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Modelling of Random Media 
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Ecole Centrale de Marseille/Laboratoire de Mécanique et d’Acoustique, CNRS 

France 

1. Introduction  

Engineering and Nature very often are concerned with media that do contain some 
randomness. One particularly well known example is given by turbulent flows, where 
random fluctuations are the results of the growth of unstable motions from small 
perturbations in the initial or boundary conditions, when the velocity gradients or/and 
temperature gradients are too large in some place within the flow. These fluctuating 
motions result in effective additional friction, effective additional diffusion of species or 
heat, and additional energy dissipation (i.e. transfer from organized kinetic energy to 
turbulent kinetic energy, and finally to internal energy). Another example of random flows 
is seen in two-phase flows, either with particles dispersed into a liquid or gaseous 
continuous phase, or built with a bubbly liquid. Here, a first reason of randomness is given 
by the fact that the locations and velocities of the particles (or bubbles) at initial time and in 
entrance sections cannot be known or controlled, and the induced fluctuations are not 
rapidly damped with time. Generally, this randomness becomes rapidly uncorrelated with 
these initial conditions due to the complex interactions between the flow of the continuous 
phase and the moving inclusions, interactions that modify also the number and sizes of 
these inclusions. Consequently, the flow conditions in both phases are or become 
turbulent, with interconnected fluctuations of velocities.  Again, the effective result of the 
fluctuations is additional friction, additional diffusion or dispersion, and additional 
energy dissipation. Two-phase or multiphase flows with a large amount of solid particles 
are used in the industrial devices called as “Fluidized Beds”, and are encountered 
naturally in “Granular Flows”, and in this case there are many lasting contacts between 
the particles. The so called “Granular Media”, even without actual flow but just with 
some deformations or slow motions, are also subjected to randomness, due to the 
preparation of the medium but also to the differences between the grains shapes, and 
even the global properties of these media are very difficult to predict.  
The properties of these kinds of media and flows have been studied since more than 
hundred years, and very useful prediction methods have been proposed so far, with 
methodologies becoming more and more clearly similar. Although all these media are 
showing clearly irreversible and dissipative processes, the typical reasoning of irreversible 
thermodynamics has never been used, at least explicitly (it might be present, but not 
consciously, in the brain of the authors). Our purpose here is to show that the Irreversible 
Thermodynamics and the “Second Principle” can justify many features of the models that 
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have been proposed until now for these three types of applications. It has to be emphasized 
that Irreversible Thermodynamics deals with the modelling of media in evolution, whatever 
can be this model. The usual model of classical continuous medium, where the randomness 
lies only at the infinitely small scale of moving molecules, is not the only one that can be 
addressed. The so called “Extended Irreversible Thermodynamics” (Jou et al., 2001) allows 
us indeed to build pertinent entropy functions adapted to each type of model, in particular 
depending of the basic variables of the model used, as we will see. 
The first part of this paper deals with classical turbulent flows. The general problem of 
building a model for these flows, i.e. an approximate mathematical representation that could 
give predictions close to experiments, has in practice given rise to several solutions, which are 
valid in different domains, i.e. for different kinds of experimental situations. More precisely, 
the domains of efficiency of the different models appear to be larger and larger for models 
using an increasing number of variables. The basic variables that allow the building of these 
models are “averaged variables” (now precisely defined as statistical mean values), in a finite 
number, and then they do clearly constitute a truncated representation of the medium, but it is 
expected that these variables are sufficient for the purpose of the approximated knowledge 
needed. Some of these variables do satisfy balance equations, which are obtained averaging 
the primitive balance equations of the mechanics of continuous media, but these equations do 
need “closure assumptions” before to be useful in constituting a “Turbulence Model”. Once 
the basic variables are chosen, the “Extended Irreversible Thermodynamics” allow us indeed 
to define an entropy function for this representation of the medium, for each of the models 
proposed. We will see that this entropy function is not the statistical mean value of the classical 
entropy for the fluid used in this turbulent flow, but has to be built taking into account the 
averaged form of the state equations of the fluid. Then, the Second Principle may lead to 
conditions concerning the ingredients of the turbulence model, conditions that are different for 
the different models. We will show that here simply considering two very popular models, 
and we will see that the usual practice does satisfy these conditions. 
The second part of the chapter considers the modelling of two-phase flows. This modelling 
can be attacked with a similar approach and similar tools as turbulent flows: a set of 
averaged variables are defined; balance equations are  written from the primitive equations 
of a piecewise continuous medium and closure assumptions are needed, to be adapted to 
each kind of two-phase flows. Here the closure assumptions are needed for both additional 
dispersion fluxes and exchange terms between the phases. These two-phase flows are again 
associated with irreversible effects, and again the framework of extended irreversible 
thermodynamics helps the modelling. We will recover again assumptions that are used in 
practice and supported by experiments.  
The third part is devoted to granular media, with the same point of view. The approach 
generalizes the case of two-phase flows, because the granular medium is considered as a 
multiphase medium where each grain is considered as one phase, and the fluid in between as 
the last phase (Borghi § Bonelli, 2007). Again, the variables of the model are defined as 
statistically averaged grains phase and fluid phase variables, and their balance equations can 
be found from the primitive equations of mechanics, to be completed with closure 
assumptions. The approach can handle the situations where the medium is “quasi-static” as 
well as the ones where the medium is flowing with large velocities, giving rise to the limiting 
case of “Granular Gases”. In both cases, Extended Irreversible Thermodynamics can be used 
for building entropies and giving closure assumptions, without linear laws in this case 
particularly. The classical models of “Granular Gases” are recovered in the limit of large 
velocities, with the difference that the grain size is not the single length scale to be considered. 
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For quasi-static situations, it is necessary to include in the model the six components of the 
averaged “Contact Cauchy Stress Tensor” of the grains phase. Intermediate situations can be 
handled as well. 

2. Irreversible thermodynamics for turbulent flows models 

Turbulent flows at present time are studied with models of two different types, namely 
Reynolds averaged Navier-Stokes (RANS) models, or Large Eddies Simulations (LES) models. 
We consider here for simplicity the framework of RANS models, although the extension to 
LES models may be not difficult. Then, the object of the study is not one given flowing 
medium, but an infinite number of such media, flowing submitted to initial and boundary 
conditions randomly perturbed. Indeed, what we call “one turbulent flow” is this ensemble of 
similar individual flows, because only statistical mean values calculated from this ensemble 
(or, at best, probability density functions) can be possibly predicted by some model. 
The “mean medium” that is the subject of modelling is then described by “mean velocities”, 
“mean densities”, “mean enthalpy per unit of mass”, etc.. For N realizations, one defines: 

1

1
lim( )( )

N
n

n

N
N 

      

at each given location within the flow field, and similarly for pressure. But in the general 
case where the density of the fluid can vary noticeably, it has been found more interesting to 
consider for other variables the mean value weighted by density, and one defines:  

1 1

lim( )( / )
N N

n n n

n n

v N v 

 
      , 

i.e. the mean velocity is nothing but the mean momentum divided by the mean density. 

Similarly for the internal energy per unit mass (or the enthalpy per unit mass), the mean 

values are weighted with density.  

Within a turbulent flow, these quantities are defined for each location and for each time, and 
vary with the location and eventually with time, but these variations are much smoother 
than the local and instantaneous quantities measured in one single realization of the flow, 
and by definition they are not sensitive to perturbations of initial and boundary conditions, 
that are inevitably present. 

Is it possible to characterize the turbulent medium by , ,e v    only, when a non turbulent 

flow of the same fluid is correctly characterized by , ,e v  ? Of course, the random 

fluctuations do have some influence. However, in some situations, it may be possible to take 

into account this influence by some algebraic formulas in terms of the mean variables and 

their derivatives. Of course, these formulas are only approximations, with a limited domain 

of validity assessed by experiments.  
The first invented turbulence model, called “Prandtl mixing length model”, is of this type, 
and has been very useful in many practical cases. But a larger domain of validity can be 
covered taking into account additional fields variables pertinently chosen, described with 
their own partial differential evolution equations. There are different turbulence models of 
this improved type, the simplest one introduces only as additional field variable the kinetic 
energy of the random turbulent fluctuations, say k , the “length scale” characterizing the 
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two-point correlation of the fluctuations, tl , being given with algebraic formulas. More 
detailed models use k  and  , the dissipation rate of k , described by partial differential 
evolution equations, or  k  and  , a characteristic frequency of turbulence, or the Reynolds 
stress tensor components themselves and   (Schiestel, 2006) .   

2.1 Basic equations 

The physical basic equations corresponding to balance of mass, momentum and total energy 

give birth in any case to balance equations for the mean variables , ,e v   . We write them 

with a tensor notation and the Einstein convention of repeated indices. We assume an 

orthogonal reference frame and then upper or lower indices are equivalent: 

   ( ) 0v
t x





 
   

 
  (1) 

   ( ) ( ' ' )v v v p v v g
t xx

      




  
           

 
    (2) 

   ( ) ( ' )Q
t t te v e j pv v v e v g

t xx

     
 



  
           

 
     (3) 

The total energy here comprises the internal energy, the kinetic energy of the mean motion, 

and the kinetic energy of turbulent fluctuations, so
1 1

' '
2 2

te e v v v v             . We have 

defined 'v v v     , and so ' 0v   . The well known « Reynolds stress tensor » is R  

such that: ' 'R v v 
   . Similarly 'e e e   , but 'p p p  . The “turbulent kinetic energy” 

introduced above is nothing but: 1
' '

2
k v v    . 

From (2) and (1), one obtains the equation for the kinetic energy of the mean motion: 

  / 2 ( / 2) ( ' ' )v v v v v pv v v v v
t xx

          



  
        

 
         

 ( ' ' )
v

p v v v g
x


    





       


   (4) 

Then, from (3) and (4) we have: 

  1
( ) ( ( )) ( ' ' ' ' ' ' )

2
Qe k v e k j pv v v e v v v

t xx

       




  
             

 
     

 ( ' ' )
v v

p v v
x x

 
  

 

 
    

 
 

 (5) 

It is possible also to derive directly from the non-averaged momentum equation a balance 

equation for 1
' '

2
k v v    . That is done by scalar multiplying the instantaneous (non-
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averaged) momentum equation by the velocity in order to obtain an equation for the total 
kinetic energy, and then by subtracting the equation of the kinetic energy of the mean 
motion (4). One gets: 

1
( ) ( ) ( ' ' ' ' ' )

2
k v k v v p v v v

t xx

      



  
       

 
  ' '

' '
v v v

v v p
x x x

  
  

  

  
   

  


 (6) 

From (5) and (6), finally the equation for the internal energy is written: 

   ( ) ( ' )Qe v e j v e
t xx

 




  
     

 
   ' 'v v v v

p p
x x x x

   
 

   

   
     

   
 

 (7) 

The last term 
'v

x







  


 of (6) is called « volumetric rate of dissipation for turbulence », 

due to the viscosity (and   is the rate of dissipation by unit of mass). This term is a transfer 

of energy from k  to e , while the last term of (7) is the dissipation rate of kinetic energy of 

the mean motion, directly from 
1

2
v v   to e . There is in (6) a term corresponding to a 

transfer from
1

2
v v    : the term ' '

v
v v

x


 









is called the production term for k . The terms 

'v v
p p

x x

 

 

 
 

 


 in (7) are also transfer terms from 
1

2
v v    and k , respectively, but these 

terms are reversible, unlike the last terms due to the viscosity. If the medium is 

incompressible (i.e. 0
v

x









), these pressure terms are vanishing. When the velocity of the 

flow is low, very often the two last terms can be neglected in (7) with respect to the heat flux 
term (Chassaing et al., 2002). 

Equations (1) to (3) are able to calculate the mean variables , ,e v    if and only if the turbulent 

fluxes ' 'R v v 
   and ' tpv v v e        , additional to the classical viscous stress and 

heat conduction flux, can be provided by additional closure expressions, based on theoretical 

or empirical grounds. Instead of (3), we can use (7), and the transfer terms from k  to e  are 

also to be modelled. As we have previously said, this needs to take into account additional 

variables that represent in some sense the turbulent fluctuations, and, at least, k is one of these 

new variables. It is seen here that one balance equation for k  can be found, which can be used 

provided again that the correlations involving the fluctuations that appear in this equation can 

be given also by expressions involving only  , ,e v   , k  and eventually other ones…  

The simplest model, the “Prandtl mixing length model”, does not use a balance equation for k  

but expresses it directly form the mean velocity gradient. We will see how that is done, and in 

addition it is postulated that turbulence involves a single (mean) turbulence length scale, tl , 

which is simply related to the geometry of the turbulent flow. The second simplest turbulence 

model, the “Kolmogorov model”, uses the balance equation (6), the unknown terms in it being 

conveniently modelled with closure assumptions Then, the model provides expressions for the 
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correlations involved in (1) to (6), in particular R , as functions of   , ,e v   , k , tl  and their 

spatial derivatives. The very popular “k-epsilon” model, instead of giving directly tl , assume 

that the dissipation rate   itself can be calculated by an additional balance equation, 

postulates such an equation, and writes the correlations as functions of   , ,e v   , k ,   and 

their spatial derivatives. 
We will now show that the approach of irreversible thermodynamics can be of great help, 
once the type of model is chosen, to solve the problem of modelling. We will see that it 
justifies the usual choices done by researchers since 30 years, and suggests possibilities for 
unsolved problems. 

2.2 Entropy for the Prandtl mixing length model 

In this framework we expect to model the turbulent flow only with the variables , ,e v   , 

given by their balance equations. It is assumed that the balance equation (6) for the kinetic 
energy of the fluctuating motion can be simplified in keeping only the production and 
destruction terms: 

 
' '

' '
v v v

v v p
x x x

  
  

  

  
   

  


 (8) 

In addition, the rate of dissipation, which can be calculated through  k  and tl  only, is 

necessarily written as 3/2 /d tC k l   , where dC  is a non dimensional constant. This model 

has been initially proposed for incompressible flow, and the pressure term, with the 
divergence of velocity fluctuation, is totally negligible in this case, as well as the two pressure 
terms in (7). Then the turbulence kinetic energy is an algebraic function of the gradient of the 
mean velocity, and does not need to be calculated with the differential equation (6): 

 
3/2

' 'd
l

k v
C v v

l x


 




  



 
 (9) 

The three basic variables , ,e v    being given, the entropy function has to be searched as 

( ,1 / )e     only (the velocity being a non-objective variable has not to appear), with the 

Gibbs and Euler-Gibbs equations classically written as: 

1
e      


 ,          1

( )de d d    


  

The two functions  ,   are the partial derivatives of e  with respect to   and 1 / , or  

1 /  and /   are the partial derivatives of   with respect to e  and 1 / , and the 

relations ( ,1 / )e     et ( ,1 / )e     are the laws of state, to be found. Of course, the 

formula ( ,1 / )e     also can be deduced. In addition, these equations of state do satisfy 

necessarily the Maxwell relation: 
2 2(1 / ) ( / )

(1 / ) (1 / ) (1 / )e e e

        
  

          
. 

The fluid itself, independently of the turbulent flow, has proper equations of state, and if we 

assume that it is an “ideal gas”, 0 ,ve C T e p RT    do hold, with three constants: 0, ,vC e R . 

Then, we can derive 0 ,ve C T e p RT     , just taking the average (weighted average for the 
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first one, classic average for the second one). It appears that if we identify  T    and p  , 

we find
0 0

,
v v

e e e e
R

C C

 
    
 

, and these relations are convenient equations of state because 

they satisfy the Maxwell relation : here (1 / ) ( / )
0

(1 / ) e

    
 

  
. The thermodynamic 

description of the model is complete. From these equations of state we can derive the 
entropy function, similarly as in the classical case of an ideal gas: 

( ) ( )r v
r r

C Ln RLn
 

    
 

. We emphasize that this entropy is not the statistical mean value 

of the entropy of the fluid ( , )s s e  . Indeed, this mean value cannot be expressed in terms of 

,e   only, because ( , )s s e   is non linear, and is not usable in our modelling framework. 

It has to be remarked that the previous development cannot be extended to the case of fluid 
satisfying a non linear Joule law ( )e e T . In this case, when the fluctuations are not infinitely 

small, it comes that 2 3( , ' , ' ,...)e f T T T     , and it is no more possible to limit the model 

to ( ,1 / )e    . If the nonlinearity of ( )e T  is important, we have to consider, at least, the 

additional variable 2' /T  . 

Once we have defined the entropy and found the equations of state, we can use the classical 
approach of irreversible thermodynamics for deriving some laws for the additional fluxes 
appearing in the mean balance equations (2) and (7). 

The Gibbs-Euler equation, now written as 1
( )de Td pd  


 , allows us to obtain the balance 

equation for the (new) entropy, showing the term of entropy production, which has to be 
always positive, and zero at equilibrium. Using (1), (2), (7), (8), one gets (with the 

“Lagrangian” derivative of the mean motion such that (.) (.) (.)
D

v
Dt t x





 
 
 

 ): 

 
' '' 1 /

( ) ( ' ) ( )
Q

Q v vj v eD T v
j v e

Dt x x xT T

   



  

      
      

  

 
   (10) 

The production terms are the two last terms, and in the last one the contribution due to the 
diagonal of the tensors is vanishing because the fluid is incompressible. It results that a 
simple extension of the linear classical irreversible thermodynamics is possible here, giving 
laws for the turbulent additional fluxes of heat and momentum.  
Concerning the total friction term, a positive “total viscosity coefficient” tt can be defined 

and: 

2
' ' ( )

3
tt

vv
v v k

x x

    

 


        

 

  

Considering that the fluid is Newtonian, one has already: ( )
vv

x x

 

 


   

 


 (here cst   

and v v  ) , and it appears for the pure turbulent contribution an “eddy viscosity 

coefficient” t tt      such as: 
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 2
' ' ( )

3
t

vv
v v k

x x

   

 


      

 

  (11) 

This is the well known “Boussinesq relation” proposed for turbulent flows at the end of the 
19th century. 
Similarly, for the total heat flux, the linear law of irreversible thermodynamics gives:    

 ' ' ( ) ( )
Pr

Q t
t

t

T T
j v e

x x
 

 

 
         

 

 
 (12) 

This introduces the classical « turbulent Prandtl number », constant , whose value (about 
0.83) has been given by  many experiments. 
The eddy viscosity coefficient has now to be found. Just by dimensions, it can be written as 

1/2
t tCk l    , with (9) it comes: 2 2( ) ( )( )

2
t t

d d

C v v v C v v v v
k l l

C x x x C x x x x

      

      

      
    

      
       , 

and we get finally the well known formula of “Prandtl mixing length” :  

 
2 1/2(( )( ))t ML t

v v v v
C l

x x x x

   

   

   
    

   
   

 (13) 

In this model, the turbulence length scale tl , called “mixing length”, is given algebraically 

from the geometry of the flow. The constants MLC  and dC  have been found actual constants 

when the turbulent fluctuations are well developed, and then t  , but when it is not the 

case they vary in function of the “turbulence Reynolds number” Re /t t   . Experiments 

have given such corrective functions. 
The conclusion is then here that the classical approach of linear irreversible thermodynamics 
does justify perfectly the old empirical approach of Boussinesq and Prandtl.  

2.3 Entropy for the K-epsilon model 

We consider now the very popular “k-epsilon” model, where a balance equation for k , 

based on (6), and a balance equation for
1/2 1/2

2
k k

x x


 

 
    

 

 
, less firmly based on physics, 

are used. When turbulence is well established,    , but the additional term is not 

negligible close to walls, where viscosity remains playing. There are other models that use 

equations for tl , or  1 / t , the inverse of a time scale of turbulence, instead of   , and 

similar discussions could be done for these models.  

In this case, the independent variables , , ,e k    have to be taken into account in order to 

build an entropy function, and we have to search ( ,1 / , , )e k       with: 

1
ke y k y 

        


 ,    
1

( ) kde d d y dk y d 
       


  

Here ( ,1 / , , )e k      , ( ,1 / , , )e k      , ( ,1 / , , )k ky y e k    , ( ,1 / , , )y y e k 
      

are the new equations of state to be found, satisfying the six corresponding Maxwell 
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relations. We will have to discuss the finding of these equations of state in connexion  

with the discussion of the second principle. Concerning the    equation, we use here  

the general following form, with a diffusion term and production and destruction  

terms: 

3 1 4 2

2 '
( ) ( ) ( )

3 d

v v v
v J C C R C p C

t x x x xk k kx

      
    


   

         
            

    

      (14) 

The C’s are constants (numbers, without dimension) or algebraic functions of the variables 

in some cases (the two first being always positive), depending of the exact version of the 

model used. Within the most classical k- model, 1 2 3 41.44, 1.92, 1.44, 0C C C C    .  
Using now (1), (6), (7) and (14), we can derive as in § 2.2 the balance equation for the entropy 
as: 

3

' 1 /
( ) ( ' )

/ / 1 2
( ( ))

3

Q
Qk k

k
k k

j v e y J y JD
j v e

Dt x x

y y C y v
J J p k y

x x xk

  
  


 

 
   


  

     
       

   

     
        

   




 

 

4 1

2

1 / /'

1 /1 1

3

k k
d

k
d

y C y k y C y kv v
p R

x x

y C y kv v

x x

  
 

 

 
  

 

     
   

   

   
     
    

  

 
 (15) 

We have written as d
  and dR  the deviators of the tensors   and R , and kJ  is the 

diffusion term of (6). We recognize in this equation a diffusion term, the first on the right 
hand side, and all the following terms do constitute entropy production terms.  
Before discussing the implications of the second principle, it is of interest to discuss the 
physical meaning of each term and to precise the equations of state. The first remark that 
has to be done is that the pressure has not to appear in the entropy production term, because 
it is not a source of irreversibility. Then the terms where the pressure appears have to be 

zero, and that implies that 3

2 2

3 3
kp ky C y 

        and 41 0ky C y
k






   .  

In addition, within the last term of (15), the directly scalar part of the entropy production, 

there is one contribution of the energy equation but also the contribution 2( )ky C y
k






    is 

due to the destruction terms of the equations for k  and  . Globally, this term has to be 

positive, but the contribution of k  and   may be dangerous for that. This problem is 

cancelled by choosing 2 0ky C y
k






  , and that corresponds to a “mutual equilibrium of 

destructions rates” for  k  and  . Assuming this mutual equilibrium ensures that no 
additional irreversibility is brought by this new kind of model. 
These three relations do determine constraints on the equations of state, or on the C’s. It has 
to be remarked that the equation (14) has been built, and most often used, for cases where 
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the turbulence is incompressible, then the divergence of the velocity fluctuations is 

vanishing, and the relation 41 0ky C y
k






    does not matter in this circumstance.  

Taking into account 2 0ky C y
k






   and 3

2 2

3 3
kRT ky C y 

        , 0
ve C T e   as well 

as the six Maxwell relations (saying that the second partial derivatives of ( ,1 / , , )e k       

are identical when the derivation variables are commuted), it is possible with a few algebra 

to find a convenient set of four equations of state only in the case where 3 2/C C  is a 

constant (possibly zero). The solution is: 

R    , 0 3

2

2 2
(1 )

3 3
k k

v v

R R C
e e C C T

R RC
       , 

k ky R
k


 

 and 

2

kR
y

C
 


 


, 

where kR  is a positive constant (with ky  chosen positive, without loss of generality). These 

formulas are not the unique solution of the problem, but they constitute a solution that can 
be supported by measurements, as approximations, at least in a certain limited range of 

variation of of the variables. One can remark that for keeping   positive, which is necessary 

in thermodynamics, it is necessary that 3

2

2
1 (1 )

3
kR C

R C
  .  

We can now discuss in details the implications of the second principle, which prescribes that 
the entropy production rate, the right hand side of the following equation (16), has to be 
always positive, or zero at equilibrium. 

' / /1 /
( ) ( ' )

Q
Qk k k

k

j v e y J y J y yD
j v e J J

Dt x x x x

  
     

 
   

         
       

     
- 

 4 2 1 21 / ' 1 / 1 1 1

3
k k

k d d

y y C C v C C v v v
p y R

x x x x

   
  

   

      
        

        
  

 (16) 

We know already that 
v

v

x







  


 and ( )

3d

v v v

x x x

   


  

   
    

  
with v  and v  

positive, in such a way that v

x










 is always positive, or zero if the velocity gradients are 

zero. We remember also that 'v

x







  


, and then the three last term can be grouped 

giving 1 v

x









 
.Then, the group of the three last term of (16) is clearly always positive, by 

definition, even if the two first ones are not positive, depending on the fluctuations of 
density. 

Secondly, the term 
1 2(1 / )k

d

y v
C C R

x







  
 


 concerning the influence of turbulent friction 

has also to be positive always, or zero. At the same time, we remember that d

v
R

x












 is a 
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production term for k  and has to be essentially positive, although not necessarily 

everywhere. With 2 1,C C  constant, it is implied that 1 21 /C C  is necessarily positive and 

then the linear irreversible thermodynamics again supports the Boussinesq relation, here 

written for compressible flows: 1
( )

3
td

v v v
R

x x x

  
 

  

  
     

  
  

, with t  positive.  

Here again, we have to write 1/2 2 /t l tC k l C k       , C  being positive, constant or 

function of the Reynolds number of turbulence, defined here as 2Re /t k  , if this number 

is sufficiently small. This is exactly what is used in all versions of the k-epsilon model. For 

versions able to consider small turbulence Reynolds number, 1 21 /C C  may become 

negative, and in this case this term has to be smaller than the three last terms corresponding 

to 1 1v v

x x

 
 

 

 
  

   


.  

The last point deals with the terms
/ /1 /

( ' )Q k
k

y y
j v e J J

x x x
   

 
  

    
   

  
. Again, we see 

that the modelling of kJ  and J , as well as ( ' )Qj v e
    can be done in terms of

k

x





, 

x








 and
x




, with possible coupling. No coupling has been attempted so far, however. The 

coefficients of diffusivity of turbulence kinetic energy, dissipation rate, and heat are all 
proportional to t  previously defined.  

As previously for the Prandtl mixing length model, we see that the well known k-epsilon 
model can be perfectly explained in the frame work of irreversible linear thermodynamics. The 
constraints we have found that 2 1C C  do correspond with the common practice for large 

turbulence. The value of 3C  is not well known, because the flows where 0
v

x










 are more 

complex, but we have shown that we need 3 2/C C cst  even if the C’s are varying. 

Considering 4C , we have found that 4

2

1 (1 ) 0k

C
R

Ck


   . That implies then a constraint for 4C , 

which is 2
4 2

k

kC
C C

R
 




. In case where the influence of /k   is poor,  4 2C C  simply. 

However, it remains to find an approximation for 
'v

p
x







 when it is not negligible. In practice, 

this quantity plays only in flows where
'

0
v

x








, which are less well studied turbulent flows, 

and the experiments up to now have only confirmed that 4C  has not to be put to zero...  

3. Irreversible thermodynamics for two phase flows models 

The theoretical description of two-phase flows is now firmly based by describing at each 

instant this medium as piece-wise continuous, and then considering that the model has to 
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deal with statistical averages, like for turbulent flows (Drew, 1983). The randomness here is 

due both to the poorly known initial and limiting conditions concerning the presence of the 

phases, and to the existence of local perturbations permanently created by unstable 

phenomena within the flow, similarly to classical turbulent flows. There is again the need of 

defining how many mean variables are necessary, and of finding their equations. We first 

give here the set of variables and equations for representing the flow, without details 

concerning the calculations but with the relevant physical interpretation, and then we show 

how the Extended Irreversible Thermodynamics helps the modelling.  

3.1 Variables and equations for two-phase flows modelling 

The first classical attempt for representing a two-phase flow uses statistically averaged 
variables for volumetric mass, momentum, internal energy for the two phases, and their 
probability of presence, also known as the “volume fraction” of each phase. It is defined a 

“phase indicator” ( , )i x t


 which is unity within the phase i and zero outside, and the 

statistical average ( , )i x t


is nothing but the probability of presence of this phase. Of course, 

1,2

( , ) 1i
i

x t


  
. For each phase, we define i i i i i

       , i i i i i iv v        , 

i i i i i ie e      . 

The averaged forms of mass, momentum and energy equations can be found from the 
primitive equations for the piecewise continuous medium (Borghi, 2008). For momentum 
and energy they display additional diffusion fluxes due to the presence of local 
perturbations around the mean values, similarly as for the turbulent flows. We will call 
these terms “pseudo-turbulent” fluxes. The averaged equation for the mass of phase i is: 

 ( ) ( )i i i i i i ri i sv v n
t x

    



 
       

 
  (17) 

The last term on the R.H.S is the possible exchange of mass between the two phases: riv  is 

the velocity of the phase i relative to the interface, non zero only when there is exchange of 

mass between phases (vaporization-condensation for instance) ; s  is the instantaneous 

interface area by unit of volume of the medium, mathematically defined by i
i sn

x





  


, 

where in  is the normal to the interface, oriented outward phase i. Of course, the gradient of 

the phase indicator has the structure of a Dirac peak, and s  is zero except on the interface 

(Kataoka, 1986). The averaged equation for the momentum of phase i is. 

  ( ) ( ' ' )i i i i i i i i ii i i iv v v v v
t xx

       



  
         

 
   i ig


  i ri i s i si iv n v n         (18) 

The pseudo turbulent momentum diffusion flux is ' 'i i iv v   . The two last terms of (18) 

represent the momentum given to the phase i by the other one, by exchange of mass and by 

the contact force, respectively. The tensor i
  is the Cauchy stress tensor within the phase i. 

The equation for the mean total energy of phase i is: 
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  ( )i i ti i i i tie v e
t x

  



 
     

 
   ( Q

i ii i ij v
x

 
  




  


 ' ' )i i i i i tii v v e       

 Q
i i i ri i ti s i s i si i i iv g v n e n v j n        

          (19) 

The total energy is defined as /2 /2 ' ' / 2ti i i i i i i i i i i i i i ie e v v e v v v v                    , the 

pseudo-turbulent energy flux is 'i i tiv e  , and the last three terms are the exchanges of 

energy from the other phase, due to exchange of mass, power of contact force, and heat flux, 
respectively.  
It is possible also to write a balance equation for the volume of phases, simply obtained from 

the convection equation of the field of ( , )i x t


:  

( ) 0i s i i i ri iv v v
t x t x

  

 

   
        

   
. When averaged, this equation gives:  

   '( ) i i
i i i i riv v v

t x x
  

 

  
     

  


x

   (20) 

The terms on the R.H.S. have to be approximated by models, the second one being only due 
to the exchange of mass between phases. 
There are also important instantaneous interface conservation relations, linking at the 
interface the exchanges between the phases: first, the mass lost or gained by one phase is 
identical to the mass gained or lost by the other phase; second, if we neglect the surface 
tension phenomena, it follows that the momentum lost or gained by one phase is identical to 
the momentum gained or lost by the other one ; and third a similar relation holds for the 
total energy (Kataoka, 1986). That leads to: 

1,2 1,2 1,2

( ) 0, ( ) 0, ( ) 0Q
i ri i s i ri i i s i ri i ti i i si i i i i

i i i

v n v n v n v n e n v j n             

  
              (21) 

At the interface, the tangential velocity and the temperature fields are continuous, but there 

are discontinuities of density, momentum and energy per unit mass. The equations (21) give 

“jump relations” relating the values of these quantities on both sides of the discontinuity. 

We will not consider further here the exchanges of mass between phases, and these relations 

are simplified as: 

1 2 1 1 2 2 1 1 1 2 2 2 1 1 2 20,( ) ( ) 0,( ) ( ) 0,( ) ( ) 0Q Q
r r s s s s s sv v n n n v n v j n j n                            (22) 

The third relation of (22) is deduced from the second one because both phases have the same 
velocity on the interface.  

The instantaneous behaviour of each phase has to be given by the knowledge of i
 and 

Q
ij
 as function of , ,i i iv T . We will notice here ii ip         for any type of phase (but 

usually for a solid phase the pressure is defined by the third of the trace of i
 , with an 

opposite sign). For a fluid phase, i
  is the viscous stress tensor, which can be assumed 

Newtonian for instance, and an equation of state gives ( , )i i i ip p T  . For solid particles, we 

are not concerned with the full elasticity properties and we can limit the description as a 

“quasi-liquid”, very viscous. For any type of phase the Fourier law for heat conduction can 
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be adopted and a Joule law linking the temperature to the internal energy can be 

considered, neglecting the energetic aspects of compressibility for liquid or solid phases. 

Very often it suffices to take i cst  . 
One sees the similarities of the problem of modelling these equations with the one of 
modelling turbulence in single phase flows. We will show now how the irreversible 
thermodynamics can help this modelling task. For simplicity, we will consider in the sequel 
that there is no exchange of mass between the phases, this could be taken into account later.   

3.2 Entropy for a simple two-phase flows model 

We will consider the simple case of a model similar to the Prandtl mixing length model, 

where simply the variables: , , , , 1,2i i i iv e i      have to be represented by their own balance 

equations. The development then follows the same path as § 2.2 above, but with two phases 

i=1, i=2. 

The kinetic energies of fluctuations, namely ' ' / 2 , 1,2i i i i i ik v v i      , follow a balance 

equation that can be found from the primitive equations. It writes, without exchange of mass:  

( ) ( ) ( ' ' ' / 2 ' ) ' ' i
i i i i i i i i i i i i ii i i i i

v
k k v v v v v v v

t x x x


         

  

  
             

   


  

 'i
i i i i i

v
p

x







     


'i si in v     (23) 

We do not consider here, in the Prandtl mixing length framework, that each ik  does follow 

this full equation, we assume that it can be reduced to a local balance between production 
terms and destructions terms, giving simply that :  

 '
' ' 'i i

i i i i i i s i i ii i i

v v
v v p n v

x x

 
     

 

 
          

 


 (23’) 

The last term of (23) and (23’) is due to the exchange of energy from the other phase, by the 
contact force. 
With the point of view of the Prandtl model applied to both phases, we have to build an 
entropy with the variables , , , , 1,2i i i iv e i     , such as 

1,2
i i i

i





     , because entropy is 

an extensive quantity. The entropies of each phase are functions only of the variables of this 

phase, unlike molecular mixtures: ( , )i i i ie      .  As in § 2.2, we can adopt                        

  
1

i i i i i
i

e T p
    


 ,          

1
( )i i i i

i

de T d p d   


  

Similarly, we take linear equations of state for phases, which can be averaged without 

needing additional variables. For a gaseous phases 0 ,i vi i i i i i ie C T e p R T      , and for liquid 

or solid phases  0
0, ( )s s s s s s se C T e p K       , neglecting the influence of compressibility on 

the internal energy.  
We can first show that the convective time derivative for the mean entropy of the medium is 
such that:     
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 ( ( ))i
i i i i i i

ii i

DD
v v

Dt Dt x
   



 
        

     (24) 

The convective time derivative for the medium follows the averaged velocity, while for the 

phases they follow the averaged velocity of each phase. Of course, the Euler-Gibbs relation 

is written now as: 

 
1

( )i i i i
i i i i

D D D
e T p

Dt Dt Dt


  


  (25) 

It is easy to verify that the equation (17) allows to write: 

1
( ) i i i i

i i i
i i ii i

D v DD

Dt Dt x Dt

 


 


   
      

 


, without  exchange of mass between phases. By 

using (20), we obtain as well: 

 
1

( ) 'i i
i i i i

i i

vD
v

Dt x x


 


 

 
    

 


 (26) 

It is necessary then to obtain the balance equation for the mean internal energy of phases 

from (19), removing the kinetic energy of the mean motion by taking into account (18), and 

removing also the kinetic energy of the fluctuations with (23). It is found: 

 

( ' )

'

Qi i
i i i i i i i i ii

i

Qi i
i i i i s i i ii i

De v
j e v p

Dt x x

v v
p j n

x x


   

 

 
   

 


      

 

 
         

 

 


 (27) 

With (23’), it gives: 

( ' ) ( )Qi i i
i i i i i i i i i i ii i i

i

vDe v
j e v p R

Dt x x x

 
      

  


          

  
 

'Q
i s i si i ij n n v         , 

where idR  is the deviator of the Reynolds tensor for phase i. The two last terms take into 

account the exchange of heat by conduction Q Q
i si ij n     and the exchange of kinetic 

energy by contact force 'i si in v    , respectively, from the other phase. In the momentum 

balance (18) the total contact force has to be split in i
si i sin p F

x
  




    


. The first part is 

simply the influence of the variation of the volume of the phase, while i ssi iF n      is 

really the force from the other phase, and the jump condition (22) gives
1,2

0si
i

F


 . It 

follows that ' ' 'i
i s i si ii in v pv F v

x
     




    


, giving finally: 
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( ' ) ( )Qi i i
i i i i i i i i i i ii i i

i

vDe v
j e v p R

Dt x x x

 
      

  


          

  
 

 

 ' 'Q i
i s i si iij n pv F v

x
    




   


 (28) 

Now from (24), (25), (26), (27), we obtain the entropy balance equation for the medium: 

' 1
( ( ( ) )) ( ' ) ( )Q Qi i i i i

i i i i i i i i ii i
i i ii i

e vD
v v j j e v

Dt x xT T T

 
     

 

    
              

      
 

 ( )i i
ii i

ii

v
R

xT


  




   





'

'
Q

isi i i i
i

i i ii i i

F v p p
v

xT T T

  




 
  

      (29) 

We recognize in this equation the rate of production of entropy, which has to be positive or 
zero in any case. 

The last sum deals with the exchange of heat between the phases. As
1,2

0Q
i

i
  , this term 

can be written as: 1
1 2

1 1
( )Q

T T
   , and the linear classical irreversible thermodynamics 

proposes 1
1 2

1 1
( )Q

T T
    . 

The second last term involves ' i
iv

x







, expression implied in the closure of (20), and we see 

that assuming that ip p   eliminates this term and at the same time the need of (20). Instead 

of this assumption, the linear irreversible thermodynamics suggests the hypotheses that 

' ( )i
i iv p p

x
 




  


 and gives a closure for (20). The phase volume fraction can be calculated 

then with   ( ) ' ( )i
i i i i iv v K p p

t x
  



 
      

 


x

. Such an equation is almost identical to 

the equation proposed by M. Baer and I. Nunziato for compressed granular medium (Baer 
& Nunziato, 1986). 
The two first terms of the entropy production deal with the diffusion fluxes of heat and 
momentum. For momentum, when each phase is divergence free (which is originally the 
scope of Prandtl model), we find for each phase the same formulation as for a single phase 
turbulent flow in §2.2. Similarly, for heat diffusion, if this term is considered uncoupled with 
others, the classical model found in §2.2 is again obtained for each phase. 

The term  
' 1

( )si i
si i si i

i ii i

F v
F v F v

T T

 
       

 is connected with the exchange of momentum 

between phases. The “jump relations” (22), similarly as
1,2

0si
i

F


 , gives 

1,2

0si i
i

F v 


  

(and gave
1,2

0Q
i

i

   previously used). Because at the interface between the phases the 
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velocities of phases are equal, an averaged interface velocity sv can be defined such 

that ssi i siF v F v    , and the related source term of entropy can be written 
1

( )ssi i
ii

F v v
T

    . 

The classical linear irreversible thermodynamics leads to ( )i ssi iF K v v     , and with 

1 2s sF F   , that gives an expression for the averaged interface velocity : 1 1 2 2

1 2
s

K v K v
v

K K

 
 



 

. 

The iK are positive constants, depending on the characteristics of the two phases in contact, 

to be found with experiments. If we consider the possibility of a coupling, in agreement with 

the so called Curie theorem, we find that it is possible that the contact force siF  to the phase 

i is linked to the gradients of temperature within the phases. We recover here a 
“thermophoretic “effect. 
All these discussions do justify the assumptions currently done for the modelling of two-
phase flows, in a large range of applications.  

4. Irreversible thermodynamics for modelling of granular media  

Granular flows are nothing but two-phase flows of solid irregular particles within a gaseous 

or liquid phase. But the high number of particles per unit of volume, and the low velocity 

that may persist allow numerous and long duration contacts between the particles, unlikely 

to usual two-phase flows. The approach that has been presented in §3 for two phase flows 

can be used also, but the problem that arises immediately is that very often the solid phase, 

locally, is built with two or three particles (or more) in contact, and consequently the solid 

here is not a true solid for which behaviour laws are known. Actually, each grain is one 

solid, but a couple of grains does not. So, it is necessary to consider the medium as a multi-

phase medium, where each grain represents one phase. This approach has been proposed 

recently by R.Borghi and S.Bonelli (Borghi § Bonelli, 2007), and we will develop a while its 

connection with Irreversible Thermodynamics. 

4.1 Basic equations for granular media 

For granular media, the equations (17) to (20) do hold, but we can simplify them because it 
is not needed to follow the motion of each grain. Considering that there are N solid grains, 

there are N+1 phases and N+1 ,i iv   , but we are interested only in the knowledge of 

1, 1, 1,

, ,g i g g i i g g g i i i
i N i N i N

v v   

  
               , and 1 1,f N f Nv v   

      . From (17), 

(18), we get the mass and momentum balance equations of the “grains phase” as: 

 ( ) ( ) 0g g g g gv
t x

  



 
     

 
  (30) 

Here the mean intrinsic density of the grains g
 can be considered generally as known and 

constant. If all the grains are made with the same almost incompressible solid, g
  is the 

density of this solid g s
   . 
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 
1, 1,

( ) ( '' '' )g g g g g g g i i i ii i
i N i N

v v v v v
t xx

       

  

  
          

 
    g gg

   

 
1,

i
i si

i N

n 


      (31) 

We see that the effective Cauchy stress tensor for the grains has two parts: 

1, 1,

'' ''tg i i i ii i
i N i N

v v   

 
        . The first one takes into account the stresses within the 

grains but mainly also the influences of the lasting contacts, with friction between grains 

depending on pertinent laws, and we can call it “mean Cauchy stress of lasting contacts”; 

the second one is due to the velocity fluctuations, here defined with respect to the averaged 

velocity of all the grains: ''i i gv v v     , and is similar to the Reynolds tensor for turbulent 

flows, and we will call it “mean kinetic stress”. It is important only when the motion of the 

medium is well established, but even with slow mean motion there are some large and 

sudden fluctuations of velocity. The modelling of both terms has to be studied with care. 

Without models, eq.(31) is without interest. 

The last term of (31) is the influence of the fluid phase. Indeed, the contact forces between 

grains do compensate themselves in the summation, and only the contact force with the 

fluid remains. More precisely, as in §2., we have 
1,

ffi
i s f s fi f f

i N

n n p F
x

     




       

 , 

where fF  is the pure contact force of the fluid on the grains.  

When the fluid is air, or any gas whose intrinsic density is very small with respect of the 

solid, f s
  , we have g g

   and g g gv v      . In addition, the contact force and the 

gradient of fluid pressure (which is of the order of f gg g 
   ) are negligible in (31). Then 

equation (30) is nothing but the averaged continuity equation for the entire medium, and 

(31) gives the averaged momentum balance for the entire medium:  

  
1, 1,

( ) ( '' '' )i f f i i ii i
i N i N

v v v p v v
t xx

       

  

  
          

 
    g  (32) 

The averaged total energy of the grains can also be studied, following the same route, and 

from (19) a balance equation for the mean total energy of the grains phase can be written 

similarly. From this equation, by removing the kinetic energy of mean motion and the 

kinetic energy of fluctuating motions, we can get an equation for the mean internal energy 

of the grains phase, similar to (28). When the fluid is light, and has a temperature similar to 

the one of the grains, this equation is nothing but the mean internal energy equation for the 

entire medium: 

 
1, 1,

( ) ( ) ( '' '' ))i f f i i iQt i i
i N i N

v
e v e p v v

t x x x


     


   

  
            

    


    (33) 
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We have neglected in (33) the viscous friction in the fluid phase. 

The equations (32) and (33) need closure assumptions for the contact stress tensor and the 
Reynolds-like tensor, before being useful. The fluid pressure can be calculated with the 

momentum equation for the fluid phase, often reduced simply as 0
f

f

p
g

x








   


. 

The modelling of the lasting contact stress tensor 
1,

cg i i
i N

 


     has been studied in 

details in (Borghi & Bonelli, 2007). We will only summarize their results in the next 
paragraph, but we will develop the question how the irreversible thermodynamics can help 
this modelling. The kinetic contribution, due to the velocities fluctuations, can be modelled 
with the principles that have been described in the first part of this chapter, and we will 
discuss this point in §4.3. 

4.2 The modelling of the mean Cauchy stress tensor of lasting contacts 

The approach of Borghi and Bonelli gives an evolution equation for cg
 . The grains are 

assumed elastic, with small strains but large possible displacements, and the contacts are 

displaying partly a reversible behaviour, as proposed by B.Cambou (Cambou,1998, Emeriault 

& Cambou, 1996), and partly irreversible sliding. The obtained evolution equation displays the 

rotational objective derivative of Jaumann, without any additional assumption: 

( ) ( ' ) ( ) : ( )
cg cg cg

g p fe
g g g sym

v
v v c

t x x x


      

  

           
     

D Dσ σ σ


 

      2 2 . ' 2 .g c g g g g
symsym sym

Q Q               (34) 

The first term on the R.H.S. is a classical dispersion term due to the fluctuations of the 
velocity and appears for any averaged quantity within a “randomly moving” medium. The 

appearance of the Jaumann objective derivative is justified by the last term, gQ  being the 

averaged rotation rate tensor of the medium, mainly related to ( )
g g

skew

v

x








. The tensor ec


 

(fourth order) is an effective elastic stiffness tensor of the medium, due to the elastic 

behaviour within the grains and also particularly of the lasting contacts. The tensor pD  is 

due to the irreversible sliding in the contact zone between two grains, and  fD  is related to 
the change of shape of “void volume” between the grains. The two following terms are due 
to the correlations of the fluctuations of the Cauchy stress with the ones of the rotation rates 
of the contacts and of the medium, respectively. They are not expected to be important 
terms. All the details concerning the definition of these terms can be found in (Borghi & 
Bonelli, 2007). Similarly as for turbulent and two-phase flows previously discussed, most of 
these terms, even when their physical meaning is clear, are not under a closed form in this 
equation, because the influence of fluctuations are imbedded within them, and they have to 
be modelled. We can remark that both the unweighted and weighted averaged velocities 

appeared, but when  g s
    these two velocities are equal.   
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By definition cg
 is an averaged quantity for solid grains,

1,
cg i i

i N

 


    , we can define as 

well an intrinsic mean contact stress tensor  as 
1,

g cg cg i i
i N

  


       . Equation (33), 

together with (30), can give an equation for cg
 , and also  equations for the trace and deviator 

of this tensor. The elastic stiffness tensor ec


 has been formally defined, but it cannot be written 

explicitly, only numerical calculations have been done (Emeriault & Cambou, 1996). Even its 

dependence on g  cannot be theoretically written. For a statistically homogeneous and 

isotropic granular medium submitted to an isotropic stress, it will result that this elastic 

stiffness tensor can be represented with simply an effective compression modulus and an 

effective shear modulus, say ,e eG . These quantities are not necessarily constant, and in 

particular they depend on g , in an unknown manner. We will consider in the sequel this case 

for simplicity, but the general case can be developed as well. Then, the equation for the trace 

and for the deviator of cg
  are simply written in terms of ,e eG  . If we take into account (30), 

remembering that we consider g s
   as constant and defining ( ) / 3g gtrace     , it comes: 

 ( ' ) 3
ge

g g g g g g

vd
v I

dt x x


  

 


         

 


 (35) 

The last term groups all the irreversible effects of sliding contacts, ( : ( )) / 3p feI tr c D D  . 

 ( ' ) 2 ( )
ge d

g g g g symcd cd d

vd
v G I

dt x x


   

 


        

 
2 ( )g g skewgd Q     (36) 

dI   is a second order tensor, without trace, taking into account of all the irreversible effects 

resulting in production and destruction for the effective Cauchy tensor of contacts. Now the 

modelling of I  and dI   has to be discussed, and the extended irreversible thermodynamics 

will help us a lot. 

The granular medium is described by the variables , , , ,g cde v      , for which we know 

balance equations, although some terms remain to be closed in it. First we will consider for 
simplicity only the case where the medium is “quasi-static”. It is possible then to neglect all 
terms related to the fluctuations of velocity, and we can concentrate our attention on the 
closure of equation for the mean Cauchy stress of contacts, again in the framework of the 
Extended Irreversible Thermodynamics.  

In this case, the entropy is simply: ( ,1 / , , )g gde        , and we can writes the Euler-Gibbs 

relation, introducing the pertinent partial derivatives: 
1 1

( )
p d

g gd

y yp
d de d d d

T T T T


       


 .  

The balance equation of this entropy can again be found using the balance equations of the 
corresponding variables, i.e. (30), (34), (35), (36). After some algebra, it is found: 
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1 1
( ) ( ) ( ) ( )

g g g gQ dcd
sym f fQ

s s

v v vd
p p

dt x T x T T x T x T x

    
 

    

       
           

      

  
 

 ( 3 ) (2 ( ) )
p g ge e dd

s sym s d

y v vy
I G I

T x T x

 


 

 
         

 


       (37) 

The reversible terms have to be cancelled in the entropy production. That implies three 
relationships giving three partial derivatives of the entropy, which prescribe three of the 
needed equations of state: 

f fp p  , 2 e cd
d

s

G y


 



, 3

ge
p

s

y


 


 

Then, the Maxwell relations give the form of the forth needed equation of state: 
2( )

( )
6 4

g cd cd
e e

s s

e fct T
G

    
  

  
 . 

The entropy production rate of (37) can be rewritten as: 

 1
( )

3 2

g cd d
Q e e

I I
P

x T T TG

  





 
    

 
       (38) 

In agreement with the Curie theorem, each term separately has to be positive. That gives, 
first, with a linear law, that the heat flux can be represented again with a Fourier law. 
Concerning the effective contact Cauchy tensor, a first linear model could give: 

3 e

g g
v

I 
   


, 

2 e

gd cd

G
I   


σ . 

The coefficients , v   are phenomenological viscosity coefficients, necessarily positive. The 

result would then be very similar to the old Maxwell model for visco-elastic materials. 
But a very non linear model, with a threshold, could equally be compatible with the second 
principle, and may appear in better agreement with experiments for granular media. For 
instance, we could envisage (H being the Heaviside step function): 

 
/3

( )
e

g

c g g g
v c

v x
I H


 

 
      

 
 (39) 

 1/2
( / )2

( ) ( sin )
sin

de
g sym

g gd cd cd cd

g

v xG
I H k

k


    



 
           
σ σ σ        (40) 

The physical meaning of the discontinuity involved in (39) is that when the medium is 

compressed (then g
  is positive) more than the positive value c , the medium behaves very 

similarly to an elastic compressed solid, but when the medium is less compressed, or 
expanded, the normal contacts are lost in such a way that the "contact-pressure" decreases 

exponentially to zero due to I .  
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With (40), the medium will remain “quasi-elastic” below one plastic limit defined by k and 
the angle  . The existence of this limit is strongly suggested from numerical experiments 

with Discrete Elements Method, and experimental finding give that the medium may 
experience a “solid-fluid transition”.  The Mohr-Coulomb law displayed here is given just as 

example. The appearance of the solid fraction in , dI I    is expected because they involve the 

mean interface area between grains per unit of volume, and this quantity increases with the 
fraction of grains. The simple linear dependence in this quantity may be replaced by an 
empirically found formula. 
If we consider the closures (39), (40) for the equations (35), (36), beyond the plastic limit, in 
the case where the last two terms are predominant and counterbalancing themselves 

(because ( / )d
g symv x

   is very large), (35) and (36) are reduced into algebraic (then local) 

equations, giving simply:  

  
( / )

( sin )
( / )

d
g sym

gcd d
g sym

v x
k

v x


 




 
    

 
σ , and 

( / )

/

g
g v c

g

v x

v x







 
   

 
 

A similar law has been proposed in 1994 (Hutter & Rajagopal, 1994) and recently studied 
with numerical simulations  (Frenette et al. 2002). 
Before the plastic limit, the medium is purely elastic if the first terms on RHS of (34) and (35) 

are negligible. We can specify then that ,g e cd ed
          and deduce the equations for 

these elastic stresses.  

In this case, (34) is reduced to 3
ge

e

vd

dt x







   




. As (30) gives ( )

gvd

dt x






  




, it follows that 

3 e
ed d

dt dt

  



 and it gives nothing but that:  

 3 e

g d 
  

  (41) 

That means that the effective pressure due to the contacts is directly function of the mean 

volumetric mass of the medium, here simply s g    . Of course, the effective compression 

modulus may be also function of the mean volumetric mass, and so this relationship is not 
simply logarithmic. Physically, the effective pressure goes to infinity when the compaction 
goes to the maximum possible (to be empirically known), and becomes zero when the grains 
do not experience lasting contacts. There is again in this case a pressure between grains due to 
short collisions of fluctuating grains, but this pressure is taken into account in the second part 
of the total mean Cauchy stress tensor, which we will consider in the following paragraph. 
Similarly, (35) gives for elastic situations:  

 2 ( ) 2( ( ) )
g ge d d

sym skew skewed ed

v vd
G

dt x x

 
 

 

 
    

 
 (42) 

In any situation we can define an elastic part and an irreversible part for the stresses, 

,g e i cd ed id
               , where equations (41) and (42) give the elastic parts and the 

total is given by (35) and (36) with (39) and (40). 
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4.3 The modelling of the mean kinetic stress tensor 

We consider now the contribution
1,

'' ''i i i i
i N

v v 



   , due to the fluctuations of the local 

velocities within the grains with respect to the mean velocity gv  of all the grains. This term 

is quite similar to the Reynolds stress for the turbulent flows, and that suggests that a model 

similar to turbulent models can be proposed. We will study now this modelling, considering 

that we have left the quasi static regime, and even that the motion of the granular medium is 

sufficiently fast in such a way that the total mean Cauchy stress tensor is dominated by the 

kinetic stress. 

In this case, it is clear that we can apply the irreversible thermodynamics approach 

developed in §3.2 for usual two-phase flows, without lasting contacts, similar to the 

framework of the Prandtl mixing length. The result with a linear approximation will be that 

again a Boussinesq relation can be proposed for the mean kinetic stress: 

 
1,

2 2
'' '' ( )

3 3

g g geff
i i i s g g s g gi

i N

v v v
v v k

x x x

  
   

  

  
            

  
  

  (43) 

Of course, we have defined
1,

1
'' ''

2
s g g i i i i

i N

k v v 



     . This quantity is the kinetic energy 

of fluctuations for the grains, related to what is called “granular temperature” (with a 

relation like g k Gk R T  ) in the framework of granular gases. At the same time, this quantity 

is directly related to the normal mean kinetic stress: 2 s g gP k    . 

It remains then to find a model for the “effective kinetic viscosity coefficient” eff
g , and 

following again the same path a model similar to the Prandtl mixing length is necessarily 
found. Similarly as in §2.2, transposing formula (13), we have:  

 2 1/2(( )( ))
g g g geff

g g t

v v v v
C l

x x x x

   

   

   
   

   

   
 (44) 

In addition, it is shown in §2.2 that the kinetic energy of fluctuations is: 

 2( )( )g B t

v v v v
k C l

x x x x

   

   

   
  

   
   

 (45) 

,B gC C  are constants. In a simple case of sheared granular medium, that gives for the normal 

and the shear stresses ,P T : 

 2 21
( ) , / /(2 )

2
B t g B

V
P C l T P C C

y


  


 (46) 

In 1954, R.A.Bagnold has found in his pioneering experiment, for the highly sheared regime 

called “grain-inertia regime”, a quite similar law (even if the reliability of the experimental 

results is not so clear, see Hunt et al., 2002). He found the length tl  was given proportionally 

to the mean diameter of the grains, as 1/3
max/(( / ) 1)t g gl d    , (Bagnold, 1954). 
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How to specify this length scale is a critical point of the modelling. The framework of the 

Prandtl model does not say anything about it. The experiments of Bagnold have given an 

empirical law linking it to the solid fraction g , and to the grain diameter, but for turbulent 

flow, it has been found that this length scale is only related to the size of the experimental 

device. That is because the flow field imposes to the fluctuations its own scale. We can 

suspect that this can be true also for granular flows, meaning that the fluctuations do 

concern not simply each grain independently of the others, but some times, in some places, 

do concern groups of grains, whose size depends on the geometry of the flow. In this case, 

the law for the mixing length would necessarily take into account this geometry, as well to 

the grain diameter and  the solid fraction… 

It is not conceptually difficult to obtain a balance equation for gk , following the same route 

as for two phase flows. Here, we can continue to neglect the friction force of fluid phase, but 

we keep the lasting contact Cauchy stress, which is the only source of dissipation of kinetic 

energy. Transposing (6), and recognizing the elastic parts and irreversible parts of the mean 

contact stresses , ,cg eg g e iig cd ed id
                    , we get: 

1
( ) ( ) ( " " " " " " )

2
g g g g g g g g f f f s g g g gcdk v k v v v p v v v

t xx

       



  
            

 
   

 
1,

' ' '
" "

g g f g g g
i i i e g f f f f g gi iged

i N

v v v v v v
v v p p

x x x x x x

    
    

     

     
            

     
 

 (47) 

The last term in this equation is nothing but the dissipation rate of kinetic energy, due to the 

irreversible effects of the contacts, that we can note g . The first term on the R.H.S. is a 

classical dispersion term, the second one is a production term directly related to the gradient 
of the mean velocity, which appears classical also. The other terms are responsible for 
transfer of kinetic energy from the elasticity of the grains phase or the fluid phase. They are 

not in closed form, because they involve fluctuations, except
g

f f

v
p

x












, and their 

modelling is to be studied. One can already propose that the fluid motion between the grain, 

with very low velocity, is divergence free, then 0
f

f f

v
p

x





 . We can then rewrite formally: 

 1,

( ) ( ) ( ) ( " " )

' '

g
g g g k i i i i

i N

g g g
e g g f f ged

v
k v k j v v

t x xx

v v v
p

x x x


   

 

  
 

  

  
        

  

  
       

  


 


    (48) 

We see first, if we compare this equation to the one for turbulence kinetic energy, eq. (6), 
that applying the Prantdl mixing length approach for obtaining the Bagnold formulas (46) 

needs to neglect the terms 
' 'g g g

e g g f fed

v v v
p

x x x

  
 

  

  
     

  


 within (48). Indeed, the two 
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first of these terms are due to lasting contacts between grains, and they are expected to be 
less and less efficient when the solid fraction decreases. The term due to the fluid phase is 
also expected to be small when the fluid is not submitted to compression or expansion. 
Second, this equation is very similar to the equation for the granular temperature in 
“granular gases”. For instance we can take the one proposed by S. B. Savage and co-workers 

(Lun et al, 1984). 

 3 3
( ) ( ) ( )
2 2

gG
G g G G

vT
T v T K D T

t x x x xx





   

   
           
    


        (49) 

The tensor  is what we have called in §4.1 the kinetic stress, and the constitutive relation 

“formula” is given by the classical theory of granular gases 

0( (1 4 ( )) ( ) )
g g g

G g g v

v v v
T

x x x

  

  
  

  
              

  

  
. The first diagonal 

contribution in this stress tensor is simply proportional to the granular temperature itself, 
the two last ones are linked to the mean velocity gradient with effective viscosity 

coefficients , v  , which the theory relates to the variables , ,G gT d  . The first diagonal term 

involves a reversible contribution which is nothing but G s g GT T    , but involves also an 

irreversible contribution related to  . The coefficients ,K D  in (49) are also diffusion 

coefficients proportional to , v  . The last term of (49) is a destruction term due to inelastic 

collisions, and the classical theory gives
1/2

5( ) G
g

T

d
    . The functions 0 5,   are non 

dimensional functions of the solid fraction only. 

We notice the close analogy with our equation (48) for gk . We recognize the dispersion 

flux, the production term due to mean velocity gradient, and the last term is the dissipation 

rate. Similarly to the Prandtl model, the kinetic stress is related to the gradient of mean 

velocity with the Boussinesq relation, and the dissipation rate is calculated proportional to 
3/2

G

t

T

l
, with the length scale tl  linked to the mean diameter of the grains. There is also a 

dependence on the solid fraction, which is due to the occupation of the space when there are 

many grains. We get in (48) additional terms due to the elastic properties of the grain phase, 

which are not considered in granular gases because the lasting contacts are not considered, 

only instantaneous collisions are supposed to play. We can then consider that (48) agrees 

with the classical developments of the theory of granular gases and extend their validity for 

granular medium where the solid fraction is sufficiently high and the global velocity is low, 

in such a way that the enduring contacts can no more be neglected.  

The problem of finding the length scale that plays  in these models, taking into account or 

not that there are “cooperative motions” of groups of grains, remains. We can remark that a 

model similar to the k-epsilon model is able to address this problem. We could follow the 

approach of §2.3 for the modelling of the equation for gk and of an equation for g , from 

which we can extract a length scale.  The irreversible thermodynamics will hep us, as shown 

in §2.3, for choosing the terms and the coefficients of these balance equations.  
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5. Conclusion  

We have applied the “Extended Irreversible Thermodynamics” approach in order to built 
models for three examples of “random media”, and we have found that this approach do 
justify the bases of classical models, which have been proposed without any reference to 
Thermodynamics. Of course, this approach gives only the shapes of the laws, and there are 
constants or non-dimensional functions remaining, to be determined from experiments. The 
approach can be applied to different models, more or less detailed, for the same kind of 
situation. We have shown only a few examples, and other models, in other situations can be 
studied with the same route.  
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