions. Accordingly, the level-Sets 
can lose its property of being a signed distance function, causing inaccuracy in curvature 
and normal calculations. As a result, re-initialization of the level-Sets function to a signed 
distance function is often required for these schemes.  
Usually, the distance map is reset using the following equation (Sussman & al., 1997): 

    





1signe
t

    (21) 

Where 
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11

11












si

si

si

signe
 

Since the curve or the surface of ROI is recovred from the zero level-Sets only. We must 
therefore detect the zero values of the function   .We can only detect differences in sign 
between two consecutive points in either direction, horizontal and vertical. The detection of 
points  jiP ,  of zero level-Sets by Malladi (Malladi & al., 1995) is done according to the 
following algorithm:  
Recovering interface algorithm: 
 

Function  isfront  

  ji,  

 if           01,1,1,,,1,,max  jijijiji   

  and  

           01,1,1,,,1,,min  jijijiji   

  or 

     0,max ji  

 then 

    tjiP ,  

 else 

         tjiP ,  
       end 
end 
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2.6 Level-sets: Stop function 

The multiplicative stopping term of the speed function is defined as  Ig  given by eq. 14. It                          

has values that are closer to zero in regions of high image gradient and values that are closer 

to unity in regions with relatively constant intensity.  Î  denotes the image convolved with a 

Gaussian smoothing filter whose characteristic width is  . In some image slices, the 

boundary feature of the tumor is not salient enough and the image gradient information is 

weak. It usually causes the “boundary leaking” problem when we apply the level set 

method to detect the 3D tumor surface. The problem of the Gaussian filtering is the 

smoothing of the entire image, destroys and moves edges. 
 
 

             
(a)    (b) 

Fig. 5. Gaussian filters: destroys and moves edges. (a) Original image, (b) image smoothed 
by a Gaussian filter. 

So we need to limit or prohibit the smoothing operation of the contours in the MR images. 
For this, we must choose a filter aiming at reducing image noise without removing 
significant parts of the image content, typically edges, lines or other details of the  
MR image. The anisotropic diffusion filter proposed by P. Perona and J. Malik (Perona & 
Malik, 1990) meets our needs. The action of such filter is given by the following nonlinear 
equation: 

       tXItXcdiv
t

tXI
,.,

,



   (22) 

That preserves edges and only smooths regions with relatively constant intensity,  tXc , , 

is called conduction coefficient. When the diffusion coefficient is chosen as an edge seeking 

function, the resulting equations encourage diffusion (hence smoothing) within regions with 

relatively constant intensity and prohibit it across strong edges. Hence, the edges can be 

preserved while removing noise from the image. 
An illustration of the action of anisotropic diffusion filter is given by the following figure: 
 

 
(a)   (b)                                            (c) 

Fig. 6. Non linear diffusion filters: Preserves edges. (a) Original image, (b) image smoothed 
by a non linear diffusion filter. 
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The following illustrations (Fig. ) show the variation of the stop function given by the 
equation 14, where we apply a Gaussian filter (a) and where we apply an anisotropic 
filtering (b). 
 

                    
(a)                                                                    (b) 

Fig. 7. Stop function  Ig . (a) Using Gaussian filter, (b) Using an anisotropic diffusion filter. 

3. 3D tumor reconstruction from its 2D contours 

We develop a first technique of 3D brain tumor segmentation by stacking a sequence of 2D 
tumor contours, detected by 2D level-Sets method in the parallel cross-sectional MRI images 
(Fig. 7). It consists on applying to each brain MRI slice the level-Sets method in 2D and to 
propagate the result by taking as initial data the result of the preceding slice. 
  

 

 
 

 

Fig. 8. 3D object reconstruction from its 2D contours. 

The main stages of our algorithms are the following (Fig. 9.): 

 Initialization of a curve around the tumor in the middle cross-sectional MRI images is 
called ‘main slice’ in this work. 

 Run a level-Sets algorithm as it has been specified previously by the equation 20, in the 
main slice. 

 The brain tumor boundary in the main slice is used as initial curve in its tow contiguous 
slices (one upper slice and one lower slice) and so forth. 

 The algorithm stops when all the cross-sectional MRI images are processed. After all 
tumor boundaries are stacked and 3D tumor shape is reconstructed. 

The following figures (Fig. 10. and Fig. 11.) show various views of the surface of the tumor 
obtained by 3D reconstruction of its 2D contours and some projections of 2D tumor contours 
related of somes cross-sectional MRI images. 
This approach is similar to an expert reasoning. This approach has several advantages such as 

simplicity to implement, it is fast, it requires less time than manual segmentation and based on 

2D level-Sets method that has shown robustness in the segmentation of MRI images. 
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(a)                                                               (b) 

Fig. 9. Result of brain tumor segmentation in the middle MRI slice. (a) Initialization or initial 
curve, (b) final boundary of brain tumor. 

 
 

          

Fig. 10. 3D brain tumor surface visualization by stacking of its 2D boundaries. 

 
 

             
(a)                                                    (b)                                                  (c) 

Fig. 11. Result of 2D segmentation: (a) slice 80, (b) slice 75, (c) slice 70. 

4. Volumetric approach 

Despite the advantages cited above related to segmentation based on stacking a sequence of 
2D contours detected in the parallel cross-sectional images, it has many disadvantages: there 
is information loss because the third dimension is not taken into account, broken boundary 
in one slice and overlapping intensities usually lead to poor detected results. This approach 
supposes that the distance between the slices is very small and the reconstruction of the 
surface and its properties from 2D contours may lead to inaccurate results. However, an 
evolution was necessary to the glance of its defects. The following developed approaches 
come to improve segmentation quality, based on carrying out the computation in 3D space 
and detects the 3D tumor surface directly using 3D level-Sets method.  First, the 3D level-
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Sets model evolves according to information related to contours on IRM volume specifically 
the data gradient information. Second, the level-Sets model evolves according to related 
regions information in the volumetric MR image. 

4.1 3D level-Sets method with contours information 
The first stage of this method is to initialize a small sphere around the border of the brain 

tumor. Then the level-Sets model evolves according to information related to edges in the 

volumetric brain MR images. This movement comes to its end when the deformable surface 

found the actual border of the brain tumor. 

3D discrete evolution equation of the level-Sets model is the following: 
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The curvature is given as follows: 
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To stop the evolution of 3D level-sets model in the desired boundaries we used 3D version 

of the anisotropic diffusion filter in order to reduce noise without removing significant parts 

of the brain MRI volume and without evolving the deformable surface toward the brain 

tumor borders.  

We show in the following figure the results of the 3D brain tumor surface reconstruction 

using 3D level-Sets based contour’s information. The following figure shows different stages 

of evolution of the deformable surface until reaching the final surface of the tumor and some 

projections in 2D slices (Fig. 12. and Fig. 13.). 

Segmentation of 3D tumor in MR Images using volumetric approach based on the level-Sets 

as the surface detection mechanism. We note that the main problem with this approach is 

related to leakage or overflow of the deformable surface in regions where overlapping 

intensities are present and that usually leads to poor detected results. 
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Fig. 12. 3D visualization of the surface of the brain tumor: (a) Initialization, (b) Iteration 10, 
(c) itiration 30, (d) iteration 50. 

 

            
(a)                                                (b)                                                  (c) 

Fig. 13. 2D boundary visualization of the brain tumor: (a) slice 80, (b) slice 70, (c) slice 60. 

4.2 3D level-Sets method with regions information 
In the previous approach,the segmentation quality is not good, it means that the gradient 
information which is local information insufficient to control the evolution of the level-Sets 
model. An alternative is to integrate statistical information related to regions in the brain 
MRI volume to improve the quality of brain tumor segmentation. Technically speaking, the 
new proposed method is similar to the segmentation with a deformable model with a two 
phased image (Chan & Vese, 1999). The general principle is based on the evolution of a 
surface   which partitions the volume data into several regions of different statistical 
characteristics. 

(a)
(b)

(c) (d)

www.intechopen.com



 
Diagnostic Techniques and Surgical Management of Brain Tumors 

 

132 

A single deformable surface   allows segmentation into two regions 
in and

out , where 

in  represents the region that circumscribed by the surface and 
out  the outer region 

(Angelini, 2005). The information that controls the evolution of the the new level-Sets model 
is usually based on statistical modelling of the various region in the volumetric data. 

We assume that the image  zyxI ,,  defined on the domain   is composed of two 

homogeneous regions of distinct values 
0I  and 

1I and that the tumor region to detect 

corresponds to the region of intensity
0I  . We denote the boundary of the tumor with 

intensity 
0I  by . For a given surface   of the domain , we consider the following 

energy functional  E : 

       



outin

dcIdcIALE
2

110

2

000     (25) 

Where 
1c and 

2c  are equal respectively to the average value of inside and outside of the 

surface  .  L  and  A  are the regularizing terms corresponding respectively to the 

length of the curve and the area of the object enclosed by the curve. 

21 ,,,   are fixed positive parameters. 

Segmentation of the brain tumor from volumetric MRI image is performed via minimization 

of the energy functional defined in Eq. (26). Minimization of the functional is proceeded 

using a steepest gradient descent on a discrete spatial grid indexed with   3
,, kji  and 

introduction of a temporal index (n) leads to an iterative scheme with the following equation 

of the level-Sets evolution model: 

       2

22

2

11

1 n

ijkijk

n

ijkijk

n

ijk

n

ijk

n

ijk

n

ijk cIcIkt      (26) 

To segment the brain tumor using this approach (Fig. 14.), we initialized an initial surface 

through its boundary. Then this surface evolves until reaching the actual border of the tumor. 

Several criteria can be incorporated to stop the process of segmentation: when the area of the 

deformable surface becomes constant or the volume of the region bounded by the deformable 

surface becomes constant or Energy function  E  reaches its minimum value.  The latter 

criterion is sufficient but it has a problem of computational cost. The convergence of the 

deformable surface to the tumor border implies that the area and the volume of deformable 

surface becomes constant. However, area and volume computational is less. For this, we used 

as a stopping condition, area and volume of the deformable surface at a time. 
We present above a flowchart designed in our research to isolate a brain tumor using level-
Sets method based on region informations: 
This method consists in initializing a small sphere through the border of the brain tumor. 
Then the level-Sets model evolves according to related region information in the image in 
order to plate itself on the surface of the tumor. We show in the following the results of the 
3D reconstruction of the brain tumor surface relayed to this approach. The following figure 
shows different stages of evolution of the deformable surface until reaching the final surface 
of the tumor and some projections in 2D slices (Fig. 15. and Fig. 16.). 
These results show that this approach combine the following advantages: arbitrary 
initialization of the object anywhere in the image, no need for gradient information, self 
adaptation for inward and outward local motion. 
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Fig. 14. Flowchart designed to isolate a brain tumor using the level-Sets method based on 
region informations. 
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Fig. 15. 3D visualization of the surface of the brain tumor obtained by level-Sets method: (a) 
initialization, (b) iteration 80, (c) iteration 180, (d) iteration 300. 

The following representation (Fig. 16) shows the segmentation result on some slicers. 
 
 
 

  
 

(a)                                                (b)                                                   (c) 
 

Fig. 16. Result of 2D segmentation: (a) slice 30, (b) slice 50, (c) slice 70. 

(a) (b)

(c) (d)
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5. Summary and discussion 

Presented research was provided with a general goal to develop 3D segmentation 

algorithms of brain tumor from volumetric MRI images. We have presented a variational 

method, 3D level-Sets applied to automatic segmentation of brain tumor in MRIs, using 

boundary and region based information of tumor to control the deformable surface 

propagation. The first approach used, is the 3D reconstruction from its 2D contours using a 

sequence of 2D contours, detected by 2D level-Sets method in the parallel cross-sectional 

MRI images. This method goes very well but it has two major defects, there is no interaction 

between the slices and surface must be cylindrical. This approach is the most simple that 

one can make. It makes it possible to use active contours in the field 2D method which 

showed its robustness. However, an evolution was necessary to the glance of its defects 

related to the results obtained and the tumor shapes that were being able to be treated. The 

second approach comes to improve the segmentation quality, based on carrying out the 

computation in 3D space and detecting the brain tumor region directly using 3D level-Sets 

method. In the first volumetric approach 3D level-Sets model evolves according to 

information related to contours on IRM volume. In the second level -Sets model evolves 

according to related regions descriptors in the volumetric MR image. Evaluations were 

performed on a set of volumetric MRI images obtained from (MeDEISA) database. 
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